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THE INTERIOR-POINT REVOLUTION IN OPTIMIZATION:
HISTORY, RECENT DEVELOPMENTS,

AND LASTING CONSEQUENCES

MARGARET H. WRIGHT

Abstract. Interior methods are a pervasive feature of the optimization land-
scape today, but it was not always so. Although interior-point techniques,
primarily in the form of barrier methods, were widely used during the 1960s
for problems with nonlinear constraints, their use for the fundamental prob-
lem of linear programming was unthinkable because of the total dominance
of the simplex method. During the 1970s, barrier methods were superseded,
nearly to the point of oblivion, by newly emerging and seemingly more efficient
alternatives such as augmented Lagrangian and sequential quadratic program-
ming methods. By the early 1980s, barrier methods were almost universally
regarded as a closed chapter in the history of optimization.

This picture changed dramatically in 1984, when Narendra Karmarkar an-
nounced a fast polynomial-time interior method for linear programming; in
1985, a formal connection was established between his method and classical
barrier methods. Since then, interior methods have continued to transform
both the theory and practice of constrained optimization. We present a con-
densed, unavoidably incomplete look at classical material and recent research
about interior methods.

1. Overview

REVOLUTION:
(i) a sudden, radical, or complete change;
(ii) a fundamental change in political organization, especially the
overthrow or renunciation of one government or ruler and the sub-
stitution of another.1

It can be asserted with a straight face that the field of continuous optimization
has undergone a revolution since 1984 in the sense of the first definition and that
the second definition applies in a philosophical sense: Because the interior-point
presence in optimization today is ubiquitous, it is easy to lose sight of the magnitude
and depth of the shifts that have occurred during the past twenty years. Building
on the implicit political metaphor of our title, successful revolutions eventually
become the status quo.

The interior-point revolution, like many other revolutions, includes old ideas that
are rediscovered or seen in a different light, along with genuinely new ideas. The

Received by the editors July 9, 2004, and, in revised form, August 17, 2004.
2000 Mathematics Subject Classification. Primary 49M37, 65K05, 90C30.
Lecture presented at the AMS Special Session on Current Events, Joint Mathematics Meetings,

Phoenix, AZ, January 9, 2004.
1Merriam Webster’s Collegiate Dictionary, Seventh Edition, 1965.

c©2004 American Mathematical Society

39



40 MARGARET H. WRIGHT

stimulating interplay of old and new continues to lead to increased understanding as
well as an ever-larger set of techniques for an ever-larger array of problems, familiar
(Section 4.4) and heretofore unexplored (Section 5).

Because of the vast size of the interior-point literature, it would be impractical
to cite even a moderate fraction of the relevant references, but more complete
treatments are mentioned throughout. The author regrets the impossibility of citing
all important work individually.

2. Linear and nonlinear programming: Separated from birth

Prior to 1984, there was, to first order, no connection between linear and non-
linear programming. For historical reasons that seem puzzling in retrospect, these
topics, one a strict subset of the other, evolved along two essentially disjoint paths.
Even more remarkably, this separation was a fully accepted part of the culture of
optimization—indeed, it was viewed by some as inherent and unavoidable. For ex-
ample, in a widely used and highly respected textbook [24] published in 1973, the
author comments in the preface that “Part II [unconstrained optimization] . . . is
independent of Part I [linear programming]” and that “except in a few isolated sec-
tions, this part [constrained optimization] is also independent of Part I.” To provide
an accurate reflection of this formerly prevailing viewpoint, we give separate back-
ground treatments for linear and nonlinear programming.

2.1. Linear programming.

2.1.1. Problem statement and optimality conditions. The linear programming (LP)
problem involves minimization of a linear (affine) function subject to linear con-
straints, and can be represented in various mathematically equivalent ways. The
two forms of interest here are the all-inequality form,

(1) minimize
x

cTx subject to Ax ≥ b,

and standard form,

(2) minimize
x

cTx subject to Ax = b, x ≥ 0,

where A is m × n. In the standard-form problem (2), the only inequalities are the
simple bound constraints x ≥ 0, leading to the crucial (and sometimes overlooked)
property that x plays two distinct roles—as the variables and the values of the
constraints. It is customary in standard-form problems to assume that A has full
rank.

A point is feasible if it satisfies the problem constraints. The feasible point x∗
is a solution of the standard-form LP (2) if and only if, for some m-vector y∗ and
n-vector z∗,

(3) c = ATy∗ + z∗, z∗ ≥ 0, and z∗i x∗i = 0 for i = 1, . . . , n,

where z∗ is the Lagrange multiplier for the bound constraints and y∗ is the Lagrange
multiplier for the equality constraints Ax = b.
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2.1.2. The simplex method. A fundamental property of linear programs is that, if
the optimal objective value is finite, a vertex minimizer must exist. (For details
about linear programming and its terminology, see, e.g., [5], [31], and [19].) The
simplex method, invented by George B. Dantzig in 1947, is an iterative procedure
for solving LPs that completely depends on this property. The starting point for
the simplex method must be a vertex. Thereafter, every iteration moves to an
adjacent vertex, decreasing the objective as it goes, until an optimal vertex is
found. The underlying motivation for the simplex method is easy to understand,
but its simplicity is sometimes obscured by a focus on algebraic details.

Almost from the beginning, the simplex method (and, by association, linear
programming) acquired an array of specialized terminology and notation, such as
“basic feasible solution”, “min ratio test”, and the tableau. During the early years
of the simplex method, simplex steps were carried out by performing unsafeguarded
rank-one updates to the explicit inverse of the square basis matrix. As an aside,
use of this risky technique shows that mainstream linear programming was widely
separated not only from nonlinear programming but also from numerical linear
algebra; fortunately, during the 1960s, the simplex method became more closely
connected with state-of-the-art linear algebraic techniques.

Although “nonsimplex” strategies for LP were suggested and tried from time
to time between 1950 and the early 1980s, such techniques never approached the
simplex method in overall speed and reliability. Furthermore, the mindset induced
by the dominance of the simplex method held sway to such an extent that even
techniques labeled as nonsimplex were at heart based on the same motivation as
the simplex method: to identify the active inequality constraints by staying on a
changing subset of exactly satisfied constraints while reducing the objective func-
tion.

2.1.3. Concerns about complexity. In practice, because the simplex method rou-
tinely and efficiently solved very large linear programs, it retained unquestioned
preeminence as the solution method of choice. However, the simplex method was
viewed with nagging discontent by those interested in computational complexity, a
field whose importance increased during the 1960s and 1970s. An underlying tenet
of theoretical computer science is that any “fast” algorithm must be polynomial-
time, meaning that the number of arithmetic operations required to solve the prob-
lem should be bounded above by a polynomial in the problem size.

Although the simplex method almost always converges on real-world problems in
a number of iterations that is a small multiple of the problem dimension, it is known
that the simplex method can visit every vertex of the feasible region—for example,
on the famous Klee-Minty “twisted cube” LP; see [31] and [17] for two formulations
of this problem. Consequently the worst-case complexity of the simplex method is
exponential in the problem dimension, which means that the simplex method must
be a “bad” algorithm. The disconnect between observed speed and theoretical
inefficiency was widely known, and there were several claims, subsequently shown
to be false, that a provably polynomial-time method for LP had been discovered.

The first polynomial-time LP algorithm was devised in 1979 by Leonid Khachian
of the then Soviet Union, in work that made newspaper headlines around the
world. Khachian’s ellipsoid method is based on specialization of general nonlin-
ear approaches developed earlier by other Soviet mathematicians, notably Shor,
Yudin and Nemirovskii. In particular, Khachian’s method does not rely, as the
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simplex method does, on existence of a vertex solution or, more generally, the
finiteness/combinatorial features of the LP problem. Polynomiality of the ellipsoid
method arises from two bounds: an outer bound that guarantees existence of an
initial (huge) ellipsoid enclosing the solution and an inner bound that specifies how
small the final ellipsoid must be to ensure sufficient closeness to the exact solution.
See, for example, [31] for details about Khachian’s method.

Despite its favorable complexity, the performance of the ellipsoid method in
practice, i.e., its actual running time, was extremely slow—much slower than the
simplex method. In fact, in complete contrast to the simplex method, the number
of iterations of the ellipsoid method tended to be comparable to its enormous (albeit
polynomial) upper bound. Thus the simplex method remained “the only game in
town” for solving linear programs, leading to a puzzling and deeply unsatisfying
anomaly in which an exponential-time algorithm was consistently and substantially
faster than a polynomial-time algorithm. Even after Khachian’s breakthrough, the
quest continued for an LP algorithm that was not only polynomial but also efficient
in practice.2 The linear programming story will continue in Section 3.

2.2. Nonlinear programming.

2.2.1. Problem statement and optimality conditions. The generic nonlinear pro-
gramming, or nonlinear optimization, problem involves minimization of a nonlinear
function subject to nonlinear constraints. Special cases of nonlinear programming
arise when, for example, the objective function is quadratic, the constraints are
bounds, or the constraints are linear (equalities or inequalities). Here we consider
only the all-inequality version of a nonlinear programming problem:

(4) minimize
x∈Rn

f(x) subject to c(x) ≥ 0,

where c(x) has m component functions, and f and {ci} are smooth. (Observe that
(4) is analogous in form to the all-inequality linear program (1).) The n-vector g(x)
denotes the gradient of f ; the matrix of second partial derivatives will be denoted
by H(x). The gradient and Hessian of ci(x) will be denoted by ai(x) and Hi(x).
The m × n Jacobian matrix of c(x) is denoted by A(x), whose ith row is ai(x)T.
The Lagrangian function associated with (4) is L(x, λ) = f(x) − λTc(x), where
λ normally represents a vector of Lagrange multipliers, one for each constraint.
The Hessian of the Lagrangian with respect to x, denoted by W , is W (x, λ) =
H −

∑m
j=1 λjHj(x).

The constraint ci(x) ≥ 0 is said to be active at x̄ if ci(x̄) = 0 and inactive if
ci(x̄) > 0. Let Â(x) denote the Jacobian of the active constraints at x, and let
N(x) denote a matrix whose columns form a basis for the null space of Â.

Throughout the remainder of the paper, we assume the following conditions,
which are sufficient to ensure that x∗ is an isolated constrained minimizer of (4):

(1) c(x∗) ≥ 0 and Â(x∗) has full rank;
(2) g(x∗) = A(x∗)T λ∗, where the optimal Lagrange multiplier λ∗ satisfies two

conditions:

λ∗j ≥ 0 and(5)

λ∗jcj(x
∗) = 0, j = 1, . . . , m;(6)

2 A side comment: Recent work on “smoothed complexity” provides a fascinating explanation
of why the simplex method is usually a polynomial-time algorithm; see [32].
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(3) λ∗j > 0 if cj(x∗) = 0, j = 1, . . . , m;
(4) N(x∗)T W (x∗, λ∗)N(x∗), the reduced Hessian of the Lagrangian, is positive

definite.
Relation (6), that each pairwise product of constraint and multiplier must be zero,
is called complementarity. Condition 3, strict complementarity, requires that one
of cj(x∗) and λ∗j must be positive.

2.2.2. Newton’s method. Newton’s method occurs in multiple forms throughout op-
timization. When solving the nonlinear equations Φ(z) = 0, let J(z) denote the
Jacobian matrix of Φ. If zk is the current point and J(zk) is nonsingular, the
Newton step δk is the solution of the linear system

(7) J(zk)δk = −Φ(zk),

so that δk is the step from zk to a zero of the local affine Taylor-series model of Φ.
For unconstrained minimization of f(x) starting from xk, the Newton step pk

is designed to minimize a local Taylor-series quadratic model of f(xk + p), namely
f(xk)+ g(xk)T p+ 1

2pT H(xk)p. If the current Hessian H(xk) is positive definite, pk

solves the linear system

(8) H(xk)p = −g(xk).

When minimizing f(x) subject to m linear equality constraints Ax = b, the Newton
step pk should minimize the local Taylor-series quadratic model of f subject to also
satisfying the constraints A(xk + pk) = b, so that pk is a solution of the quadratic
program

(9) minimize
p∈Rn

1
2pTHkp + gT

kp subject to Ap = b − Axk,

where Hk = H(xk) and gk = g(xk). Under appropriate conditions, pk and a “new”
multiplier yk+1 satisfy the following n + m linear equations:

(10)

(
Hk AT

A 0

) (
pk

−yk+1

)
=

(
−gk

b − Axk

)
,

where yk+1 is an estimate of the Lagrange multipliers for the equality constraints.
The matrix in (10) is nonsingular if A has full rank and the reduced Hessian
NT

A
HkN

A
is positive definite, where NA is a basis for the null space of A. If Axk = b,

the second equation in (10) becomes Apk = 0, implying that pk must lie in the null
space of A.

A “pure” Newton method for zero-finding begins with an initial point z0 and
generates a sequence of Newton iterates {zk}, where zk+1 = zk +δk, with δk defined
by (7), and similarly for minimization, using (8) and (10). Under various conditions
that can be quite restrictive, a pure Newton method converges quadratically to a
solution.

One way to encourage convergence from a general starting point is to perform
a line search in which the new iterate is defined by zk+1 = zk + αkδk, where the
positive scalar αk is chosen to decrease a merit function that measures progress. In
unconstrained optimization, the merit function is typically the objective function.
Standard line search acceptance criteria that ensure convergence are discussed in,
for example, [29, 28]. A second strategy is based on defining a trust region around
the current iterate within which the local model can be trusted. In optimization,
the step in a trust-region method is typically chosen to minimize (approximately)
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the local Taylor-series quadratic model subject to remaining within a (normally �2)
trust region.

2.2.3. Barrier methods for constrained optimization. The 1960s were the heyday of
unconstrained optimization, and, as a result, it was common practice to convert con-
strained problems into unconstrained subproblems or sequences of unconstrained
subproblems. Penalty and barrier methods were especially popular, both motivated
by minimizing a composite function that reflects the original objective function as
well as the influence of the constraints. Modern interior methods are closely related
to “classical” (1960s) barrier methods, which we now describe.

The logarithmic barrier function associated with problem (4) is

(11) B(x, µ) = f(x) − µ
m∑

j=1

ln cj(x),

where µ is a positive scalar called the barrier parameter. The logarithmic terms
are well defined at points x for which c(x) > 0, but become unbounded above as x
approaches any point where a constraint is zero, and are undefined if cj(x) < 0 for
any j. (This behavior constitutes an obvious rationale for the descriptors “barrier”
and “interior”.) Numerous properties of B(x, µ) are known; see, for example, the
classic reference [9] or [36, 12].

For small µ, unconstrained minimizers of B(x, µ) are related in an intuitively
appealing way to the solution x∗ of (4). Given that x∗ satisfies the sufficient op-
timality conditions given in Section 2.2.1, then, for a sequence of monotonically
decreasing and sufficiently small values of µ, there is an associated sequence {xµ}
of isolated local unconstrained minimizers of the barrier function (11) such that

(12) lim
µ→0

xµ = x∗ and lim
µ→0

µ

cj(xµ)
= λ∗j .

Under suitable assumptions of smoothness, the points {xµ} define a smooth curve,
called either the barrier trajectory or the central path, that converges to x∗ non-
tangentially from the strict interior of the feasible region—not along the boundary.
For proofs and additional details, see, for example, [36, 12].

To illustrate the behavior of the log barrier function, we consider the two-variable
inequality-constrained problem:

minimize 10
3 x1x2 + 1

6x1(13)

subject to 19
16 − x2

1 − 5
2x2

2 ≥ 0 and x1 − x2 + 3
5 ≥ 0.(14)

The first (nonlinear) constraint is satisfied inside an ellipse centered at the origin;
the second (linear) constraint cuts off part of the ellipse. Figure 1 shows the contours
of f , which is unbounded below, and the boundaries of these two constraints; the
feasible region lies inside the ellipse, to the right of the line.

The figure makes clear that there are two local minimizers of f in the feasible
region. At the isolated constrained minimizer x∗ = (3

4 , −1
2 ), the first constraint is

active. The path of barrier minimizers converging to x∗ is shown as a solid line.
The strictly feasible starting point of the path of barrier minimizers corresponds
to the minimizer of −

∑
ln ci(x)—in effect, to an infinite value of µ, so that the

objective function has no effect.
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Figure 1. The contours of the nonconvex objective function (13)
are shown, along with the boundaries of the ellipsoidal constraint
(the dashed line) and linear constraint of (14) (the dash-dotted
line). A trajectory of local unconstrained minimizers of the loga-
rithmic barrier function, shown as a solid line, begins at the strictly
feasible analytic center of the feasible region, corresponding to
µ = ∞, and converges to the boundary as µ → 0.

The gradient of the barrier function (11), denoted by gB, is

(15) gB(x, µ) = g(x) −
m∑

j=1

µ

cj(x)
aj(x) = g(x) − µAT(x)C−1(x)1,

where 1 = (1, . . . , 1)T . The final form in (15) uses the widely established convention
in the interior-point literature that an uppercase version of a letter denoting a vector
means the diagonal matrix whose diagonal elements are those of the vector. The
barrier Hessian, denoted by HB, has the form

(16) HB(x, µ) = H(x) −
m∑

j=1

µ

cj(x)
Hj(x) + µAT(x)C−2(x)A(x).

Since gB(xµ) vanishes, xµ can be interpreted as a highly special point at which the
objective gradient is a nonnegative linear combination of the constraint gradients.
Further, the coefficients in the linear combination have a specific relationship with
µ and the constraint values, i.e.,

(17) g(xµ) =
m∑

j=1

µ

cj(xµ)
aj(xµ) = AT(xµ)λµ(xµ),

where the multiplier estimate λµ satisfies

(18) λµ(x) = µC(x)−11.
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A rearranged component-wise version of (18) is

(19)
(
λµ(xµ)

)
i
ci(xµ) = µ.

This relationship is similar to complementarity (6), which holds at x∗ between λ∗
and c(x∗), and is sometimes called perturbed complementarity or the centering
property of xµ.

To move from the current point x to xµ, a straightforward strategy is to apply
Newton’s method to a local quadratic model of the barrier function. Omitting
arguments, the resulting n × n primal Newton barrier equations are

(20) HBp = −g + µATC
−11,

where “primal” refers to the original problem variables x.
Although barrier methods were widely used during the 1960s, they suffered

a severe decline in popularity in the 1970s for various reasons, including per-
ceived inefficiency compared to alternative strategies and worries about inherent
ill-conditioning. With respect to the latter, it was observed in the late 1960s (see
[23, 25]) that, if 1 ≤ m̂ < n, then condHB(xµ, µ) = Θ(1/µ), so that the barrier
Hessian becomes arbitrarily ill-conditioned at points lying on the barrier trajectory
as µ → 0. Although it is impossible after a gap of more than 20 years to determine
precisely why barrier methods became unpopular, concerns about ill-conditioning
clearly played a role; see Section 4.3.

As penalty and barrier methods faded from the scene, the dominant approaches
tended to be based directly on the optimality conditions for constrained optimiza-
tion, in particular on properties of the Lagrangian function. Augmented Lagrangian
methods and sequential quadratic programming (SQP) methods became especially
popular and remain so today. For further details about these methods, see, for
example, [16, 10, 28].

3. The revolution begins

3.1. Karmarkar’s method. In 1984, Narendra Karmarkar [21] announced a poly-
nomial-time LP method for which he reported solution times that were consistently
50 times faster than the simplex method. This event, which received publicity
around the world throughout the popular press and media, marks the beginning of
the interior-point revolution.

Karmarkar’s method had several unusual properties: a special, nonstandard form
was assumed for the linear program; nonlinear projective geometry was used in its
description; and no information was available about the implementation. Amid the
frenzy of interest in Karmarkar’s method, it was shown in 1985 (and published the
next year [15]) that there was a formal equivalence between Karmarkar’s method
and the classical logarithmic barrier method applied to the LP problem. Soon re-
searchers began to view once-discarded barrier methods in a previously unthinkable
context: as the source of polynomial-time algorithms for linear programming.

For several years the tie between Karmarkar’s method and barrier methods
was contentious and controversial. Researchers argued about whether the two ap-
proaches were fundamentally different, or very similar, or something in between.
Now that the dust has settled, derivations of interior methods typically involve bar-
rier functions or their properties, such as perturbed complementarity (19). Readers
interested in Karmarkar’s method should consult his original paper [21] or any of
the many comprehensive treatments published since 1984 (e.g., [19, 30, 41, 35, 44]).
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Beyond establishing the formal connection between Karmarkar’s method and
barrier methods, [15] reported computational results comparing a state-of-the-art
(in 1985) simplex code, MINOS [26], and an implementation of the primal Newton
barrier method on a widely available set of test problems. To the astonishment
of many who believed that nothing could beat the simplex method, the barrier
method was faster on several of the problems and competitive on many others.

At this stage, the interior-point revolution gathered momentum and accelerated
in several directions, to be described in Sections 4 and 5. First, however, we describe
the derivation of the primal Newton barrier method for LP given in [15].

3.2. The primal Newton barrier method for LP. To make the connection
between linear programming and a barrier method, consider a standard-form linear
program—minimize cTx subject to Ax = b and x ≥ 0—with three properties: (a)
the set of x satisfying Ax = b and x > 0 is nonempty; (b) the set (y, z) satisfying
ATy + z = c and z > 0 is nonempty; and (c) rank(A) = m. Because the only
inequality constraints are the bounds x ≥ 0, the associated logarithmic barrier
function (see (11)) is

(21) B(x, µ) = cTx − µ

n∑
j=1

ln xj ,

and the barrier subproblem is to minimize (21) subject to satisfying the equalities
Ax = b:

(22) minimize cTx − µ
n∑

j=1

ln xj subject to Ax = b.

The gradient and Hessian of the barrier function (21) have particularly simple
forms:

(23) gB = c − µX−1e and HB = µX−2.

The barrier subproblem (22) has a unique minimizer if (b) is satisfied. At the
optimal solution of (22), there exists y such that

(24) gB(x, µ) = c − µX−11 = ATy, so that c = ATy + µX−11.

The central path (barrier trajectory) for a standard-form LP is defined by vectors
xµ and yµ satisfying

Axµ = b, xµ > 0;

ATyµ + µX−1
µ 1 = c.(25)

The central path has numerous properties of interest; see, e.g., [20, 19, 35, 41], and
[44].

Assume that we are given a point x > 0 for which Ax = b. Using (23), the
Newton equations (10) for problem (22) are

(26)

(
µX−2 AT

A 0

) (
p

−y

)
=

(
−c + µX−11

0

)
,

so that the Newton step p in x satisfies

(27) µX−2p + c − µX−11 = ATy
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for some Lagrange multiplier vector y. Multiplying (27) by AX2 and using the
relation Ap = 0 to eliminate p, we obtain

(28) AX2ATy = AX2c − µAXe = AX(Xc− µ1).

Since A has full rank and x > 0, the matrix AX2AT is positive definite, so that
(28) has a unique solution y. Using (27), p is defined in terms of y as

p = x +
1
µ

X2(ATy − c).

Because Ax = b and Ap = 0, the new point x + αp will continue to satisfy the
equality constraints for any α. However, α may need to be less than one in order
to retain strict feasibility with respect to the bound constraints.

4. The revolution advances

Following the announcements of Karmarkar’s method and its connection with the
logarithmic barrier method, researchers began to develop other interior LP meth-
ods with improved complexity bounds and to derive properties of barrier methods
applied to linear programs. Furthermore, since barrier methods (unlike the simplex
method) were originally intended for nonlinear problems, it was evident that they
could be applied not just to linear programming, but also to other optimization
problems, such as quadratic programming, linear and nonlinear complementarity,
and nonlinear programming.

4.1. A change in perspective. The interior-point revolution has led to a funda-
mental shift in thinking about continuous optimization. Today, in complete contrast
to the era before 1984, researchers view linear and nonlinear programming from a
unified perspective; the magnitude of this change can be seen simply by noting
that no one would seriously argue today that linear programming is independent
of nonlinear programming.

Beyond a broadened perspective, one might wonder whether the revolution has
made a substantive difference: is the net result simply that the log barrier method
was rediscovered and applied to new problems? The answer to this is an emphatic
“No”. As we shall try to indicate in the remainder of the paper, there have been
fundamental advances in complexity theory, algorithms, linear algebra, and solvable
problems, all as a result of the interior revolution.

4.2. Complexity. A signature of interior methods is the existence of continuously
parameterized families of approximate solutions that asymptotically converge to the
exact solution; see, for example, [20]. As the parameter approaches its limit, these
paths trace smooth trajectories with geometric properties (such as being “centered”
in a precisely defined sense) that can be analyzed and exploited algorithmically.
These paths also play a critical role in complexity analyses of interior algorithms.

The elements in a typical proof of polynomial complexity for an interior method
are:

• Characterizing acceptable closeness to the solution through a stopping rule.
Such a rule is needed because an interior method that generates strictly
feasible iterates cannot produce, within a finite number of iterations, a
solution that lies exactly on a constraint.

• Defining a computable measure of closeness to the parameterized path as-
sociated with the problem and the algorithm.
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• Showing that a Newton step, or a suitably small number of Newton steps,
taken from a point close to the path will stay sufficiently close to the path.

• Decreasing the controlling parameter at a rate that allows a polynomial
upper bound on the number of iterations needed to become close enough
to the solution.

Innumerable papers have been written about complexity issues in interior methods;
the surveys [19, 30, 35, 44] (among others) provide details and further references.

Every discussion of the analysis of interior methods should pay tribute to the
work of Nesterov and Nemirovskii, whose work in the late 1980s extended the
scope of polynomial-time complexity results to a wide family of convex optimization
problems; for details, see [27]. One of their major contributions was to define self-
concordant barrier functions. A convex function φ from a convex region F0 ∈ Rn

to R is κ-self-concordant in F0 if (i) φ is three times continuously differentiable in
F0 and (ii) for all y ∈ F0 and all h ∈ Rn, the following inequality holds:

| ∇3φ(y)[h, h, h] | ≤ 2κ
(
hT∇2φ(y)h

)3/2
,

where ∇3φ(y)[h, h, h] denotes the third differential of φ at y and h. The logarithmic
barrier functions associated with linear and convex quadratic programming are
self-concordant with κ = 1. Existence of a self-concordant barrier function for
a convex problem is closely related to existence of polynomial-time algorithms.
Using the concept of self-concordance, new barrier functions have been devised
for certain convex programming problems, such as semidefinite programming, that
were previously considered computationally intractable; see Section 5.

Despite the polynomial bounds typically associated with interior methods, a mys-
tery remains similar to that still holding for the simplex method: interior methods
almost invariably require a number of iterations that is much smaller than the
(very large) polynomial upper bound. The reasons for these disparities are not yet
understood, but perhaps one day they will be.

4.3. Barrier methods revisited. The problem of ill-conditioning, as noted ear-
lier, has haunted interior methods since the late 1960s, but there has been substan-
tial recent progress in understanding this issue. A detailed analysis was given in
[37] of the structure of the primal barrier Hessian (16) in an entire neighborhood of
the solution. Several papers ([13, 11, 40, 42]) have analyzed the stability of specific
factorizations for various interior methods.

Very recently, the (at first) surprising result was obtained ([39, 43]) that, under
conditions normally holding in practice, ill-conditioning of certain key matrices in
interior methods for nonlinear programming does not noticeably degrade the accu-
racy of the computed search directions. In particular, in modern primal-dual meth-
ods (see Section 4.4.1), if a backward-stable method is used to solve the condensed
primal-dual system (the analogue of the barrier Hessian), the computed solution
has essentially the same accuracy as that of the well-conditioned full primal-dual
system (34). However, this result crucially depends on the special structure of the
relevant ill-conditioned matrices, in particular their asymptotic relationship with
Â and the reduced Hessian of the Lagrangian. A similar kind of analysis applies
to the search direction computed with the primal barrier Hessian. Consequently,
ill-conditioning in interior methods undeniably exists, but will tend to be benign.

It turns out that ill-conditioning is not the only defect of primal barrier methods.
Even if the Newton direction is calculated with perfect accuracy, primal barrier
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methods suffer from inherently poor scaling of the search direction during the early
iterations following a reduction of the barrier parameter; see [38, 6]. Thus, unless
special precautions are taken, a full Newton step cannot be taken immediately after
the barrier parameter is reduced. This fundamentally undesirable property implies
that the classical primal barrier method will be unavoidably inefficient.

A fascinating but unresolvable question is whether the loss of popularity of bar-
rier methods in the 1970s was unfairly blamed on ill-conditioning (which is often
a genuine villain); the observed inefficiencies were probably attributable to the
just-mentioned flaw of the primal barrier method rather than to ill-conditioning.

4.4. New algorithms for old problems. Leading candidates for the most pop-
ular algorithms to emerge from the interior revolution belong to the primal-dual
family. Although there is no precise, universally accepted definition of a primal-
dual method, these methods are almost always based on applying Newton’s method
to nonlinear equations stated in terms of the original (“primal”) problem variables,
along with “dual” variables representing the Lagrange multipliers.

4.4.1. Primal-dual methods for linear programming. The optimal solution x of the
barrier subproblem (22) for a standard-form LP satisfies the condition c = ATy +
µX−11 for some m-vector y (see (24)). Defining the n-vector z as µX−11, we may
replace this condition by the following two equations:

(29) c = ATy + z and Xz = µe.

The second relation in (29) has a clear resemblance to the perturbed complemen-
tarity condition (19) that holds along the barrier trajectory between the inequality
constraints (here, the variables x) and Lagrange multiplier estimates.

The primal Newton barrier algorithm described in Section 3.2 is formulated
in terms of only primal variables x; the Lagrange multiplier estimate y of (26)
arises as a byproduct of the equality-constrained Newton subproblem. One could
alternatively seek primal variables x and dual variables y (for the equalities) and z
(for the inequalities) satisfying the central-path conditions (25) rewritten to include
z:

(30) Ax = b, x > 0, ATy + z = c, z > 0, and Xz = µ1.

Note that only the third equation in (30) is nonlinear.
Applying Newton’s method (7) to these 2n+m equations, we obtain the following

linear system for Newton steps in x, y, and z:

(31)


 A 0 0

0 AT I

Z 0 X





 px

py

pz


 =


 b − Ax

c − ATy − z

µe − XZe


 .

Eliminating pz and px gives the linear system

(32) AZ−1XATpy = AZ−1X(c − µX−1e − ATy) + b − Ax,

where AZ−1XAT is symmetric and positive definite, with the form AD2AT for a
nonsingular diagonal matrix D. Once py is known, pz and px may be calculated
directly from the second and third block rows of (31) without solving any equations.

Primal-dual methods for linear programming have been enormously successful
in practice. For a detailed discussion of many aspects of primal-dual methods, see
[41].
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A striking effect of the interior revolution has been the magnitude and extent of
performance improvements in the simplex method, which was (wrongly) thought
in 1984 to have already reached its speed limit. In LP today, interior methods
are faster than simplex for some very large problems, the reverse is true for some
problems, and the two approaches are more or less comparable on others; see [2].
Consequently, commercial LP codes routinely offer both options. Further analysis
is still needed of the problem characteristics that determine which approach is more
appropriate. Unless a drastic change occurs, both approaches are likely to remain
viable into the foreseeable future.

4.4.2. Primal-dual methods for nonlinear programming. Because of inherent flaws
in primal barrier methods (see Section 4.3), primal-dual methods based on prop-
erties of xµ are increasingly popular for solving general nonlinear programming
problems; see, for example, the recent papers [8, 4, 11, 7, 14]. As in primal-dual
methods for LP, the original (primal) variables x and the dual variables λ (repre-
senting the Lagrange multipliers) are treated as independent.

The usual motivation for primal-dual methods is to find (x, λ) satisfying the
equations that hold at xµ. In the spirit of (17) and (18), (xµ, λµ(xµ)) satisfy the
following n + m nonlinear equations:

(33) g = AT λ and ciλi = µ, i = 1, . . . , m.

Applying Newton’s method, we obtain the (full) n + m primal-dual equations for
Newton steps in x and λ:

(34)

(
W −AT

ΛA C

) (
px

pλ

)
=

(
−g + AT λ

µ1− Cλ

)

where W is the Hessian of the Lagrangian evaluated at (x, λ).
All primal-dual methods are based on more or less the idea just described, which

is sometimes presented in terms of the logarithmic barrier function (hence leading
to properties of xµ), or else in terms of perturbed complementarity (19) as a desired
property in itself. Naturally, the equations (34) do not begin to constitute a com-
plete algorithm for nonlinear programming. Primal-dual methods are the object of
active research today and span a wide range of approaches to algorithmic details,
including

(1) formulation of the constraints,
(2) solution of the linear system that defines the Newton steps,
(3) treatment of indefiniteness,
(4) strategies for encouraging progress toward the solution from an arbitrary

starting point, and
(5) treatment of equality constraints (an option needed for a general-purpose

nonlinear programming method).

4.5. Linear algebra. Interior methods would not be fast or reliable without ef-
ficient, numerically stable linear algebraic techniques for solving the associated
distinctive, specially structured linear systems. Great advances have taken place
since 1984 in sparse Cholesky-based techniques for factorizing matrices of the
form AT D2A, where D is diagonal and is becoming ill-conditioned in a specified
manner—either some elements of D are becoming infinite while the others are
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Θ(1), or else some are approaching zero while the remainder are Θ(1). In addition,
techniques for sparse symmetric indefinite factorizations of matrices of the form

(35)

(
W AT

A D2

)
,

where D is diagonal and ill-conditioned as just described, are important. See, for
example, [11, 13, 40, 42].

5. New problems

The flowering of interior methods, and in particular the realization that efficient
algorithms exist for a wide class of convex optimization problems, has led to the
application of interior methods to a broad range of problems that were previously
considered to be computationally intractable.

Certain problems involving eigenvalue optimization have been particularly ame-
nable to solution by interior methods; for details, see the excellent survey [22]. In
the next section we summarize a few key ideas in semidefinite programming (SDP),
an area of intense research during the past few years.

5.1. The semidefinite programming problem. Semidefinite programming may
be viewed as a generalization of linear programming, where the variables are n× n
symmetric matrices, denoted by X , rather than n-vectors. In SDP, we wish to min-
imize an affine function of a symmetric matrix X subject to linear constraints and
semidefiniteness constraints, the latter requiring (in words) that “X must be posi-
tive semidefinite”. This relation is typically written as X � 0, a form that strongly
resembles inequality constraints in ordinary continuous optimization. (When X is
a symmetric matrix, the condition X 	 0 means “X is positive definite”.)

Let Sn denote the set of real n × n symmetric matrices, let C and {Ai} be
real symmetric n × n matrices, and let b be a real m-vector. The semidefinite
programming problem is the following:

minimize
X∈Sn

trace(CX)(36)

subject to trace(AiX) = bi, i = 1, . . . , m(37)
X � 0.(38)

When the SDP problem is written in this form, its similarity to a standard-form
LP (2) is hard to miss, but, not surprisingly, many extra complications arise in
SDP. For example, the feasible region defined by (37) and (38) is not polyhedral, so
there is no analogue of the simplex method. Furthermore, several major regularity
assumptions are needed to obtain duality results analogous to those in LP. These
assumptions will not be stated here; see [22] for details.

Nesterov and Nemirovskii [27] show that the function log det(X) is a self-
concordant barrier function for the semidefinite programming problem, which means
that the SDP (36)–(38) can be solved in polynomial time via a sequence of barrier
subproblems parameterized by µ:

minimize
X∈Sn

trace(CX) − µ log det X(39)

subject to trace(AiX) = bi, i = 1, . . . , m.(40)

Under suitable regularity assumptions, there is a unique sequence {Xµ, yµ},
where Xµ is a symmetric positive definite matrix satisfying the constraints (37)
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and (38) and yµ is an m-vector, such that Xµ and yµ together satisfy the following
“perturbed complementarity” condition:

(41) X(C −
m∑

i=1

yiAi) = µI,

with C −
∑m

i=1 yiAi � 0. Newton’s method cannot be applied directly to solve
(37) and (41) because the matrix on the left-hand side of (41) is not symmetric. A
primal approach, first suggested in [1], is to replace (41) by the relation

X(C −
∑

yiAi) + (C −
∑

yiAi)X = 2µI.

An analogous primal-dual method, called the “XZ + ZX method” for obvious
reasons, is defined by finding (Xµ, yµ, Zµ), where Xµ 	 0 and Zµ 	 0, such that

(42) trace(AiX) = bi, Z = C −
∑

yiAi, and XZ + ZX = 2µI.

Note the strong parallel between the two final equations in (42) and the primal-dual
equations (29) in linear programming.

Semidefinite programming is an extremely lively research area today, producing
new theory, algorithms, and implementations; see the surveys [33] and [34].

5.2. New applications of interior methods. Interior methods are playing ma-
jor roles in at least two areas: approximation techniques for NP-hard combinatorial
problems, and system and control theory.

In the former, it has recently been shown that certain semidefinite programs
and NP-hard problems are closely related in the following way: solution of the
semidefinite program leads to an approximation whose objective value is provably
within a known factor of the optimal objective value for the associated NP-hard
problem. For example, a semidefinite program formulation leads to an approximate
solution of the max-cut problem whose objective value is within a factor of 1.14
of the optimal value; see [18]. This kind of relationship guarantees that good
approximate solutions to NP-hard problems can be computed in polynomial time.

Interior methods are important in system and control theory because of their
connection with linear matrix inequalities, which have the forms

(43) F0 +
p∑

i=1

xiFi 	 0 or F0 +
p∑

i=1

xiFi � 0,

where x is a p-vector and {Fi} are real symmetric matrices. Many constraints in
system and control theory, including convex quadratic inequalities, matrix norm
inequalities, and Lyapunov matrix inequalities, can be expressed as linear matrix
inequalities. It is straightforward to see that the forms (43) allow the variables to
be symmetric matrices.

Numerous problems in system and control theory involve optimization of convex
functions of matrix arguments subject to linear matrix inequalities. Because these
are convex programming problems, it is possible to apply polynomial-time interior
methods. For details, the reader should consult [3].
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6. Summary

The interior point revolution has had many highly positive results, including

• a deeper and more unified understanding of constrained optimization prob-
lems;

• continuing improvements to theory and methods;
• more algorithmic options for familiar problems, even for linear program-

ming;
• the ability to solve new problems.

One could argue, however, not entirely whimsically, that the interior-point rev-
olution has had some negative consequences. For example, both teaching linear
programming and solving linear programs are much more complicated than they
used to be. With respect to the former, instructors in linear programming courses
face increased pedagogical challenges. Before 1984, it was perfectly acceptable
simply to describe the simplex method; today, any credible treatment of linear pro-
gramming needs to include interior methods. Similarly, someone with an LP to
solve can no longer be content with mindless application of the simplex method.

On balance, the interior revolution has energized and expanded the field of con-
strained optimization. Although the revolutionary pace has (inevitably) slowed
down since its first heady days, ample opportunities remain for many further years
of lively and innovative research.
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[5] V. Chvátal (1983). Linear Programming, W. H. Freeman, New York. MR0717219 (86g:90062)
[6] A. R. Conn, N. I. M. Gould, and P. L. Toint (1994). A note on using alternative second-order

models for the subproblems arising in barrier function methods for minimization, Num. Math.
68, 17–33. MR1278446 (95a:90119)

[7] A. R. Conn, N. I. M. Gould, and P. L. Toint (2000). A primal-dual trust-region algorithm for
minimizing a non-convex function subject to bound and linear equality constraints, Math.
Prog. 87, 215–249. MR1763849 (2001e:90140)

[8] A. S. El-Bakry, R. A. Tapia, T. Tsuchiya, and Y. Zhang (1996). On the formulation and theory
of the Newton interior-point method for nonlinear programming, J. Opt. Theory Appl. 89,
507–541. MR1393361 (97c:90104)

[9] A. V. Fiacco and G. P. McCormick (1968). Nonlinear Programming: Sequential Uncon-
strained Minimization Techniques, John Wiley and Sons, New York. Republished by Society
for Industrial and Applied Mathematics, Philadelphia, 1990. MR1058438 (91d:90089)

[10] R. Fletcher (1987). Practical Methods of Optimization (second edition), John Wiley and
Sons, Chichester. MR0955799 (89j:65050)

[11] A. Forsgren and P. E. Gill (1998). Primal-dual interior methods for nonconvex nonlinear
programming, SIAM J. Opt. 8, 1132–1152. MR1646122 (99k:90121)

[12] A. Forsgren, P. E. Gill, and M. H. Wright (2002). Interior methods for nonlinear optimization,
SIAM Review 44, 525–597. MR1980444 (2004c:90098)

http://www.ams.org/mathscinet-getitem?mr=1636549
http://www.ams.org/mathscinet-getitem?mr=1636549
http://www.ams.org/mathscinet-getitem?mr=1885204
http://www.ams.org/mathscinet-getitem?mr=1284712
http://www.ams.org/mathscinet-getitem?mr=1284712
http://www.ams.org/mathscinet-getitem?mr=1795061
http://www.ams.org/mathscinet-getitem?mr=1795061
http://www.ams.org/mathscinet-getitem?mr=0717219
http://www.ams.org/mathscinet-getitem?mr=0717219
http://www.ams.org/mathscinet-getitem?mr=1278446
http://www.ams.org/mathscinet-getitem?mr=1278446
http://www.ams.org/mathscinet-getitem?mr=1763849
http://www.ams.org/mathscinet-getitem?mr=1763849
http://www.ams.org/mathscinet-getitem?mr=1393361
http://www.ams.org/mathscinet-getitem?mr=1393361
http://www.ams.org/mathscinet-getitem?mr=1058438
http://www.ams.org/mathscinet-getitem?mr=1058438
http://www.ams.org/mathscinet-getitem?mr=0955799
http://www.ams.org/mathscinet-getitem?mr=0955799
http://www.ams.org/mathscinet-getitem?mr=1646122
http://www.ams.org/mathscinet-getitem?mr=1646122
http://www.ams.org/mathscinet-getitem?mr=1980444
http://www.ams.org/mathscinet-getitem?mr=1980444


THE INTERIOR-POINT REVOLUTION 55

[13] A. Forsgren, P. E. Gill, and J. R. Shinnerl (1996). Stability of symmetric ill-conditioned
systems arising in interior methods for constrained optimization, SIAM J. Matrix Anal. Appl.
17, 187–211. MR1372930 (96m:90084)

[14] D. M. Gay, M. L. Overton, and M. H. Wright (1998). A primal-dual interior method for
nonconvex nonlinear programming, Advances in Nonlinear Programming (Y. Yuan, ed.),
Kluwer Academic, Dordrecht, 31–56. MR1639869 (99h:90096)

[15] P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin and M. H. Wright (1986). On projected
Newton barrier methods for linear programming and an equivalence to Karmarkar’s projective
method, Math. Prog. 36, 183–209. MR0866988 (88h:90123)

[16] P. E. Gill, W. Murray and M. H. Wright (1981). Practical Optimization, Academic Press,
London and New York. MR0634376 (83d:65195)

[17] P. E. Gill, W. Murray and M. H. Wright (1991). Numerical Linear Algebra and Optimization,
Volume 1, Addison-Wesley, Redwood City. MR1074004 (92b:65001)

[18] M. X. Goemans and D. P. Williamson (1995). Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming, J. ACM 42, 1115–1145.
MR1412228 (97g:90108)

[19] D. Goldfarb and M. J. Todd (1989). Linear programming, Optimization (G. L. Nemhauser,
A. H. G. Rinnooy Kan and M. J. Todd, eds.), North Holland, Amsterdam and New York,
73–170. MR1105101

[20] C. C. Gonzaga (1992). Path following methods for linear programming, SIAM Review 34,
167–224. MR1166175 (93j:90050)

[21] N. K. Karmarkar (1984). A new polynomial-time algorithm for linear programming, Combi-
natorica 4, 373–395. MR0779900 (86i:90072)

[22] A. S. Lewis and M. L. Overton (1996). Eigenvalue optimization, Acta Numerica 1996, 149–
190. MR1624599 (99e:90072)

[23] F. A. Lootsma (1969). Hessian matrices of penalty functions for solving constrained opti-
mization problems, Philips Res. Repts. 24, 322–330. MR0305594 (46:4724)

[24] D. G. Luenberger (1973). Introduction to Linear and Nonlinear Programming, Addison-
Wesley, Menlo Park.

[25] W. Murray (1971). Analytical expressions for the eigenvalues and eigenvectors of the Hessian
matrices of barrier and penalty functions, J. Opt. Theory Appl. 7, 189–196. MR0284212
(44:1441)

[26] B. A. Murtagh and M. A. Saunders (1987). MINOS 5.1 User’s Guide, Report SOL 83-20R,
Department of Operations Research, Stanford University, Stanford, California.

[27] Y. Nesterov and A. Nemirovskii (1994). Interior-Point Polynomial Algorithms in Convex
Programming, Society for Industrial and Applied Mathematics, Philadelphia. MR1258086
(94m:90005)

[28] J. Nocedal and S. J. Wright (1999). Numerical Optimization, Springer-Verlag, New York.
MR1713114 (2001b:90002)

[29] J. M. Ortega and W. C. Rheinboldt (1970). Iterative Solution of Nonlinear Equations in
Several Variables, Academic Press, London and New York. MR0273810 (42:8686)

[30] C. Roos, T. Terlaky, and J.-Ph. Vial (1997). Theory and Algorithms for Linear Optimization:
An Interior Point Approach, John Wiley & Sons, New York. MR1450094 (98d:90005)

[31] A. Schrijver (1987). Theory of Linear and Integer Programming, John Wiley and Sons, New
York. MR0874114 (88m:90090)

[32] D. A. Spielman and S.-H. Teng (2001). Why the simplex method usually takes polynomial
time, Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing,
296–305.

[33] M. J. Todd (2001). Semidefinite optimization, Acta Numerica 2001, 515–560. MR2009698
(2004g:90004)

[34] L. Vandenberghe and S. Boyd (1996). Semidefinite programming, SIAM Review 38, 49–95.
MR1379041 (96m:90005)

[35] R. J. Vanderbei (1997). Linear Programming: Foundations and Extensions, Kluwer Academic
Publishers, Boston. MR1845638 (2002e:90002)

[36] M. H. Wright (1992). Interior methods for constrained optimization, Acta Numerica 1992,
341–407. MR1165729 (93d:90037)

[37] M. H. Wright (1994). Some properties of the Hessian of the logarithmic barrier function,
Math. Prog. 67, 265–295. MR1305569 (95m:90125)

http://www.ams.org/mathscinet-getitem?mr=1372930
http://www.ams.org/mathscinet-getitem?mr=1372930
http://www.ams.org/mathscinet-getitem?mr=1639869
http://www.ams.org/mathscinet-getitem?mr=1639869
http://www.ams.org/mathscinet-getitem?mr=0866988
http://www.ams.org/mathscinet-getitem?mr=0866988
http://www.ams.org/mathscinet-getitem?mr=0634376
http://www.ams.org/mathscinet-getitem?mr=0634376
http://www.ams.org/mathscinet-getitem?mr=1074004
http://www.ams.org/mathscinet-getitem?mr=1074004
http://www.ams.org/mathscinet-getitem?mr=1412228
http://www.ams.org/mathscinet-getitem?mr=1412228
http://www.ams.org/mathscinet-getitem?mr=1105101
http://www.ams.org/mathscinet-getitem?mr=1166175
http://www.ams.org/mathscinet-getitem?mr=1166175
http://www.ams.org/mathscinet-getitem?mr=0779900
http://www.ams.org/mathscinet-getitem?mr=0779900
http://www.ams.org/mathscinet-getitem?mr=1624599
http://www.ams.org/mathscinet-getitem?mr=1624599
http://www.ams.org/mathscinet-getitem?mr=0305594
http://www.ams.org/mathscinet-getitem?mr=0305594
http://www.ams.org/mathscinet-getitem?mr=0284212
http://www.ams.org/mathscinet-getitem?mr=0284212
http://www.ams.org/mathscinet-getitem?mr=1258086
http://www.ams.org/mathscinet-getitem?mr=1258086
http://www.ams.org/mathscinet-getitem?mr=1713114
http://www.ams.org/mathscinet-getitem?mr=1713114
http://www.ams.org/mathscinet-getitem?mr=0273810
http://www.ams.org/mathscinet-getitem?mr=0273810
http://www.ams.org/mathscinet-getitem?mr=1450094
http://www.ams.org/mathscinet-getitem?mr=1450094
http://www.ams.org/mathscinet-getitem?mr=0874114
http://www.ams.org/mathscinet-getitem?mr=0874114
http://www.ams.org/mathscinet-getitem?mr=2009698
http://www.ams.org/mathscinet-getitem?mr=2009698
http://www.ams.org/mathscinet-getitem?mr=1379041
http://www.ams.org/mathscinet-getitem?mr=1379041
http://www.ams.org/mathscinet-getitem?mr=1845638
http://www.ams.org/mathscinet-getitem?mr=1845638
http://www.ams.org/mathscinet-getitem?mr=1165729
http://www.ams.org/mathscinet-getitem?mr=1165729
http://www.ams.org/mathscinet-getitem?mr=1305569
http://www.ams.org/mathscinet-getitem?mr=1305569


56 MARGARET H. WRIGHT

[38] M. H. Wright (1995). Why a pure primal Newton barrier step may be infeasible, SIAM J.
Opt. 5, 1–12. MR1315702 (95m:90126)

[39] M. H. Wright (1998). Ill-conditioning and computational error in interior methods for non-
linear programming, SIAM J. Opt. 9, 81–111. MR1660094 (99i:90093)

[40] S. J. Wright (1995). Stability of linear equation solvers in interior-point methods, SIAM J.
Matrix Anal. Appl. 16, 1287–1307. MR1351471 (96f:65055)

[41] S. J. Wright (1997). Primal-Dual Interior-Point Methods, Society for Industrial and Applied
Mathematics, Philadelphia. MR1422257 (98a:90004)

[42] S. J. Wright (1999). Modified Cholesky factorizations in interior-point algorithms for linear
programming, SIAM J. Opt. 9, 1159–1191. MR1724782 (2000k:90076)

[43] S. J. Wright (2001). Effects of finite-precision arithmetic on interior-point methods for non-
linear programming, SIAM J. Opt. 12, 36–78. MR1870586 (2002j:90107)

[44] Y. Ye (1997). Interior Point Algorithms, Theory and Analysis, John Wiley & Sons, New York.
MR1481160 (98m:90002)

Computer Science Department, Courant Institute of Mathematical Sciences, New

York University, 251 Mercer Street, New York, New York 10012

E-mail address: mhw@cs.nyu.edu

http://www.ams.org/mathscinet-getitem?mr=1315702
http://www.ams.org/mathscinet-getitem?mr=1315702
http://www.ams.org/mathscinet-getitem?mr=1660094
http://www.ams.org/mathscinet-getitem?mr=1660094
http://www.ams.org/mathscinet-getitem?mr=1351471
http://www.ams.org/mathscinet-getitem?mr=1351471
http://www.ams.org/mathscinet-getitem?mr=1422257
http://www.ams.org/mathscinet-getitem?mr=1422257
http://www.ams.org/mathscinet-getitem?mr=1724782
http://www.ams.org/mathscinet-getitem?mr=1724782
http://www.ams.org/mathscinet-getitem?mr=1870586
http://www.ams.org/mathscinet-getitem?mr=1870586
http://www.ams.org/mathscinet-getitem?mr=1481160
http://www.ams.org/mathscinet-getitem?mr=1481160

	1. Overview
	2. Linear and nonlinear programming: Separated from birth
	2.1. Linear programming
	2.2. Nonlinear programming

	3. The revolution begins
	3.1. Karmarkar's method
	3.2. The primal Newton barrier method for LP

	4. The revolution advances
	4.1. A change in perspective
	4.2. Complexity
	4.3. Barrier methods revisited
	4.4. New algorithms for old problems
	4.5. Linear algebra

	5. New problems
	5.1. The semidefinite programming problem
	5.2. New applications of interior methods

	6. Summary
	References

