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The First Algorithm for Linear Programming: An Analysis of
Kantorovich’s Method

C. van de Panne and F. Raknamat

Abstract

An analysis is given of Kantorovich’s method of resolving multipliers. It is shown that the
method is equivalent to a parametric method but that it is also equivalent with the simplex
method with a special rule for the choice of the new basic variable.

1, Introduction

In 1939 L. V. Kantorovich published a paper ‘Mathematical Methods of Organizing and
Planning Production’ of which an English translation appeared in Management Science in
1960 (see reference 5). The problems considered in this paper were linear programming
problems of a somewhat special type, mainly because Kantorovich had some specific appli-
cations in mind. The methed which Kantorovich proposed for solving these problems and
which he called “The Method of Resolving Multipliers’ was not explicitly described, though
a number of examples of applications were given.

In a note which precedes the Management Science translation Koopmans makes the
following comments (see reference 9):

The computational procedure, as described in Appendices 1 and 2, invites further research. At first
sight it does not scem equivalent to Dantzig’s simplex method, altheugh it isin a broader category
with it in that it is also an iterative procedure in which trial vectors of quantities and of prices
are successively revised in the light of profitability criteria. It is desirable that the performance
characteristics of a completely specified procedure based on the author’s indications be studied in
relation to the classes of matrices considered in the paper.

In spite of the widespread recognition which Kantorovich’s work has enjoyed, his
method has not been analyzed in the light of the currently available theory and methods of
linear programming. It is the purpose of this paper to do this now. Qur attention will be
mainly focussed on the 1939 article.

2. Kantorovich’s Production Planning Problems

Kantorovich indicates three types of problems which are of increasing complexity and
which originate from production planning problems. In the following we shall use a
somewhat different notation from Kantorovich's.

Problem A deals with the aliocation of machines to products. Suppose there are m (poss-
ibly different) machines which can produce any of n products; if machine i is used for
product j, it can produce per time unit a;; units of product j. Let x;; be the number of time
units of machine i allocated to product j and let z; be the total number of units of product
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The First Algorithm for Linear Programming 77

produced. We then have the following equation for a feasible allocation of machines to
products per time unit:

ijz;aijxi.ia i=1...m, L
2xy; <1, i=1,...,m, )
i)

X;jZO, i:lo-‘)myj:]:":n- (3)

The objective function is more complicated than in the Western linear programming
Titerature. First, let us assume that the products are all parts of the same article, that is, each
finished article requires exactly one unit of each product. If z_ is the number of fnished
articles which should be maximized, we have z = min z; or

J

Zy 57 i=1..,n ()]

and the objective function is
Max f = 7, )

Obviously, the problem (1) - (5) is a linear programming problem, though one of a rather
special type. A rather trivial generalisation is obtained if the number of machines of type i is
not 1, but b, in which case the conditions (2} become

‘{‘:Xi} S bi’ 1 = }-9---1m- (6}
H
A further generalization is obtained if the number of parts of type j required for the article
is not 1, but a;; conditions (4) then become

4z, < 7, j=1,...,n N

It is well known that with each constraint of a linear programming problem is associated
a dual variable. Kantorovich calls these dual variables ‘resolving multipliers’ (see reference
5) and ‘objectively determined evaluations’ in a later work (see reference 7). The latter term
reflects the fact that they arise from the problem itsclf and not from prices or costs given
{rom the outside. Since the problem as stated above contains o cost or price-elements, this
term is appropriate in this situation. However, it is debatable whether many sitnations exist
in which there are no alternative uses for any of the production factors.

The problem (5), (7), (1), (6}, (3) can also be interpreted in a different way. Instead of
interpreting 2, as the quantity produced of an article of which the z; are the quantities of its
parts, we may assume that the products j = 1, .., n should be produced in fixed propor-
tions, a,, 2, ... a, and that z, indicates the overall fulfilment of the plan which should be
maximized,

This implics a preference function of the type indicated by the lines a, and a, in Figure 1,
in which the two products should always be produced in a ratio 2 to 1 and no substitution is
possible between the two products. If (5) and (7) are replaced by the objective function

f=2agz, ®)

the direction of the objective function is the same, but now substitution between products is
possible at the ratio 1 to 2 (see the lincs b, and b, in Figure 1). The traditional indifference
curves of elernentary economic theory can be considered as intermedizte cases (see curves ¢,
and c,). in market economics with free competition we would have an objective function of
the type given by (8).
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Figure 1,

Kantorovich (see reference 5) mentions an extension of problem A in which there are a
number of articles produced from parts, each article having a given value in terms of
money; the total value of production can then be maximized. This, of course, corresponds
with an objective function of the type (8), but Kantorovich does not use this form in the
remainder of his work.

Prohlem A is related to a problem called the generalized transportation problem or
weighted distribution problem (see Dantzig, reference 2). In this case, both inputs and
outpuls are prescribed:

Xx;: < b, i=1,..,m, (E)]

c i
]

> a i=L..n, : (10)

‘?%‘ Xy = 8

but costs should be minimized:
Minpimize
f—_v- ;:y:iv Cijxij. (]I)

Kantorovich (see reference 5) dealt with costs in what was probably prescribed manner in
the Soviet Union by imposing maximum guantities on each cost category, such as electri-
city, labour, water, etc. If ¢ is the available amount of a resource and ¢;; is the amount of
this resource used if product j is produced on machine i, then the following constraint
should be satisfied:

iEj Cix Xy £ € (12

Problem A with an additional constraint of the type (12) constitute what Kantorovich calls
problem B.

Kantoravich also formulates an extension of problem A, which he calls problem C. In
problem A, each machine can be used to produce a particular part or product. Instead of
this, it is assumed that each machine can be used for different methods of production which
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may have as outputs a number of products. In other terms, for each machine there are a
number of activities which have possibly a number of outputs. If a;, is the output of part or
product j when machine i is used in the 1-th method of production, equation (1) should be
replaced by

Z;, =X X, x 13
J i{aljglxlé&’ ( )
and (2) is replaced by
Eixi{gl, £=1,...1,
or
Zx;,<b;, £+=1,...L (14)
P

These constraints, combined with (3), (7)., and (12) together form an activity analysis
model of considerable generality. Compared with the usual activity analysis model with
given prices, the following differences stand out: (a) the treatment of the objective function
as indicated above; (b) the treatment of costs as indicated in problem B; (c) the fact that
there are only inputs and outputs and no intermediate goods.

3. A Parametric Method and the Simplex Method

In what follows we shall show that Kantorovich’s method is essentially equivalent to the
simplex method. This will be done using his example of calculations for a numerically speci-
fied case of Problem A. First it will be shown that the problem can be solved by means of a
parametric method. This method is then shown to be equivalent to the simplex method.
After that, the parametric method is shown to be equivalent to another parametric method.
In the next section, this second parametric method and Kantorovich’s method are shown to
be equivalent.

The following formulation of Problem A will be used: Maximize

f=1z

0

subject to

813Xy +8y,%,, + .0+ a,X, = a7,
A12X1n + ppX5 + o0+ AppXy 2 452,

. .
alnxln + alnxln + ..+ a’mnxmn = anzo’
X3y F Xy + .+ X, < by,
Kyp + X5 + .. + Xy, < by,

xmi‘lﬁ“‘(mz_i_""f'xmngbmﬁ
X115 -5 Xpn = 0.

v mn =—
In terms of vectors and matrices, the problem may be written as: Maximize
=1z, (15)

subject to

—Ax + az, <0, (16)
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Bx < b, (17)
x>0, (18)
where
-af by
2, b,
a= N » bw 1
a, b,
Ca, O 0 a,, 0 0 a, 0 0
A= B dlz 9 0 azz 0 ﬂ amz ﬁ N
0 0 2, 0 0 Gy .. D 0 a_
11.100.0..00. 0
B= | 66 t1.1..00.0
00.000.0. . 1 1.1

Consider now replacing the objective function {15y by
f=2Ax + (u — a'l) z, {19)

where A is a given nonnegative vector and 4 is a variable parameter. It is obvious that for
u — o the solutions to bath problems are the same; furthermore, for A = 0, the problems
are identical apart from the scalar factor 4.

Let us now consider Kantorovich’s example for Problem A in which the machincs are
three different excavators which can maove earth of three different types. The productivity of
each excavator for each type of soil is given by the following array:

Ay, 845 a5, o 105 56 356
Q1 8y, a5 = 107 66 83
d3; A3, Aag = 64 38 53

There is one excavator of each type and the three soil types should be moved in the same
proportions. This implies

i 1
a= i 5 b= i
i i

The vatues of the elements of Z, in Kantorovich's terms, the initial values of the resolving
multipliers, are

iy =3.62, 1, = 6.25, 1, = 5208.

The x-variables will be indicated as x;; which represents the number of hours of machine i
allocated to product j. The objective function is to maximize z_ which is in this case the frac-
tion of the work to be done in one hour, the work consisting of equal amounts of the three
different soil types.
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1f the objective function {19) is used, Tableau {) of Table 1 is the set-up tablean for the
problem. The basic solution of this tableau is nonoptimal, but if x|, X,4, and X5, arc made
basic as indicated, an optimal solution results for g = 0 (see Tableau 1). This solution is
optimal for u < 15078, By using standard parametric programming for a paramctric
objective function, z, is made basic and z, leaves the basis, resulting in Tableau 2, which is
optimal for 13. 078 < p < 15.381. Note that the rows of f, and z, are identical. x,, then
enters the basis and z, leaves the basis, resulting in Tabieau 3 which is optimal for
15381 < u < 15.824. Now x,, enters the basis, z, leaves the basis and Tableau 4 results.
The basic solntion of this tableau is optimal for g > 15,824, so that it must give the optimal
solution to the original problem with{ = z_,

If 4y, 45, and i, had been zcro, the entire f, -row becomes zero in Tableau 0. For the
parametric method the same choice of pivots could have been made, though any variable
with a pegative element in the f, -row could have been made basic.

Alternatively, we could have interpreted the sequence of pivot choices as an application
of the simplex method, with the [, #,- row as objective function row. In the simplex method
any variable with a pogative element in the objective function row can be made basic, In the
parainetric method the selection of the new basic variable also depended on negative ele-
ments in the f,-row, but the clements in the { -row which are dependent on the A's made the
choice among the non-basic variables with a negative element in the [, -row determinate.
Hence, the parametric method can be interpreted as equivalent to the simplex method with
a special choice of the new basic variable.

To show the equivalence between Kantorovich's method and the parametric method, it is
useful to consider the parametric problem in a somewhat different form. Instead of the
problem: Maximize

f=1Ax + (u — a'bie,
subject to
—Ax +az, <0,

Bx < b,
x>0

for 0 < p < oo, we may consider the problem: Minimize

f=1Ax — Taz,
sabject to

—Ax € —az,

Bx<«h,

x>0,

where z, is the variable parameter, which is varied from 0 to wo.

Both problems are said to be parametrically equivalent, which means that a variation
of g in the first problem and a variation of z, in the second problem lead to the same
sequence of solutions for critical values of both parameters. For details about parametric
equivalence, see van de Panne (reference 10).

Table 2 gives the tablean for a parametric variation of z, in the second problem. Tableau
0 gives the set-up problemy the initial solution is generated in Table 1, which gives an
optimal solution for z_ == 0. Then %, is varied upwardﬂ After two steps it is found that Z,
cannot be increased any further, so that the maximum value which z, can take is
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307.77/4.366 = 70.3, The complete solution can sasily be found by pivoting or the clement
4.366; this solution is given in Tableau 4.

To facilitate comparison with Kantorovich's method, the corresponding dual problem
and its solutions are given in Table 3. The dual variables of the constraints referring to the
products are indicated as 4,, 4,, and A; these have been given initial values 4,, 4,, and A,.
The nonbasic variables in this dual problem are deviations from these initial values and are
therefore indicated by A%, A%, and 1%; as soon as they become basic, their full value is used
and the stars are deleted.

4. Kantorovich’s Method and the Parameiric Method

First, a short description of Kantorovich’s method is given. The starting point is the
generation of an initial feasible and optimal solution for the given initial values of soil
moved, which are 4, = 3.62, 4, = 6.25, 4, = 5.208. The value of one hour of the first
excavator used for the three types of soil is then

380.43, 350, 219.67,
and for the second and third excavator

387.68, 412.5,432.29,
231.88, 237.5, 276.04.

The excavators are then allocated to the type of soil which gives the maximum value, so
that the first excavator is allocated to soil 1 and the other two to soil 3, This results in the
following amounts of soils 1, 2, and 3 produced:

105, 0, 136.

Since we want to maximize z, = Min. z%, where z% is the amount of soil j produced, we
want to increase z% and in order to do this optimally, we increase the value of soil 2, indi-
cated by 4,, upwards from 4, = 6.25 until the value of the production of soil 2 by one of the
machines becomes equal to the value of its present production so that it can be switched
from its present use to soil 2. The best use of machine 1 is at present soil 1 where it yields
380.43. The value of A, for which it is profitable .to use machine 1 for soil 2 is
380.43/56 = 6.79 and the corresponding values for machines 2 and 3 are 432.29/66 = 6.55
and 276.04/38 = 7.26. Hence A, is increased to 6.55; at this point machine 2 can be used
both for soil 2 and 3. The use of machine 2 for soil 2, and together with this z, = min 2%, can
be increased until (1) the machine 2 is entirely used for soil 2 and not for soil 3 at all; (2) the
production of soil 2 has become equal to that of soil 1 (z¥ = z¥), (3) the production of soil
2 has become equal to that of soil 3 (z% = z%), In this case (3) happens first. Hence a new
solution is obtained rom the equations

X =1,

Xop + Koy = 1,

X33 = l,

Xg = 66X22,

7% = 83 x,, + 53 x,,;.

20)

The solution of this system of equations is

Xy = 1, %, = 93, %, = 087, x5, =1,
2% = 105,2, = 23 = 7% = 60.26.
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TAaBLE 3. Solution of Dual Problem
Tableau B.V. V.B.V. vy 23 A3 u, Uy u,
g -1 -1 -1
20 —15.078 1 1 1
v, —380.43 105 -1
vy, —350 56 —1
0 vz —291.67 56 —1
vy —387.68 107 -1
vy, —412.5 66 -1
vy, —432.29 &3 -1
vy —231.88 64 —1
vy, —2375 38 1
Vi —276.04 53 -1
23 A3 i3 Y11 Va3
g, 1088.76 —105 —136 -1 -1
LA - 15.078 1 1 1
uy 380.43 —105 -1
Vis 30.43 — 105 56 —1
Vi3 88.76 —105 56 -1
1 Vi 44.61 107 —83 -1
Via 19.79 66 —83 —1
u, 432.29 —83 -1
Vi, 44,16 64 —53
Vi 38.54 38 —53
Ug 276.04 —33
A3 Va2 A4 Vi1 Vaz
2. 1088.76 —105 —136 -1 -1
-9 —15.378 1 —0.01515 2.2576 0.01515
u,; 380.43 —105 -1
Vi 13.638 —105 —0.848 70424 —1 0.848
Vi 88.76 —105 56 -1
2 vy, 44,76 107 —83 -1
A, 6.55 0.01515 —1.2576 —0.01515
Uy 43229 —83 -1
Vay 44.16 64 —53 -1
Vi, 27.146 —576 —5.212 0.576 -1
Ug 276,04 —53 -1
A4 Va2 Viz Vi1 Va2
2. 1115.098 —307.77 —1.6386 1.9312 —=293115 6.3855
E. —15.815 4.366 0.01205 —0.03206 0.03206 —1.2048
1y 380.43 —105 -1
As 5.402 —1.491 -0.01205 0.0142 —=0.0142 0.01205
Vis 77.915 —21.506 0.6747 —0.79518 —0.2048 —6.7470
3 Vi 60.684 —16.75 —1 1.1786 —1.1786
Ay 6.793 —1.875 0.01786 —0.01786¢ —35.5511

u, 448.36 —123.75 -1 1.1786 —1.1786



88 C. van de Panne and F. Rahnama

TanLE 3. Continued.

Tableau B.V. V.B.V. A% A% A% u, u, u,
Vag 54.424 —15.022 —0.63855 0.75258 —0.75258  6.3855 —1
Vi 28.155 =7.771 —0.63855 0.0741 —0.07401  6.3855 —1
u, 286.304 —79.021 —6.3855 0.75258 —0.75258  6.3855 -1
Va3 Viz iy Vaa V33
g 70.493 —0.7892 —0.32860 —0.6714 —0.2108 -1
Ay 0.229
i, 24,05
As 0.3415
Vis 4.9258
4 vy 3.8365
A, 0.429
U, 28.344
Viy 3.4405
Via 1.7799
u, 18.099

At this point z, can be increased by increasing both z% and z%, which is done by increasing
both A, and 4,, but 4, is linked.to 4, via machine 2. A, should be increased until it becomes
profitable to allocate another machine, in this case machine 1, to soil 2 or 3. (For reasons of
computional convenience Kantorovich chose to decrease 4, instead.)

We then solve for A, as follows: if machine | is to be used for soil 2, we have:

561, = 380.43,
667y = 831,

which implies A, = 3.4; if machine 1 is to be used for soil 3, we have:
564, = 380.43

or Ay = 6.79. Other allocations are irrelevant, so that we take A; = 5.4, at which point x,,
can become positive.

The value of x, , is determined by the equations of (20), except that the first equation is
now

X, +x,=1

Since there is an additional variable, there should be an additional equation. This equation
can be z¥ = z% = z, which leads to

z,=70.5,%,, = 6715,%,, = 3285, %,, = .789,X,, = 211, %, = L.

Other possibilities are x,, = 0 and x;, = 0 which both lead 1o lower z, values or infeasible
solutions.

This new solution must be optimal because it gives for the resolving multipliers
A, =362, 4, = 6.72, 1, = 5.4, an allocation in which each machine is allocated to its best
use.
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To point out the equivalence of this method with the parametric method applied in
Tables 2 and 3, let us first consider the dual problem, which is:
Minimize

f=u1 +u2’+‘U3_Zn(I‘tl +12+}v3)
subject to

1054; —u, + vy
564, — u; + ¥y,
564, —uy -+ vy,

1074, — 1y + vy
66/, — uy + vy,
834y — Uy 4+ vy,
642, —uy + vy,
38;.,2 - 1]3 "'+" VSZ = 0,

5375 — 03 + Va3 = 0.
’]'1’ ’3“25 ’:-39 Uy, Uy, U3, Vygs - -5 Vi 2 0.

[

[

"

1

[ | I [ T
ooooe e

The u-variables stand for the dual variables or shadow prices of the machines, which
Kantoravich does not explicitly introduce, and the v-variables for minus the profitability of
using machine i for soil j; these profitabilities should be nonpositive for optimal solutions.
In Kantorovich’s method, the v-variables, if nonzero, are implied by the difference of the
maximum valne which a machine can produce and the value in a particular allocation:

237.5 + 38&3 "i" V32 = us,
276.04 + 534% + v,5 = u,.

These equations correspond with the rows of Tableau 0 in Table 3.

If A% = A% = 1% =0, u, = 38043, vy, = 0, then v, and v,; will be nonnegative. This
corresponds with pivoting in the element --1 in the row of v,, and the column of u,. The
other two pivots are explained in the same way. Hence, taking the allocation of the
machines with the maximum value results in a feasible solution to the dual problem and
therefore an optimal solution to the primal problem. From Tableau 0 of Table 2 it is
obvious that this solution will also be feasible for the primal problem.

Tablean 1 of Table 2 then indicates that an increase in z, from { is stopped at z, = 0
because otherwise the slack variable z, becomes negative. This is equivalent with min
z, = X, = z% = 73. In order to increase 7,, 2% should be increased, and to do this optimally,
we should increase A,. In Tableau 1 of Table 3 such an increase in A% is considered and it is
found that for 1% = 19.79/66 = .30, v,, becomes 0, which is equivalent to £, = 6.55. If
V4, = 0, X,, can be increased, which is what happens in the primal problem, Tableau 1 of
Table 2. After transformation with —66 as a pivot, Tableau 2 of Table 2 is found.

Now z, can be increased from 0; its maximum happens to be 60.26 at which point z,
becomes 0, which means that z, = z% = z¥%; the possibilities connected with z; = 0 and
x;, =0 are also considered but they involve negative values for z5,

Kantorovich then considers an increase in 1, to increase z, = z3}. In the tableaux the
same thing happens by selecting a pivot in the row of z; in Tableau 2 of Table 2 or in the
column of A% in Tableau 2 of Table 3. We shall not go into further details.

The final values of the resolving multipliers are only relative values. The proper values
should sum to 1 because of the equation in dual problem:

A+d+i=1
Hence the values are 4, = .229, 4, = 429, 1, == 342,
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5. Concluding Remarks

Kantorovich gives three more examples of application of his method of resolving
multipliers, one for a larger problem of type A and one ¢ach for problems of the type B and
C (see reference 5). None of these examples follows the described method exactly. There
may be two reasons for this, the first one being that Kantorovich attempted to use compu-
tational shortcuts and the second that at that time Kantorovich did nat find it useful to
adjust both primal and dual variables as systematically as can be done. The result is that for
these examples his method appears to be a trial-and-error procedure; this may be one of the
reasons why so little has been written about the method.

In his book The Best Use of Economic Rescurces which was published in Russia in 1959,
Kantorovich restates his method, which he then called ‘the method of adjusting muliipliers
(valuations)’. In this restatement the computation of the multipliers or dual variables and
of the primal variables is given in a form which is closer to the first equivalent parametric
formulation given above, as implemented in Table 1. The form in which the method is
stated is similar to that in which the primal-dual method of Dantzig, Ford and Fulkerson
(sce reference 3) is stated; Kantorovich indicates: ‘In very recent years a similar method has
begun to be used in other countries’.

In this respect it can be noted that the primal-dual methed can also be formulated as a
parametric method.! However, the situations in which both methods are used are different.
Whereas the primal-dual method starts with an infeasible but optimal solution, the method
of resolving multipliers starts with a feasible solution but an incorrect objective function,
which is gradually changed into the ¢correct one.

The most striking difference between Kantorovich’s method and modern linear program-
ming methods is that Kantorovich always returns to the original primal and dual equation
systems, while the modern methods work with transformed forms of only one of these
systems. In principle, Kantorovich has to solve an equation system for each possible new
basic variable and for ¢ach possible leaving basic variable, but knowledge of the structure
of the equation systemns facilitates this to a large extent. This may be one of the reasons why
Kantorovich deals with linear programming problems of a given structure.

Same early methods for quadratic programming, for instance Houthakker’s capacity
methaod (reference 4) and Theil and van de Panne’s combinatorial method (reference 12) at
each step start from the original equation system and are rather inefficient for that reason.
[t is not surprising that for linear programming a method with the same characteristics has
been proposed. The efficiency of Dautzig’s simplex method compared with Kantorovich’s
method is ohvious.

On the other hand, the pathbreaking nature of Kantorovich’s work in 1939 is beyond
dispute and not until one or two decades later did western literature begin to display
insights in linear programming models equal to those given by Kantorovich’s paper.
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