
SIAM J. COMPUT.
Vol. 2, No. 4, December 1973

SET MERGING ALGORITHMS*

J. E. HOPCROFT" AND J. D. ULLMAN{

Abstract. This paper considers the problem of merging sets formed from a total of n items in such
a way that at any time, the name of a set containing a given item can be ascertained. Two algorithms
using different data structures are discussed. The execution times of both algorithms are bounded by a
constant times nG(n), where G(n) is a function whose asymptotic growth rate is less than that of any
finite number of logarithms of n.

Key words, algorithm, algorithmic analysis, computational complexity, data structure, equivalence
algorithm, merging, property grammar, set, spanning tree

1. Introduction. Let us consider the problem of efficiently merging sets
according to an initially unknown sequence of instructions, while at the same time
being able to determine the set containing a given element rapidly. This problem
appears as the essential part of several less abstract problems. For example, in [13
the problem of "equivalencing" symbolic addresses by an assembler was con-
sidered. Initially, each name is in a set by itself, i.e., it is equivalent to no other
name. An assembly language statement that sets name A equivalent to name B by
implication makes C equivalent to D if A and C were equivalent and B and D
were likewise equivalent. Thus, to make A and B equivalent, we must find the
sets (equivalence classes) of which A and B are currently members and merge
these sets, i.e., replace them by their union.

Another setting for this problem is the construction of spanning trees for an
undirected graph [2]. Initially, each vertex is in a set (connected component) by
itself. We find edges (n, m) by some strategy and determine the connected compo-
nents containing n and m. If these differ, we add (n, m) to the tree being constructed
and merge the components containing n and m, which now are connected by the
tree being formed. If n and m are already in the same component, we throw away
(n, m)and find a new edge.

A third application [33 is the implementation of property grammars I43, and
many others suggest themselves when it is realized that the task we discuss here
can be done in less than O(n log n) time.

By way of introduction, let us consider some of the more obvious data struc-
tures whereby objects could be kept in disjoint sets, these sets could be merged, and
the name of the set containing a given object could be determined. One possibility
is to represent each set by a tree. Each vertex of the tree would correspond to an
object in the set. Each object would have a pointer to the vertex representing it,
and each vertex would have a pointer to its father. If the vertex is a root, however,
the pointer would be zero to indicate the absence of a father. The name of the set
is attached to the root.

Received by the editors August 10, 1972, and in revised form May 18, 1973. This research was
supported by the National Science Foundation under Grant GJ-1052 and the Office of Naval Research
under Contract N00014-67-A-0071-0021.

5 Department of Computer Sciences, Cornell University, Ithaca, New York 14850.

:1: Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540.

294D
ow

nl
oa

de
d

10
/0

8/
12

 to
 1

28
.1

78
.1

59
.1

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

SET MERGING ALGORITHMS 295

Given the roots of two trees, one can replace the representation of two sets
by a representation for their union by making the pointer at one root point to the
other root and, if necessary, updating the name at the root of the combined tree.
Thus two structures can be merged in a fixed number of steps, independent of the
size of the sets. The name of the set containing a given object can be found, given the
vertex corresponding to the object, by following pointers to the root.

However, by starting with n trees, each consisting of a single vertex, and suc-
cessively merging the trees together until a single tree is obtained, it is possible to
obtain a representation for a set of size n, which consists of a chain of n vertices.
Thus, in the worst case, it requires time proportional to the size of the set to deter-
mine which set an object is in.

For purposes of comparison, assume that initially there are n sets, each con-
taining exactly one object, and that sets are merged in some order until all items
are in one set. Interspersed with the mergers are n instructions to find the set
containing a given object. Then the tree structure defined above has a total cost
of n for the merging operation and a cost bounded by n for determining which set
contains a given object (total cost n2 for n look ups).

Methods based on maintaining balanced trees (see [5], e.g.) have a total cost of
n log n for the merging operations and a cost bounded by log n for determining
which set contains a given object (total cost n log n for n look ups).

A distinct approach is to use a linear array to indicate which set contains a
given object. This strategy makes the task of determining which set contains a
given object finite. By renaming the smaller of the two sets in the merging process,
the total cost of merging can be bounded by n log n.

A more sophisticated version of the linear array replaces the set names in
the array by pointers to header elements. This method, based on the work of
Stearns and Rosenkrantz [3], uses nloglog log(n) steps for the merging

k
process and a fixed number of steps independent of n for determining which set
contains a given element. Here k is a parameter of the method and can be any
fixed integer.

In what follows, we shall make use of a very rapidly growing function and a
very slowly growing function which we define here. Let F(n) be defined by

F(0)-- 1,

F(i) F(i- 1)2F(i-x) for i>__ 1.

The first five values of F are 1, 2, 8, 2048 and 22059.
The slowly growing function G(n) is defined for n => 0 to be the least number

k such that F(k) >= n. Both set merging algorithms presented here have asymptotic
growth rates of at most O(nG(n)).

Initially, let Si {i}, 1 __< =< n. The Si’s are set names. Given a sequence of
two types of instructions,

(i) MERGE(i, j), (ii) FIND(i),

where andj are distinct integers between and n, we wish to execute the sequence

D
ow

nl
oa

de
d

10
/0

8/
12

 to
 1

28
.1

78
.1

59
.1

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

296 J. E. HOPCROFT AND J. D. ULLMAN

from left to right as follows. Each time an instruction of the form MERGE(i, j)
occurs, replace sets Si and Sj by the set Si U Sj and call the resulting set Sj. Each
time an instruction of the form FIND(i) occurs, print the name of the set currently
containing the integer i. It is assumed that the length of the sequence of instructions
is bounded by a constant times n. Both set merging algorithms presented here have
asymptotic growth rates bounded by nG(n). The first algorithm actually requires
nG(n) steps tbr certain sequences. For the second algorithm, it is unknown whether
riG(n) is in fact its worst case performance. Recently, Tarjan [6_ has shown the
algorithm to be worse than O(n).

2. The first set merging algorithm. The first set merging algorithm represents
a set by a data structure which is a generalization of that used in 3] to implement
property grammars. The basic structure is a tree similar to that shown in Fig. 1,
where the elements of the set are stored at the leaves of the tree. Links are assumed
to point in both directions.

level 4

level 3

level 2

level

level 0

"22048

56 sons

FIG. 1. Data structure for set representation

sons

Each vertex at level i, 1, has between one and 2v- 1) sons and thus at
most F(i) descendants which are leaves. We define a complete vertex as follows"

(i) Any vertex at level 0 is complete.
(ii) A vertex at level > is complete if and only if it has 2v(- 1) sons, all of

which are complete.
Otherwise, a vertex is incomplete.

The data structure is always maintained, so that no vertex has more than one
incomplete son. Furthermore, the incomplete son, if it exists, will always be
leftmost, so it may be easily found. Attached to each vertex is the level number, the
number of sons, and the number of descendant leaves. The name of the set is
attached to the root.

The procedure COMBINE, given below, takes two data structures of the
same level and combines them to produce a single structure of level 1. If there are
too many leaves for a structure of level 1, then COMBINE produces two structures
of level l, one with a complete root and one with the remaining leaves. To simplify
understanding of the algorithm, the updating of set names, level numbers, number
of sons and the number of descendant leaves for each vertex has been omitted.

Procedure COMBINE (s s2).
Assume without loss of generality that s2 has no more sons than s (otherwise

permute the arguments).

D
ow

nl
oa

de
d

10
/0

8/
12

 to
 1

28
.1

78
.1

59
.1

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

SET MERGING ALGORITHMS 297

1. If both s and s2 have incomplete sons, say v and/)2, then call COMBINE
(v, v2). On completion of this recursive call of COMBINE, the original data
structure is modified as follows. If originally the total number of leaves on the
subtrees with roots v and v2 did not exceed the number of leaves for a complete
subtree, then the new subtree with root v contains all leaves of the original two
subtrees. The new subtree with root v2 consists only of the vertex v2.

If originally the total number of leaves exceeded the number for a complete
subtree, then the new subtree with root v is a complete subtree whose leaves are
former leaves of the original subtrees with roots v and re, and the new subtree with
root v2 is an incomplete subtree with the remaining leaves. If on completion of the
recursive call of COMBINE, vertex v2 has no sons, then delete vertex v2 from the
data structure.

2. Make sons of s2 be sons of s, until either s2 has no more sons or s has
2V(l- 1) sons.

3. If s2 still has sons, then interchange the lone incomplete vertex at level
1, if any, with the leftmost son of s2. Otherwise, interchange the incomplete

vertex with the leftmost son of S l.

We now consider the first algorithm for the MERGE-FIND problem.
ALGORITHM 1.
1. Initially n vertices numbered to n are created and treated as structures

of level 0. Each vertex has information giving the name of its set, its number of
descendant leaves (1), its level (0) and the number of its sons (0). A linear array of
size n is created, such that the ith cell contains a pointer to vertex i.

2. The sequence of instructions of the forms MERGE(i,j) and FIND(i)
are processed in order of occurrence.

(a) For an instruction of the form FIND(i), go to the ith cell of the array,
then to the vertex pointed to by that cell, then proceed from the
vertex to the root and print the name at the root.

(b) For an instruction of the form MERGE(i, j), if the roots for struc-
tures and j are not of the same level, then add a chain of vertices
above the root of lower level so that the roots of the two rees will
have the same level. Let sl and sz be the two roots. Execute COM-
BINE(s1, s2). If after the execution of COMBINE s2 has no sons,
then discard s2 and we are finished. Otherwise, create a new vertex
whose left son is s and whose right son is s2.

We now show that Algorithm 1 requires time bounded by a constant times
nG(n), provided that the length of the sequence of instructions is itself first bounded
by a constant times n. The first step is to observe that Algorithm preserves the
property that at most one son of any vertex is incomplete.

LEMMA 1. At any time during the stimulation of a sequence of MERGE and
FIND instructions by Algorithm 1, each vertex has at most one incomplete son.
Furthermore, the incomplete son, if it exists, will always be leftmost.

Proof The proofproceeds by induction on the number ofMERGE instructions
simulated. The basis zero is trivial, since each leaf is complete by definition.

For the inductive step, we observe by induction on the number of applications
of COMBINE that applying COMBINE to two trees, each of which have the
desired property, will result in either producing a single tree with the desired

D
ow

nl
oa

de
d

10
/0

8/
12

 to
 1

28
.1

78
.1

59
.1

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

298 J.E. HOPCROFT AND J. D. ULLMAN

property plus a single vertex or producing a complete tree plus another tree with
the desired property. Thus, no call of COMBINE can give a vertex two incomplete
sons if no vertex had two such sons previously. Furthermore, if two trees are
produced, neither consisting of a single vertex, then one must be complete.

As a consequence of the above observation, if a new vertex with sons S and s2
is created in step 2(b) of Algorithm 1, the subtree with root S is complete, and the
property holds for the new vertex.

LEMMA 2. If we begin with n objects, no vertex created during Algorithm 1 has
level greater than G(n).

Proof If there were such a vertex v, it could only be created in step 2(b). It
would, by Lemma 1, have a complete descendant at level G(n). An easy induction
on shows that a complete vertex at level has F(l) descendant leaves. Thus, v
has at least F(G(n)) + descendant leaves, which implies F(G(n)) + 1 <= n. The
latter is false by definition of G.

THEOREM 1. If Algorithm 1 is executed on n objects and a sequence of at most

m MERGE and FIND instructions, rn >= n, then the time spent is O(mG(n)).
Proof By Lemma 2, each FIND may be executed in O(G(n)) steps, for a total

cost of O(rnG(n)) for the FIND’s. Since there can be at most n MERGE’s,
the cost of simulating the MERGE operations, exclusive of calls to COMBINE,
is O(n). Moreover, by Lemma 2, each MERGE can result in at most G(n) recursive
calls to COMBINE, as each call is with a pair of vertices at a lower level than
previously. Thus, the cost of all calls to COMBINE is O(nG(n)) plus the cost of
shifting vertices from one father to another in step 2 of COMBINE.

It remains only to show that the total number of shifts of vertices over all
calls of COMBINE is bounded by a constant times nG(n). In executing an in-
struction MERGE(s1, s2), no more than G(n) incomplete vertices are shifted, at
most one at each level. Thus we need only count shifts of complete vertices.

Consider step 2 of COMBINE. The new subtree with root s2 is referred to as
the CARRY unless the subtree consists solely of the vertex v2 in which case we
say, "there is no CARRY." The new subtree with root s is referred to as the
RESULT. The number of shifts of complete vertices is counted as follows. If a
complete vertex is shifted, and there is no CARRY at this execution of COMBINE,
charge the cost to the vertex shifted. If there is a CARRY, set the cost of each vertex
in the CARRY to zero, and distribute the cost uniformly among the vertices in tlae
RESULT.

Each time a vertex is moved, either its new father has at least twice as many
sons as its old father, or there is a CARRY. Thus, a vertex at level is moved at
most F(i) times before a CARRY is produced. Once a CARRY is produced, the root
of the RESULT is complete, and its sons are never moved again. Hence, a vertex at
level can accumulate a cost of at most 2F(i), that is, F(i) due to charges to itself
and F(i) for its share of the costs previously charged to the sons of the root of
CARRY.

To compute the total cost of shifting complete vertices, note that a complete
vertex at level has F(i) descendant leaves. Redistribute the cost of each complete
vertex uniformly among its descendant leaves. Since no leaf has more than G(n)
ancestors, the cost charged to any leaf is bounded by 2G(n). Hence, the complete
cost of moving vertices is O(nG(n)). Since m >_ n is assumed, we have our result.

D
ow

nl
oa

de
d

10
/0

8/
12

 to
 1

28
.1

78
.1

59
.1

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

SET MERGING ALGORITHMS 299

COROLLARY. If we may assume m <= an for somefixed constant a, then Algorithm
1 is O(nG(n)).

It should be observed that the set merging algorithm can be modified to
handle a problem which is in some sense the inverse of set merging. Initially given
a set consisting of integers 1, 2, ..., n}, execute a sequence of two types of in-
structions"

(i) PARTITION(i), (ii) FIND(i),
where is an integer between and n. Each time an instruction of the form PAR-
TITION(i) occurs, replace the set S containing into two sets"

S {jlj e S and j __< i},

$2 {jlj e S and j > i}.

Each set is named by the largest integer in the set. Each time an instruction of the
form FIND(i) occurs, print the name of the set currently containing the integer i.
To handle this partitioning problem, use the same data structure as before, but
start with a single tree with n leaves. The leaves in order from left to right corres-
pond to the integers from to n. To execute PARTITION(i), start at the leaf
corresponding to the integer and traverse a path to the root ofthe tree to partition
the tree into two trees.

All vertices to the left of the path are placed on one tree, all vertices to the right
of the path are placed on the other. Vertices on the path are replaced by two
vertices, one for each subtree, unless the vertex is the rightmost descendant leaf
of the vertex, in which case the vertex is placed on the left subtree. Assume that
vertices v and w are on the path and w is a son of v. The sons of v are partitioned
as follows. Simultaneously, start counting the sons of v to the left of w, including w,
starting with the leftmost son of v, and start counting the sons of v to the right of w.
Cease counting as soon as one of the two counts is complete. (The reason for the
simultaneous counting is to make the cost of counting proportional to the smaller
of the two counts.) The sons of v can now be partitioned at a cost proportional to
the smaller of the two sets by moving the smaller number of sons.

The analysis of the running time is similar to that of the set merging algorithm,
and thus only a brief sketch is given. Note that a vertex can have at most two
incomplete sons, only one of which can be moved in the execution of any PAR-
TITION instruction. Thus at most G(n) incomplete vertices are moved in executing
one PARTITION instruction.

To bound the cost of moving a complete vertex, note that each time a vertex
is moved, its new father has at most half as many sons as the old father. Thus a
vertex at level can be moved at most F(i) times. Since a complete vertex at level
has F(i) leaves, distributing to its leaves the cost of all moves of a given vertex while
it is complete gives at most a cost of one to each of its leaves. Since a leaf has at most
G(n) ancestors, the cost of moving all complete vertices is bounded by riG(n).

3. The second set merging algorithm. We now consider a second algorithm
to simulate a sequence of MERGE and FIND instructions.

This algorithm also uses a tree data structure to represent a set. But here,
all vertices of the tree, rather than just the leaves, correspond to elements in the set.
Moreover, tree links point only from son to father.D

ow
nl

oa
de

d
10

/0
8/

12
 to

 1
28

.1
78

.1
59

.1
15

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

300 J. E. HOPCROFT AND J. D. ULLMAN

ALGORITHM 2.
1. Initially each set {i}, __< =< n, is represented by a tree consisting of a

single vertex with the name of the set at the vertex.
2. To merge two sets, the corresponding trees are merged by making the root

of the tree with fewer vertices a son of the root of the other tree. Ties can be broken
arbitrarily. Attach the appropriate name to the remaining root.

3. To execute FIND(i), follow the path from vertex to the root of its tree and
print the name of the set. Make each vertex encountered on the path a son of the
root. (This is where the algorithm differs substantially from balanced tree schemes !)

The above algorithm, except for the balancing feature of merging small
trees into large, was suggested by Knuth 7] and is attributed by him to Tritter.
The entire algorithm, including this feature, was implemented by McIlroy [2]
and Morris in a spanning tree algorithm. The analysis of the algorithm without
the balancing feature was completed by Fischer 8], who showed that O(n log n)
is a lower bound, and Paterson [93, who showed it to be an upper bound. Our
analysis shows that the algorithm with the balancing scheme is O(nG(n)) at worst.
Thus it is substantially better than the one without the balancing.

We now introduce certain concepts needed to analyze Algorithm 2. Let be a
fixed sequence of MERGE and FIND instructions. Let v be a vertex. Define the
rank of v, with respect to , denoted R(v), as follows. If in the execution of by
Algorithm 2, v never receives a son, then R(v) 0. If v receives sons v l, v2, ".’, Vk
at any time during the execution, then the rank of v is max {R(vi)} + 1. It is not
hard to prove that the rank of v is equal to the length of the longest path from v
to a descendant leaf in the tree that would occur if the FIND instructions and
their attendant movement of vertices were ignored in the execution of .

LEMMA 3. If the rank of v with respect to is r, then at some time during the
execution of , v was the root of a tree with at least 2 vertices.

Proof The proof is by induction on the value of r. The case r 0 is trivial.
Assume the lemma to be true for all values up to r 1, r _>_ 1. If v is of rank r, at
some point v must become the father of some vertex u of rank r 1. This event
could not occur during a FIND, for if it did, then u would have previously been a
descendant of v with some vertex w between them. But then w is of rank at least r
and v of rank at least r + 1 by the definition of rank.

Thus, u must be the root of a tree T which is merged with a tree T’ having root
v. By the inductive hypothesis, T has at least 2 vertices, since a root cannot lose
descendants and a nonroot cannot gain descendants, and hereafter u will no longer
be a root. By step 2 of Algorithm 2, T’ has at least as many descendants as T. The
resulting tree has at least 2’ vertices and has v as root.

LEMMA 4. Each time a vertex v gets a new father w during the execution of
Algorithm 2, that father has a rank higher than any previous father u :/: w of v.

Proof If v, formerly a son of u, becomes a son of w, it must be during a FIND.
Then w is an ancestor of u and hence of higher rank by definition.

LEMMA 5. For each vertex v and rank r, there is at most one vertex u of rank r
which is ever an ancestor of v.

Proof Suppose there were two such u’s, say u and u2. Assume, without loss of
generality, that v first becomes a descendant of u 1. Then u2 is of higher rank than
u by Lemma 4 and the fact that at all times, paths up trees are of monotonically
increasing rank. This contradicts the assumption that U and u2 were of rank r.D

ow
nl

oa
de

d
10

/0
8/

12
 to

 1
28

.1
78

.1
59

.1
15

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

SET MERGING ALGORITHMS 301

LEMMA 6. There are at most n/2 vertices of rank r.

Proo[i Each vertex of rank r at some point is the root of a tree with at least 2
vertices by Lemma 3. No vertex could be the descendant of two vertices of rank r
by Lemma 5. This implies that there are at most n/2 vertices of rank r.

For j >= 1, define aj, the j-th rank group, as follows "
a {vllog+ l(n) < R(v) <__ log(n)}.

Note that the higher the rank group, the lower the ranks of the vertices it contains.
LFMMA 7. laj[_--< 2n/logJ(n).
Proof Since there are at most n/2 vertices of rank r, we have

logJn F/ 2n
]ajl =< Z 2--/ <]ogJn (1 + 1/2 + 1/4 + ") <

i-- logo/+ in logjn

LEMMA 8. Each vertex is in some o for <= j <= G(n) + 1.

Proof By Lemma 6, no vertex has rank greater than log n, so j >__ may be
assumed. Thus to prove j <__ G(n) + 1, we need only show that logcs(")+z(n) < 0.
From the definition of G(n), n <_ F(G(n)), and so

loga(,) + 2(n __< loga(,)+ 2 F(G(n)).

Thus it suffices to show that logi+2F(i) < 0. We shall actually show that logi+ 22F(i)
=< 0. The proof is by induction on i. For 0, the result is obvious. Assume the
induction hypothesis true up to i- 1. Then logi+22F(i)<= logi+l(1 + log F(i))

logi+ 1(1 + log F(i 1) + F(i 1)), which is less than or equal to logi+ 2F(i 1),
since F(i 1) > for > and since log x < x for integer x >_ 1. Thus by the
inductive hypothesis, logi+Z2F(i) =< 0. From this it follows that log+ F(i) < O,
and the proof is complete.

THZORFM 2. Given n >= 2 objects, the time necessary to execute any sequence of
m > n MERGE and FIND instructions on these objects by Algorithm 2 is O(mG(n)).

Proof The cost of the MERGE instructions is clearly O(n). The cost of execut-
ing all FIND instructions is proportional to the number of instructions plus the
sum, over all FIND’s, of the number of vertices moved by that FIND. We now show
that this sum is bounded by O(mG(n)).

Let v be a vertex in as. If before a move of v the father of v is in a lower rank
group (smaller value of j), assign the cost to the FIND instruction. Otherwise,
assign the cost to v itself. For an instruction FIND(i), consider the path from
vertex to the root of its tree. The ranks of vertices along the path to the root are
monotonically increasing, and hence there can be on the path at most G(n) vertices
whose fathers are in a lower rank group. Hence no FIND instruction is assigned a
cost more than G(n).

By Lemma 7, there are at most 2n/logSn vertices in as, and by Lemma 4,
each vertex in a can be moved at most logJn times before its new father is in
aj_ or a lower rank group. Thus, the total cost of moving vertices in aj, not count-
ing moves of a vertex whose father is in a lower rank group, is 2n. Since there are
at most G(n) + rank groups, the total cost exclusive of that charged to FIND’s
is O(nG(n)). Hence, the total cost of executing the sequence of MERGE and FIND
instructions is O(mG(n)).

logO(n) is n and logs+ l(n) log(logS(n)) logS(log(n)). Base 2 logarithms are assumed through-
OUt.D

ow
nl

oa
de

d
10

/0
8/

12
 to

 1
28

.1
78

.1
59

.1
15

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

302 J. E. HOPCROFT AND J. D. ULLMAN

COROLLARY. Ifm <_ anforfixed constant a, then Algorithm 2 requires O(nG(n))
time.

4. An application. One application of the set merging algorithms is to process
a sequence of instructions of the forms INSERT(i), __< _< n, and MIN. Start
with a set S which is initially the empty set. Each time an instruction INSERT(i)
is encountered, adjoin the integer to the set S. Each time a MIN instruction is
executed, delete the minimum element from the set S and print it. We assume that
for each i, the instruction INSERT(i) appears at most once in the sequence of
instructions, and at no time does the number of MIN instructions executed exceed
the number of INSERT instructions executed. Note that as a special case, we
could sort k integers from one to n by executing INSERT instructions for each
integer, followed by k MIN instructions.

The algorithm which we shall give for this problem is off-line, in the sense that
the entire sequence of instructions must be present before processing can begin.
In contrast, Algorithms and 2 are on-line, as they can execute instructions
without knowing the subsequent instructions with which they will be presented.

Let 11, I2, ..., Ir be the sequence of INSERT and MIN instructions to be
executed. Note that r __< 2n. Let of the instructions be MIN. We shall set up a
MERGE-FIND problem whose on-line_solution will allow us to simulate the
INSERT-MIN instructions. We create objects Mi, 1 <= <__ l, where M "rep-
resents" the ith MIN instruction. We also create n objects Xi, 1 =< < n, where
X "represents" the integer i. Suppose, in addition, that there are two arrays
which, given i, enable us to find Mi or X in a single step. The following algorithm
determines for each i, that MIN instruction, if any, which causes to be printed.
Once we have that information, a list of the integers printed by 11, I2, Ir is
easily obtained in O(n)steps.

ALGORITHM 3.
1. Initially use MERGE instructions to create the following sets"

(i) Si, 2 <= <= l, consists of object Mi_ and all those Xj such that
INSERT(j) appears between the 1st and ith MIN instructions.

(ii) $1 consists of all X such that INSERT(j) appears prior to the first
MIN.

(iii) S consists of M and all Xj’s not placed by (i) or (ii).
2. for until n do

begin
FIND(X/) ;a
let Xg be in S;
f.j then
begin

TIME(i) - j;

FIND(M)
let M be in S;
MERGE(Sj, S)

end
end

We are taking the liberty of using Xi, Mi and S as arguments of FIND and MERGE, rather
than integers, as these instructions were originally defined. It is easy to see that objects and set names
could be indexed, so no confusion should arise.D

ow
nl

oa
de

d
10

/0
8/

12
 to

 1
28

.1
78

.1
59

.1
15

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

SET MERGING ALGORITHMS 303

The strategy behind Algorithm 3 is to let M after the ith iteration of step 2
lie in that set Sj such that the jth MIN instruction is the first one following the kth
MIN having the property that none of the integers up to are printed by the jth
MIN. Likewise, X will be in Sj if and only if thejth MIN is the first MIN following
INSERT(m) which does not print any integer up to i. We can formalize these ideas
in the next lemma.

LEMMA 9. (a) After the i-th iteration ofstep 2 in Algorithm 3, Si,j 4: , contains

X,, (resp. Mk) if and only if j is the smallest number such that the j-th MIN follows
INSERT(m) (resp. the k-th MIN), and none of 1, 2, ..., is printed by the j-th MIN.

(b) TIME(i) -j by Algorithm 3 if and only if is printed by the j-th MIN.
Proof We show (a) and (b) simultaneously by induction on i. The basis,
0, is true by step of Algorithm 3. Part (b) of the induction holds, since if

X is in Sj when the ith iteration begins, it must be that the jth MIN follows IN-
SERT(i) but does not cause any integer smaller than to be printed. However, by
hypotheses, any MIN’s between INSERT(i) and the jth MIN do print out smaller
integers. Thus is the smallest integer available when the jth MIN is executed.

For part (a) of the induction, we need only observe that the set in which an
X,, or M belongs does not change at iteration unless it was in Sj. Then, since the
jth MIN prints i, Algorithm 3 correctly merges Sj with the set containing Mj, that
is the set of the next available MIN (or So if no further MIN’s are available).

THEOREM 3. A sequence of INSERT and MIN instructions on integers up to n
can be simulated off-line in O(nG(n)) time.

Proof We use Algorithm 3 to generate a sequence of MERGE and FIND
instructions. At most 2n MERGE’s are needed in step and at most 2n FIND’s
and n MERGE’s are needed in step 2, a total of at most 5n instructions. We can
thus, by the corollary to either Theorem or 2, simulate this sequence on-line in
O(nG(n)) steps. In doing so, we shall obtain the array TIME(i). The order in which
integers are printed by the MIN instructions can be obtained in a straightforward
manner from TIME in O(n) steps.

Acknowledgment. We are indebted to M. J. Fischer for bringing to our
attention an error in an earlier analysis of the second algorithm which attempted
to show that the time bound was linear.

REFERENCES

[1] B. A. GAIIER AND M. J. FISCHER, An improved equivalence algorithm, Comm. ACM, 7 (1964),
pp. 301-303.

[2] M. D. MCIIRO’, Private communication, Sept. 1971.
[3] R. E. Sa’EhRNS ND D. J. ROSENRNTZ, Table machine simulation, 10th SWAT, 1969, pp. 118-128.
[4] R. E. STE,RNS AND P. M. LEWIS, Property grammars and table machines, Information and Control

14 (1969), pp. 524-549.
[5] D. E. KNtVH, The Art ofComputer Programming, vol. III, Addison-Wesley, Reading, Mass., 1973.
[6] R. E. TaRJmq, On the efficiency of a good but not linear set union algorithm, Tech. Rep. 72-148,

Dept. of Comp. Sci., Cornell University, Ithaca, N.Y., 1972.
[7] D. E. KNUa’H, The Art ofComputer Programming, vol. II, Addison-Wesley, Reading, Mass., 1969.

See also L. Guibas and D. Plaisted, Some combinatorial research problems with a computer
science flavor, Combinatorial Seminar, Stanford Univ., Stanford, Calif., 1972.

[8] M. J. FISCHER, Efficiency of equivalence algorithms, Complexity of Computer Computations,
Miller et al., eds., Plenum Press, New York, 1972, pp. 153-167.

[9] M. Paterson, unpublished report, University of Warwick, Coventry, Great Britain.

D
ow

nl
oa

de
d

10
/0

8/
12

 to
 1

28
.1

78
.1

59
.1

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

