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Abstract. This paper proposes a novel tree decomposition based side-
chain assignment algorithm, which can obtain the globally optimal so-
lution of the side-chain packing problem very efficiently. Theoretically,
the computational complexity of this algorithm is O((N + M)ntw+1

rot )
where N is the number of residues in the protein, M the number of
interacting residue pairs, nrot the average number of rotamers for each

residue and tw(= O(N
2
3 log N)) the tree width of the residue interaction

graph. Based on this algorithm, we have developed a side-chain predic-
tion program SCATD (Side Chain Assignment via Tree Decomposition).
Experimental results show that after the Goldstein DEE is conducted,
nrot is around 3.5, tw is only 3 or 4 for most of the test proteins in the
SCWRL benchmark and less than 10 for all the test proteins. SCATD
runs up to 90 times faster than SCWRL 3.0 on some large proteins in the
SCWRL benchmark and achieves an average of five times faster speed on
all the test proteins. If only the post-DEE stage is taken into considera-
tion, then our tree-decomposition based energy minimization algorithm
is more than 200 times faster than that in SCWRL 3.0 on some large
proteins. SCATD is freely available for academic research upon request.

1 Introduction

The structure of a protein plays an instrumental role in determining its func-
tions. Experimental methods such as X-ray crystallography and NMR techniques
cannot generate protein structures in a high throughput way. Protein structure
prediction tools have been frequently used by structural biologists and pharma-
ceutical companies to analyze the structure features and function characteristics
of a protein. Typically, in order to overcome the computational challenge, protein
structure prediction is decomposed into two major steps. One is the prediction
of the backbone atom coordinates and the other is the prediction of side-chain
atom coordinates. The former step is usually done using protein threading pro-
grams [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] or sequence-based homology search tools such as
PDB-BLAST [11]. The task of side-chain prediction is to determine the posi-
tion of all the side-chain atoms given that the backbone coordinates of a protein
are already known. Along with the advancement of protein backbone prediction
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techniques, side-chain prediction is becoming more important since the backbone
coordinates of a protein can be predicted accurately.

Many side-chain prediction methods have been proposed and implemented
in the past two decades [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].
Almost all of them use a rotamer library, which is a set of side-chain confor-
mation candidates. In order to overcome computational difficulty, the side-chain
conformation of a residue is discretized into a finite number of states (rotamers).
Each rotamer is a representative of a set of similar side-chain conformations. A
backbone-independent rotamer only depends on the type of the residue, while a
backbone-dependent rotamer also depends on two dihedral angles (φ and ψ)
associated with the residue. For example, Dunbrack et al. first developed a
backbone-independent rotamer library and then a backbone-dependent rotamer
library [28].

Given a rotamer library, the side-chain prediction problem can be formulated
as a combinatorial search problem. The quality of a side-chain packing can be
measured by an energy function, which usually consists of singleton scores and
pairwise scores. Singleton score describes the preference of one rotamer for a
particular residue and its environment. Singleton score can also describe the in-
teraction between the rotamer atoms and the backbone atoms. Since the position
of the backbone atoms are already fixed, this kind of interaction only depends on
one movable side-chain atom. Pairwise score measures the interaction between
two side-chain atoms. Pairwise score usually is used to avoid inter-atom clashes.
A good side-chain packing should avoid as many clashes as possible. In addition,
other atom-atom interactions can also be incorporated into the energy function.
It is the side-chain atom interaction that makes the side-chain packing problem
computationally challenging. The underlying reason is that in order to minimize
the conflict, we have to fix the positions of all the interacting side-chain atoms
simultaneously.

The side-chain prediction problem has been proved to be NP-hard [29, 30],
which justifies the development of many heuristic algorithms such as SCAP
[19] and MODELLER [31], and some approximate algorithms [23, 24]. These
algorithms are usually computationally efficient, but cannot guarantee to find
the side-chain assignment with the lowest system energy. The exact algorithms
such as DEE/A∗ [14, 32] and integer programming approach [25, 27] can find a
globally minimum energy for a given rotamer library and an energy function.
However, not many algorithms belong to this category due to the expensive
computational time. SCWRL 3.0 [17] guarantees to find a globally optimal so-
lution and also runs very fast for many proteins. SCWRL 3.0 first decomposes
the residue interaction graph into some small biconnected components. Any two
biconnected components share at most one articulation residue. If the side-chain
assignment to the articulation residue is fixed, then the side-chain positioning in
one component is independent of the other. As such, SCWRL 3.0 can optimize
the side-chain assignment of these components one by one. A big optimization
problem is decomposed into some small subproblems. According to their report,
most of the biconnected components are quite small, containing no more than
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21 residues. However, it still takes a long time to optimize the side-chain assign-
ment to a component of 21 residues even if each residue has only 3.5 possible
rotamers, which is the average number in our experiments.

In this paper, we present a novel tree decomposition based approach to the
globally optimal side-chain packing problem. The biconnected decomposition of
a graph used in SCWRL 3.0 can be considered as only a special case of the tree
decomposition. The key point is that we optimize the tree decomposition of a
graph such that the resultant components are as small as possible. Theoretically,
we can have a polynomial-time algorithm to decompose the residue interaction
graph into some components with size O(N

2
3 log N) where N is the number of

residues, which leads to a globally exact side-chain assignment algorithm with

a computational complexity O(NncN
2
3 log N

rot ) where c is a constant. As far as
we know, this is the first globally optimal side-chain packing algorithm with
a non-trivial time complexity. In contrast, the biconnected decomposition of a
graph can easily result in a large component with size O(N) even for some
sparse graphs such as a cycle. Experimental results show that a typical residue
interaction graph can be decomposed into components of 4 or 5 residues using
our decomposition method. Since each residue has no more than 4 candidate
rotamers after the Goldstein criterion DEE [33] is conducted, the optimal side-
chain assignment of each component can be done very quickly.

The remainder of this paper is organized as follows. In Section 2, we de-
scribe the side-chain assignment problem further and formulate it as a com-
binatorial optimization problem. Section 3 introduces the concepts of tree de-
composition and presents the tree decomposition based side-chain assignment
algorithm. In this section, we also describe a low-degree polynomial-time algo-
rithm that can decompose a residue interaction graph into some components of
size O(N2/3 log N), and a simple heuristic tree decomposition algorithm, which
works very well for our purpose. Section 4 describes a graph reduction tech-
nique that can be used to prune those residues interacting with only one or two
other residues. This pruning strategy can improve the computational efficiency
a little bit. In Section 5, we present the experimental results of our algorithm
in detail and compare our side-chain prediction program with SCWRL 3.0 in
terms of computational efficiency and accuracy. Finally, Section 6 points out that
there are some polynomial-time approximation schemes for the side-chain pack-
ing problem, and discusses further development of our side-chain packing system.

2 Problem Description

The side-chain prediction problem can be formulated as follows. We use a residue
interaction graph G = (V,E) to represent the residues in a protein and their re-
lationship. Each residue is represented by a vertex in the set V . For a residue
i, we use D[i] denote the set of possible rotamers for this residue. There is an
interaction edge (i, j) ∈ E between two residues i and j if and only if there are
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two rotamers l ∈ D[i] and k ∈ D[j] such that at least one atom in rotamer
l conflicts with at least one atom in rotamer k. Two atoms conflict with each
other if and only if their distance is less than the sum of their radii. We say that
residues i and j interact with each other if there is one edge between i and j in
G. For each rotamer l ∈ D[i], there is an associated singleton score, denoted by
Si(l). In our energy function, Si(l) is the interaction energy between rotamer l
and the backbone of the protein. Si(l) also includes the preference of assigning
one rotamer to a specific residue. For any two rotamers l ∈ D[i] and k ∈ D[j]
(i �= j), there is also an associated pairwise score, denoted by Pi,j(l, k), if residue
i interacts with residue j. Let E(a, b) denote the interaction score between two
atoms a and b. We use the method in the SCWRL 3.0 paper [17] to calculate
E(a, b) as follows .

E(a, b) = 0 r ≥ Ra,b

= 10 r ≤ 0.8254Ra,b

= 57.273(1 − r
Ra,b

) otherwise

where r is the distance between atoms a and b and Ra,b is the sum of their radii.
Let SC(i) and BB(i) denote the set of side-chain atoms and the set of backbone
atoms of one residue i, respectively, and Pri(l|φ, ψ) denote the probability of
rotamer l given the residue i and two angles φ and ψ. Then we calculate Si(l)
and Pi,j(l, k) as follows [17].

Si(l) = −K log(
Pri(l|φ, ψ)

maxl∈D[i] Pri(l|φ, ψ)
) +

∑

|i−j|>1

∑

s∈SC(i)

∑

b∈BB(j)

E(s, b) (1)

Pi,j(l, k) =
∑

a∈SC(i)

∑

b∈SC(j)

E(a, b) (2)

In Eq. 1, K is optimized to 6 to yield the best prediction accuracy. Please notice
that in the above two equations, the position of one side-chain atom depends on
its associated rotamer.

Given a side-chain assignment A(i) ∈ D[i] to residue i (i ∈ V ), the quality
of one side-chain packing is measured by the following energy function.

E(G) =
∑

i∈V

Si(A(i)) +
∑

i�=j,(i,j)∈E

Pi,j(A(i), A(j)) (3)

The smaller the system energy E(G) is, the better the side-chain assignment.
So our goal is to develop an efficient algorithm to search for the side-chain
assignment such that the energy E(G) in Eq. 3 is minimized.

3 Side-Chain Prediction Algorithm

In this section, we will first introduce the concept of tree decomposition of
a graph, and then describe how to search for the optimal side-chain assign-
ment based on the decomposition. We will also show that there is a low-degree
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polynomial-time algorithm to decompose the residue interaction graph into some
components of size O(|V | 23 log |V |). Finally, we describe an efficient heuristic al-
gorithm to find a good tree decomposition of a graph.

3.1 Tree Decomposition Concepts

The notions of tree width and tree decomposition are introduced by Robertson
and Seymour [34] in their work on graph minors. The tree decomposition of a
sparse graph has been applied to many NP-hard problems such as frequency
assignment problem [35] and Bayesian inference [36].

Definition 1. Let G = (V,E) be a graph. A tree decomposition of G is a pair
(T,X) satisfying the following conditions:

1. T = (I, F ) is a tree with a node set I and an edge set F ,
2. X = {Xi|i ∈ I,Xi ∈ V } and

⋃
i∈I Xi = V . That is, each node in the tree T

represents a subset of V and the union of all the subsets is V,
3. for every edge e = {v, w} ∈ E, there is at least one i ∈ I such that both v

and w are in Xi, and
4. for all i, j, k ∈ I, if j is a node on the path from i to k in T, then Xi

⋂
Xk ⊆

Xj.

The width of a tree decomposition is maxi∈I(|Xi| − 1). The tree width of a
graph G, denoted by tw(G), is the minimum width over all the tree decomposi-
tions of G.

According to the above definition, the decomposition of a graph into bicon-
nected components is also a tree decomposition. Each biconnected component
corresponds to a node in T and any two biconnected components share at most
one articulation vertex in G. However, the width of a biconnected-component
decomposition could be O(|V |), which is much bigger than the tree width of a
graph G if G is sparse. For example, when a graph is a cycle, this graph has
only one biconnected component—itself. In contrast, the tree width of a cy-
cle is only 2. Figure 1, 2 and 3.2 show an example of an interaction graph, its
biconnected component decomposition with width 5 and a tree decomposition
with width 2. The width of a tree decomposition is a key factor determining the
computational complexity of all the tree decomposition based algorithms. The
smaller the width of a tree decomposition is, the more efficient the algorithm.
Therefore, we need to optimize the tree decomposition of the residue interaction
graph such that we can have a very small tree width. In the next subsection, we
will describe a tree decomposition based side-chain assignment algorithm and
analyze its computational complexity.

3.2 Tree Decomposition Based Side Chain Assignment Algorithm

In this subsection,we describe an algorithm to search for the optimal side-
chain assignment based on a tree decomposition (T,X) of a residue interaction
graph G.



428 J. Xu

b

a

c

d

e

f g

h

i

jkl

Fig. 1. Example of a residue interaction
graph

eij

abcdef

clk

fh

fg

Fig. 2. Example of the biconnected-
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width of this decomposition is 5

abd acd

clk

cde def

fh

fg

eij

Fig. 3. Example of a tree decomposition of a graph with width 2

For simplicity purpose, we assume that tree T has a root r and that each node
is associated with a height. The height of a node is equal to the maximum height
of its child nodes plus one. Our tree decomposition based side-chain assignment
algorithm consists of two steps. One is the calculation of the optimal energy in
a bottom-to-top way and the other is the extraction of the optimal assignment
in a top-to-bottom way.

Bottom-to-Top. Suppose we start from a leaf node i in the tree T and node
j is the parent of i. Let Xi,j denote the intersection between Xi and Xj . Given
a side-chain assignment A(Xi,j) to the residues in Xi,j , we enumerate all the
possible side-chain assignments to the residues in Xi − Xi,j and then find the
best side-chain assignment such that the energy of the subgraph induced by
Xi is minimized. We record this optimal energy as the multi-body score of Xi,j ,
which only depends on A(Xi,j). All the residues in Xi,j form a hyper edge, which
is added into the subgraph induced by Xj . When the energy of the subgraph
induced by Xj is calculated, the multi-body score corresponding to this hyper
edge should be included. In addition, we also save the optimal assignment to all
the residues in Xi − Xi,j for each A(Xi,j) since in the top-to-bottom step we
need it for traceback. For example, in Figure 3.2, if we assume the node acd is
the root, then node def is an internal node with parent cde. For each side-chain
assignment to residues d and we can find the best side-chain assignmente
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to residue f such that the energy of the subgraph induced by d, e fand is
minimized. Then we add one hyper edge (d, e) to node cde. In this bottom-to-
top process, a tree node can be calculated only after all of its child nodes are
calculated. When calculating the root node of T , we enumerate the side-chain
assignments to all the residues in it and obtain the optimal assignment such that
the energy is minimized. This minimized energy is also the optimal menergy of
the whole system.

Top-to-Bottom. After calculating the root node of tree T , we have the optimal
assignment to all the residues in the root. Now we trace back from the parent
node to its child nodes to extract out the optimal assignment to all the residues
in a child node. Assume that the optimal assignment to all the residues in node j
are already known and node i is a child node of j. We can easily extract out the
optimal assignment to all the residues in Xi − Xi,j based on the assignment to
the residues in Xi,j since we have already saved this assignment in the bottom-
to-top step. Recursively, we can track down to the leaf nodes of T to extract
out the optimal assignment to all the residues in G. If we want to save the
memory consumption, then we do not need to save the optimal assignments in the
bottom-to-top step. Instead, in this step we can enumerate all the assignments
to Xi − Xi,j to obtain the optimal assignment to all the residues in Xi − Xi,j .
The computational effort for this enumeration is much cheaper than that in the
bottom-to-top step since there is only one side-chain assignment to Xi,j .

In addition, based on the definition of tree decomposition, one residue might
occur in several tree nodes. To avoid incorporating the singleton score of this
residue into the overall system energy more than once, we include the singleton
score of this residue into the system only when we are calculating the tree node
with the maximal height among all the nodes containing this residue. We can
prove that there is one and only one such a tree node. Similarly, an edge in graph
G might also occur in several tree nodes. We can use the same method to avoid
redundant addition of its pairwise score.

Based upon the above description, we have the following lemma.

Lemma 1. The tree decomposition based side-chain assignment algorithm has a
computational complexity of O((|V |+|E|)n1+tw

rot ) where V is the set of residues in
the system, E the set of interaction edges, nrot the average number of rotamers
for each residue, and tw the width of the tree decomposition. The space complexity
of this algorithm is O(|V |ntw

rot).

According to the above lemma, the computational complexity of tree decomposi-
tion based side-chain assignment algorithm is exponential to the width of the tree
decomposition. Therefore, we need an algorithm to decompose the interaction
graph into very small components.

3.3 Construction of Tree Decomposition

The optimal tree decomposition of a general graph has been proved to be NP-
hard [37], which means it is unlikely to find the optimal decomposition of a

,
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graph within polynomial time. However, since the residue interaction graph is
a geometric graph, we can very quickly obtain a tree decomposition with width
O(|V | 23 log |V |), based on the following sphere separator theorem [38].

Theorem 1. Given a residue interaction graph G = (V,E), there is a separator
subset U with size O(|V | 23 ) of V such that removal of U from the graph can
partition V into two subsets V1 and V2, and the following conditions are satisfied:
(1) there is no interaction edge between V1 and V2; (2) |Vi| ≤ 4

5 |V | for i = 1, 2.
In addition, such a subset U can be computed by a deterministic algorithm in
random linear time.

Before presenting the proof of the above theorem, we first introduce the definition
of k-ply neighborhood system and a sphere separator theorem [38].

Definition 2 (k-ply neighborhood system). A k-ply neighborhood system
in �3 is a set {B1, B2, ..., Bn} of closed balls in �3 such that no point in �3 is
strictly interior to more than k of the balls.

Theorem 2 (Sphere Separator Theorem). For every k-ply neighborhood
system {B1, B2, ...Bn} in �3, there is a sphere separator S such that:(1)|NE | ≤
4
5n where NE contains all the balls in the exterior of S; (2) |NI | ≤ 4

5n where
NI contains all the balls in the interior of S; (3) |No| = O(k

1
3 n

2
3 ) where No

contains all the balls that intersect S. In addition, such an S can be computed
by a deterministic algorithm in random linear time.

Based on the above theorem, we can prove Theorem 1 as follows.

Proof of Theorem 1. Since the distance between any side-chain atom and its as-
sociated Cα atom is bounded above by a constant, according to the definition of
interaction edge in Section 2, there is a constant du > 0 such that if the distance
between two residues is more than du, then there will be no interaction edge
between these two residues no matter which rotamer is assigned to them. In this
paper, we use the position of Cα atoms to calculate the distance between two
residues. For each residue, we construct a ball with radius du/2 centered at its
Cα atom. In a normal protein, the distance between any two residues should be
no less than a constant dl. Therefore, there is a constant k (≤ (1 + du

dl
)3) such

that no point in �3 is strictly interior to more than k balls. Based on Theorem
2, we can have a sphere S such that S intersects with only O(|V |2/3) balls and
all the other balls are located inside or outside S in a balanced way. Let U de-
note the set of all the residues with its ball intersecting with S. Then we have
|U | = O(|V |2/3) and U will partition graph G into two subgraphs with balanced
size.

Based on Theorem 1, we can prove the following theorem.

Theorem 3. There is a low-degree polynomial-time algorithm that can find a
tree decomposition of the residue interaction graph with a tree width of O(|V | 23
log |V |).
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Proof. Based on Theorem 1, we can partition G into two subgraphs G1 and G2

by removing a separator subset of O(|V | 23 ) residues such that there is no inter-
action edge between G1 and G2 and 1/4 ≤ |V (G1)|/|V (G2)| ≤ 4 . Recursively,
we can also partition G1 and G2 into smaller subgraphs until the size of the sub-
graph is O(|V |2/3). Finally, we can have a binary partition tree in which each
subtree corresponds to a subgraph, and the root of the subtree is the separator
subset of the subgraph. Based on this binary partition tree, we can construct a
tree decomposition of G as follows. For each partition tree node, we construct
a decomposition component by assembling together all the residues along the
path from the partition tree root to this node. We can easily verify that all
the components form a tree decomposition of the graph. Since the height of the
binary partition tree is O(log |V |), the tree width of this tree decomposition is
O(|V | 23 log |V |). Each partition step can be finished within linear time, so we can
construct such a tree decomposition within low-degree polynomial-time.

Combining Theorem 3 and Lemma 1, we can calculate the computational
complexity of the tree-decomposition based algorithm.

Theorem 4. The tree decomposition based side-chain assignment algorithm has

a computational complexity of O

(
(|V | + |E|) n

O(|V |2/3 log |V |)
rot

)
where V is the

set of residues in the system, E the set of interaction edges, nrot the average
number of rotamers for each residue.

Although we give a low-degree polynomial-time algorithm to find a tree de-
composition of G with a theoretically sound tree width, in practice we can use
a simple heuristic algorithm to decompose the graph. Later in this paper we
will show that the tree decompositions found by the heuristic algorithm are
good enough. Many of them have a tree width of only 3 or 4, which leads to a
very efficient algorithm for side-chain prediction. In our program, we use “min-
imum degree” heuristic [39] to recursively partition the graph. Specifically, we
choose the vertex with the smallest number of neighbors. Then we add edges
to the graph such that any two neighbors of the selected vertex is connected
by an edge. Finally, we remove the selected vertex and its adjacent edges from
the graph and recursively choose the next vertex. The selected vertex with its
neighbors form a partition component of the graph. This algorithm runs very
efficiently and also effectively for our purpose.

4 Graph Reduction Technique

After DEE is conducted, many residues interact with only one or two other
residues since many rotamers are removed from the candidate lists. That is, the
interaction graph contains many vertices with degree one or two, which results
in many small components in the tree decomposition of this graph. Although it
is extremely fast to compute the optimal energy of these small components, it
will incur certain amount of overheads since we need to do many bookkeepings
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for the calculation of one component. We can use a graph reduction technique to
remove these low-degree vertices before applying the tree decomposition to the
interaction graph. The reduced system will have the same energy as the original
system and can be easily recovered to the original system. For a residue i with
degree one, assume i is only adjacent to residue j. Then, we can remove i by
modifying the singleton score of j as follows.

Sj(k) ← Sj(k) + min
l∈D[i]

{Si(l) + Pi,j(l, k)} (4)

Since residue i only interacts with residue j, for each rotamer k of residue j, we
can find the best rotamer for residue i and then remove residue i from the system.
The optimal system energy will not change, and once the rotamer assignment
to residue j is fixed, we can also easily obtain the optimal rotamer assignment
to residue i.

For a residue with degree two, we can prune it by modifying the pairwise
interaction scores of its two adjacent residues j1, j2 as follows.

Pj1,j2(k1, k2) ← Pj1,j2(k1, k2) + min
l∈D[i]

{Si(l) + Pi,j1(l, k1) + Pi,j2(l, k2)} (5)

Since residue i only interacts with two residues j1 and j2, for each combination
of rotamer assignment to j1 and j2, we can find the best rotamer for i and then
remove i from the system. The optimal system energy will not change, and once
the rotamer assignment to residue j1 and j2 is fixed, we can also easily obtain
the optimal rotamer assignment to residue i.

After applying the above-mentioned graph reduction technique to the inter-
action graph, the resultant new interaction graph looks more neat. The tree
decomposition of new interaction graph will not generate any component of size
one and few components of size two. Please notice that the graph reduction
technique will not change the tree width of a graph. Therefore, this technique
will not improve the theoretical computational complexity of the problem, but
will improve the practical computational efficiency a little bit.

5 Experimental Results

We have implemented the idea presented in this paper as a program SCATD.
In order to compare SCATD with SCWRL 3.0 [17], we test SCATD on the set
of 180 proteins listed in the SCWRL 3.0 paper. The reason that we compare
SCATD with SCWRL 3.0 is that both programs use the same rotamer library,
similar energy function, same dead-end elimination method and, furthermore,
solve the problem to its globally optimal solution.

Just like what is done in SCWRL 3.0 [17], for a particular residue and its
associated two angles ψ and φ, we rank all the candidate rotamers from the
highest probability to the lowest and remove the tail candidate if the proba-
bilities of all the rotamers before it add up to 0.90 or above. Then we apply
the Goldstein criterion dead-end elimination technique [33] to remove those ro-
tamers that cannot be a part of the optimal side-chain assignment. Finally, we
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construct the residue interaction graph according to its definition described in
Section 2. We build SCATD using BALL library [40] for some basic objects such
as proteins, residues, and atoms, ANN library [41, 42] to determine if two atoms
conflict or not, and split package [43] for tree decomposition of a graph.

5.1 Computational Efficiency

The residue interaction graphs are decomposed into small components with size
no more than 10, much smaller than that reported in SCWRL 3.0 [17]. Most
components have size only 4 or 5. Figure 4 shows the distribution of compo-
nent sizes after the “minimum-degree” tree decomposition algorithm described
in Section 3 is applied to the residue interaction graphs of the 180 proteins. As
reported in the SCWRL3.0 paper, the maximum biconnected component size is
21 and there are quite a few of components with size larger than 10. As discussed
in Section 3, the computing time of both SCATD and SCWRL 3.0 is exponential
to the component size. Therefore, we can expect that our algorithm will be much
more efficient than SCWRL 3.0. We also calculated the biconnected decomposi-
tion of all the interaction graphs generated by SCATD. Figure 5 illustrates the
distribution of biconnected component sizes. As shown in Figure 5, the bicon-
nected components of our interaction graphs have a bigger size than those in
SCWRL 3.0 [17]. This indicates that we did not make the problem easier by
using a slightly different energy function. Since the average number of rotamers
for an active residue is 3.5, the algorithm used in SCWRL 3.0 cannot work very
well on our interaction graphs if the biconnected component has size greater
than 20.

We also ran SCATD and SCWRL 3.0 on a Debian Linux box with a 1.7GHz
Pentium CPU. SCATD can do the side-chain prediction for all the 180 proteins
within no more than 5 minutes while SCWRL 3.0 takes approximately 28 min-
utes. On average, SCATD is more than 5 times faster than SCWRL 3.0. Among
these 180 test proteins, the maximum CPU time spent by SCATD on an indi-
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Table 1. Computational time spent by SCWRL 3.0 and SCATD on the side-chain
prediction of several large proteins

protein # residues SCWRL 3.0 (s) SCATD (s)

1gai 472 266.62 2.98

1a8i 812 184.36 8.68

1b0p 2462 300.00 21.03

1xwl 580 26.51 4.64

1bu7 910 56.50 7.62

Table 2. The average CPU time for each step

library coordinate interaction score DEE tree decomposition
loading calculation calculation based algorithm

time (s) 0.2822 0.2164 0.7924 0.3038 0.0239

vidual protein is 8.68 seconds. We further compare SCATD with SCWRL 3.0 on
some large proteins including 1gai, 1xwl, 1a8i, 1bu7 and 1b0p. The results are
shown in Table 1. As shown in this table, SCATD is up to 90 times faster than
SCWRL 3.0 for large proteins.

SCATD consists of the following major steps: loading rotamer library, con-
verting rotamer angles to atom coordinates, calculating interaction scores be-
tween two atoms, dead-end elimination (Goldstein criterion), and energy mini-
mization via tree decomposition. We test the CPU time spent on each step to
examine which steps are the CPU bottleneck in SCATD. Table 2 lists the de-
tailed CPU times spent on each step by SCATD. As shown in this table, the
tree decomposition based side-chain assignment algorithm is not the bottleneck
at all. The average CPU time spent on this step is only 1.5% of the total compu-
tational time. Since we do not have the source code of SCWRL 3.0, we have no
way to exactly measure the time spent by SCWRL 3.0 on the post-DEE stage.
By observing the running status of SCWRL 3.0 on 1a8i and 1b0p, we find that
the CPU time spent by SCWRL 3.0 on the post-DEE stage is approximately
70% of the total computational time. Nevertheless, our tree decomposition based
algorithm can minimize the energy of 1a8i within 0.4 seconds and 1b0p within
0.7 seconds after DEE is conducted. Therefore, for large proteins such as 1a8i
and 1b0p, our tree decomposition based algorithm runs more than two hundred
times faster than the biconnected decomposition based algorithm in SCWRL 3.0.

5.2 Prediction Accuracy

While SCATD runs much faster than SCWRL 3.0, SCATD does not lose any
accuracy. SCATD uses the same rotamer library as SCWRL 3.0 and a slightly
different energy function. Table 3 lists the prediction accuracy of 18 types of
amino acids. The prediction accuracy of both programs are very close. The minor
difference comes from the fact that the atomic radii in the BALL library is
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Table 3. Prediction accuracy of SCATD and SCWRL 3.0 in the 180-protein test set.
A prediction is judged as correct if its deviation from the experimental value is no more
than 40 degree. For χ1+2 to be correct, both χ1 and χ2 must be correct

SCATD SCWRL 3.0

amino acid χ1 accuracy χ1+2 accuracy χ1 accuracy χ1+2 accuracy

ARG 0.7576 0.6135 0.7673 0.6381

ASN 0.7666 0.6479 0.7898 0.6749

ASP 0.7727 0.6668 0.8147 0.7129

CYS 0.7746 – 0.7052 –

GLN 0.7466 0.5086 0.7464 0.5290

GLU 0.7057 0.4922 0.7177 0.5223

HIS 0.8363 0.7711 0.8523 0.7877

ILE 0.9352 0.8376 0.9195 0.8095

LEU 0.9070 0.8279 0.9007 0.8203

LYS 0.7371 0.5607 0.7421 0.5773

MET 0.8183 0.6702 0.8016 0.6657

PHE 0.9306 0.8625 0.9354 0.8728

PRO 0.8511 0.7949 0.8449 0.7875

SER 0.6957 – 0.6730 –

THR 0.8871 – 0.8846 –

TRP 0.8786 0.6482 0.8828 0.6468

TYR 0.9085 0.8460 0.9212 0.8627

VAL 0.9212 – 0.9081 –

overall 0.8256 0.7329 0.8262 0.7374

slightly different from those in SCWRL 3.0. An interesting result is that SCATD
does better in predicting CYS and worse in ASN and ASP than SCWRL 3.0.1

6 Discussions

Based on the tree-decomposition of protein structures, we not only can give a
fast, rigorous and accurate protein side-chain assignment method, but also can
develop several polynomial-time approximation schemes (PTAS) to this problem.
When an optimization problem admits a PTAS, it means that given an arbitrary
error ε (1 > ε > 0), there is a polynomial-time algorithm to approximate its
objective function value within a factor of (1±ε). In contrast, based on a general
graph model, Chazelle et al. [23] proved that it is NP-complete to approximate
this problem within a factor of Ω(N). Due to space limit, we only introduce the
following three theorems without giving any proof, which will be presented in
the extended version of this paper.

1 We disable the “-u” option of SCWRL 3.0 in order to compare both programs fairly
since we have not implemented disulfide bond detection in SCATD. The overall
accuracy of SCWRL 3.0 does not improve if “-u” option is enabled.



436 J. Xu

Theorem 5. If every energy item in Eq. 3 is negative and the system energy
should be minimized, then the side-chain packing problem admits a PTAS.

Theorem 6. Assume that all the pairwise energy items in Eq. 3 are positive and
the system energy should be minimized. The side-chain packing problem admits
a PTAS if the lowest system energy is Ω(NPmax

√
log nrot

log N ) where Pmax is the
maximum among all Pi,j(A(i), A(j)).

Theorem 7. Assume that all the pairwise scores in Eq. 3 are negative and the
system energy should be minimized. The side-chain packing problem admits a
PTAS if the lowest system energy is no more than cNPmin

√
log nrot/ log N

where c is a positive constant and Pmin the minimum among all Pi,j(A(i), A(j)).

These theoretical results, especially Theorem 5, will stimulate us to develop a
new energy function satisfying the conditions specified in these theorems and also
having a good prediction accuracy so that we can apply these polynomial-time
approximation algorithms to the problem. With a polynomial-time algorithm,
we can deal with a larger rotamer library, which may result in a better prediction
accuracy.

In protein structure prediction server RAPTOR [44, 45], we have developed
a linear programming (LP) algorithm to obtain the globally optimal solution
of the protein threading problem. The LP formulation used by RAPTOR can
also be used to formulate the side-chain prediction problem. Mathematically,
threading problem and side-chain prediction problem can be formulated in a
very similar way. In fact, several research groups have proposed several more
or less similar LP formulations for the side-chain packing problem [24, 25, 27].
We have also tested our LP formulation for the side-chain packing problem. In
our setting, the tree decomposition based algorithm runs slightly faster than the
LP approach. Interestingly, the tree decomposition algorithm proposed in this
paper can also be used to the protein threading problem and contact map-based
protein structure comparison.

The energy function used by our program is still very simple. In the future, we
plan to add the disulfide bond detection into SCATD. We also plan to investigate
more involved energy function to see how effective our algorithm is. For example,
we can incorporate hydrogen bonds, electrostatics and solvation terms into our
energy function. The major contribution of this paper is a novel and very efficient
algorithm to the optimal protein side-chain packing problem but not a new
energy function.

In this paper, we only test SCATD on the native backbone of the test
proteins. The next step is to test SCATD on those backbones predicted by
structure prediction programs. After all, a major usage of SCATD is to build
the side-chain coordinates for a protein after its backbone coordinates are pre-
dicted.
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