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The First Algorithm for Linear Programming: An Analysis of 
Kantorovich's Method 

C. van de Panne and F. Rahnamat 

Abstract 

An analysis is given of Kantorovich's method of resolving multipliers. It is shown that the 
method is equivalent to a parametric method but that it is also equivalent with the simplex 
method with a special rule for the choice of the new basic variable. 

1. Introduction 

In 1939 L. V. Kantorovich published a paper 'Mathematical Methods of Organizing and 
Planning Production' of which an English translation appeared in Management Science in 
1960 (see reference 5). The problems considered in this paper were linear programming 
problems of a somewhat special type, mainly because Kantorovich had some specific appli- 
cations in mind. The method which Kantorovich proposed for solving these problems and 
which he called 'The Method of  Resolving Multipliers' was not explicitly described, though 
a number of examples of applications were given. 

In a note which precedes the Management Science translation Koopmans makes the 
following comments (see reference 9): 

The computational procedure, as described in Appendices 1 and 2, invites further research. At first 
sight it does not seem equivalent to Dantzig's simplex method, although it is in a broader category 
with it in that it is also an iterative procedure in which trial vectors of quantities and of prices 
are successively revised in the light of profitability criteria. It is desirable that the performance 
characteristics of a completely specified procedure based on the author's indications be studied in 
relation to the classes of matrices considered in the paper. 

In spite of the widespread recognition which Kantorovich's work has enjoyed, his 
method has not been analyzed in the light of the currently available theory and methods of 
linear programming. It is the purpose of this paper to do this now. Our attention will be 
mainly focussed on the 1939 article. 

2. Kantorovich's Production Planning Problems 

Kantorovich indicates three types of problems which are of increasing complexity and 
which originate from production planning problems, In the following we shall use a 
somewhat different notation from Kantorovich's. 

Problem A deals with the allocation of machines to products. Suppose there are m (poss- 
ibly differen 0 machines which can produce any of n products; if machine i is used for 
product j, it can produce per time unit aij units of  product j. Let x~ be the number of time 
units of machine i allocated to product j and let z~ be the total number of units of product j 
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produced. We then have the following equation for a feasible allocation of machines to 
products per time unit: 

zj = ~ % x~j, j = 1 . . . . .  n, (1) 

�9 ~ ,  Xij <~ 1, i =  1 . . . .  , m, (2) 
JI 

xlj > 0, i = 1, . . , m , j  = 1, . . , n .  (3) 

The objective function is more complicated than in the Western linear programming 
literature. First, let us assume that the products are all parts of  the same article, that is, each 
finished article requires exactly one unit of  each product. If  z n is the number of  finished 
articles which should be maximized, we have z = min zj or 

J 

z o < zj j = 1, . . ,  n, (4) 

and the objective function is 

Max f = zo (5) 

Obviously, the problem (1) - (5) is a linear programming problem, though one of  a rather 
special type. A rather trivial generalisation is obtained if the number of  machines of  type i is 
not 1, but b i, in which case the conditions (2) become 

Z xi~ -< bi, i = 1 . . . .  , m. (6) 
i 

A further generalization is obtained if the number of  parts of  type j required for the article 
is not I, but aj; conditions (4) then become 

ajz o _<zj, j = 1, ..., n. (7) 

It is well known that with each constraint of  a linear programming problem is associated 
a dual variable. Kantorovich calls these dual variables 'resolving multipliers' (see reference 
5) and 'objectively determined evaluations' in a later work (see reference 7). The latter term 
reflects the fact that they arise from the problem itself and not from prices or costs given 
from the outside. Since the problem as stated above contains no cost or price-elements, this 
term is appropriate in this situation. However, it is debatable whether many situations exist 
in which there are no alternative uses for any of  the production factors. 

The problem (5), (7), (1), (6), (3) can also be interpreted in a different way. Instead of  
interpreting Zo as the quantity produced of  an article of  which the zj are the quantities of its 
parts, we may assume that the products j = 1 . . . .  n should be produced in fixed propor- 
tions, al, a2, . . ,  an and that z o indicates the overall fulfilment of  the plan which should be 
maximized. 

This implies a preference function of  the type indicated by the lines al and a2 in Figure 1, 
in which the two products should always be produced in a ratio 2 to 1 and no substitution is 
possible between the two products. I f  (5) and (7) are replaced by the objective function 

f = 22 ajzj, (8) 
i 

the direction of  the objective function is the same, but now substitution between products is 
possible at the ratio 1 to 2 (see the lines b 1 and b 2 in Figure 1). The traditional indifference 
curves of  elementary economic theory can be considered as intermediate cases (see curves c 1 
and %). In market economics with free competition we would have an objective function of  
the type given by (8). 
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Kantorovich (see reference 5) mentions an extension of problem A in which there are a 
number of articles produced from parts, each article having a given value in terms of 
money; the total value of production can then be maximized. This, of  course, corresponds 
with an objective function of the type (8), but Kantorovich does not use this form in the 
remainder of his work. 

Problem A is related to a problem called the generalized transportation problem or 
weighted distribution problem (see Dantzig, reference 2). In this case, both inputs and 
outputs are prescribed: 

2;. x u < bi, i = 1 . . . . .  m, (9) 
J 

22aij xij >_ aj j = 1 . . . . .  n, (10) i 
but costs should be minimized: 

Minimize 

f =  Z' ctjxij. (11) 
i,j 

Kantorovich (see reference 5) dealt with costs in what was probably prescribed manner in 
the Soviet Union by imposing maximum quantities on each cost category, such as electri- 
city, labour, water, etc. If  c is the available amount of a resource and cjj is the amount of 
this resource used if product j is produced on machine i, then the following constraint 
should be satisfied: 

27 cij ~ xij _< c. (12) 
i,j 

Problem A with an additional constraint of the type (12) constitute what Kantorovich calls 
problem B. 

Kantorovich also formulates an extension of  problem A, which he calls problem C. In 
problem A, each machine can be used to produce a particular part or product. Instead of 
this, it is assumed that each machine can be used for different methods of production which 
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may have as outputs a number of products�9 In other terms, for each machine there are a 
number of activities which have possibly a number of outputs. If  aij e is the output of part or 
product j when machine i is used in the 1-th method of production, equation (1) should be 
replaced by 

zj = S i ~ aijfxiy, (13) 

and (2) is replaced by 

I x i E <  1, f = 1 . . . .  L, 

o r  

27Xi ~<-bi, f = 1 , . . .  L. (14) 
F 

These constraints, combined with (5), (7), and (12) together form an activity analysis 
model of considerable generality. Compared with the usual activity analysis model with 
given prices, the following differences stand out: (a) the treatment of the objective function 
as indicated above; (b) the treatment of costs as indicated in problem B; (c) the fact that 
there are only inputs and outputs and no intermediate goods. 

3. A Parametric Method and the Simplex Method 
In what follows we shall show that Kantorovich's method is essentially equivalent to the 
simplex method�9 This will be done using his example of calculations for a numerically speci- 
fied case of Problem A. First it will be shown that the problem can be solved by means of a 
parametric method�9 This method is then shown to be equivalent to the simplex method. 
After that, the parametric method is shown to be equivalent to another parametric method. 
In the next section, this second parametric method and Kantorovich's method are shown to 
be equivalent. 

The following formulation of Problem A will be used: Maximize 

f ~  Z o 

subject to 

a11xll q- a21x21 q- . .  q- amlXml ~ alz o, 
a12x12 q- a22x22 + ..  -~- am2Xm2 ~ a2z o, 

alnXln q- a2.X2n -1- . .  q- amnXmn ~> anZ o, 
Xll + x12 + .. + Xln < b~, 
X21 + X22 -[- . .  -~- X2n - -  b 2, 

Xml + Xm2 + �9  -~- Xmn ---~ bin, 
X l l  , . . ,Xmn  ~ O. 

In terms of vectors and matrices, the problem may be written as: Maximize 

f ~ -  Z o (15) 

subject to 

- A x  + az o < 0, (16) 



8 0  

B x <  b, 

C .  v a n  d e  P a n n e  a n d  F .  R a h n a m a  

(17) 

x > 0 ,  (18) 

where 

a --~ 

A = 

B = 

a;] a21 i n 

at l  0 
0 at2 . 

0 0 

bl] 
b2 

b= i ' 

0 azl 0 0 . .  a~a 0 
0 0 a22.  0 . .  0 

a~n 0 0 a2~ . .  0 

1 1 . 1 0 0 . 0 . . 0 0 . 0 ]  

0 0 . . 1 1 . 1 . . 0 0 . 0 1 .  

o i l  b 0 ; i  bl i i i l  iJ 
Consider now replacing the objective function (15) by 

f = 2'Ax + (/2 - a'2) Zo, (19) 

0 
a~z.  0 , 

0 amn 

where 2 is a given nonnegafive vector and/z is a variable parameter. It is obvious that for 
# ~ ~ the solutions to both problems are the same; furthermore, for ~ = 0, the problems 
are identical apart from the scalar factor/~. 

Let us now consider Kantorovich's example for Problem A in which the machines are 
three different excavators which can move earth of three different types. The productivity of 
each excavator for each type of soil is given by the following array: 

a l l  a12 a13] = [105 56 56] 
a2t a22 a23[ = [107 66 83 . 
a31 a32 a33J = L 64 38 53 

There is one excavator of  each type and the three soil types should be moved in the same 
proportions. This implies 

[i] a ~-- ~ b ~ , 

1 

The values of  the elements of2, in Kantorovich's terms, the initial values of  the resolving 
multipliers, are 

21 = 3.62, ~2 = 6.25, 23 = 5.208. 

The x-variables will be indicated as xlj which represents the number of hours of  machine i 
allocated to product j. The objective function is to maximize Zo which is in this case the frac- 
tion of the work to be done in one hour, the work consisting of equal amounts of the three 
different soil types. 
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If  the objective function (19) is used, Tableau 0 of Table 1 is the set-up tableau for the 
problem. The basic solution of this tableau is nonoptimal, but ifx 1 t, x23, and x33 are made 
basic as indicated, an optimal solution results for/z = 0 (see Tableau 1). This solution is 
optimal for/~ _< 15.078. By using standard parametric programming for a parametric 
objective function, zo is made basic and z 2 leaves the basis, resulting in Tableau 2, which is 
optimal for 15.078 < tz <- 15.381. Note that the rows of f~,and Zo are identical, x22 then 
enters the basis and z 3 leaves the basis, resulting in Tableau 3, which is optimal for 
15.381 < r ___ 15.824. Now x12 enters the basis, z 1 leaves the basis and Tableau 4 results. 
The basic solution of this tableau is optimal for/z > 15.824, so that it must give the optimal 
solution to the original problem with f = Zo. 

If 21, 22, and 23 had been zero, the entire fr -row becomes zero in Tableau 0. For the 
parametric method the same choice of pivots could have been made, though any variable 
with a negative element in the f~-row could have been made basic. 

Alternatively, we could have interpreted the sequence of pivot choices as an application 
of the simplex method, with the fu, z;- row as objective function row. In the simplex method 
any variable with a negative element in the objective function row can be made basic. In the 
parametric method the selection of the new basic variable also depended on negative ele- 
ments in the f~-row, but the elements in the fr which are dependent on the L's made the 
choice among the non-basic variables with a negative element in the f~-row detertfiinate. 
Hence, the parametric method can be interpreted as equivalent to the simplex method with 
a special choice of the new basic variable. 

To show the equivalence between Kantorovich's method and the parametric method, it is 
useful to consider the parametric problem in a somewhat different form. Instead of the 
problem: Maximize 

f = 2Ax + (/t - a'2)z. 

subject to 

- A x  + az o < 0, 
Bx_<b, 
x>_0 

for 0 _</~ _< o% we may consider the problem: Minimize 

f = 2'Ax - 2'aZo 

subject to 

- -  A x  N - -  a z o ,  

Bx_<b, 
x _ 0 ,  

where Zo is the variable parameter, which is varied from 0 to oo. 
Both problems are said to be parametrically equivalent, which means that a variation 

of / t  in the first problem and a variation of Zo in the second problem lead to the same 
sequence of solutions for critical values of both parameters. For details about parametric 
equivalence, see van de Panne (reference 10). 

Table 2 gives the tableau for a parametric variation Of Zo in the second problem. Tableau 
0 gives the set-up problem; the initial solution is generated in Table t, which gives an 
optimal solution for z o = 0. Then Zo is varied upwards. After two steps it is found that Zo 
cannot be increased any further, so that the maximum value which zo can take is 
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307.77/4.366 = 70.5. The complete solution can easily be found by pivoting on the element 
4.366; this solution is given in Tableau 4. 

To facilitate comparison with Kantorovich's method, the corresponding dual problem 
and its solutions are given in Table 3. The dual variables of the constraints referring to the 
products are indicated as 21 , 22, and 23; these have been given initial values 21, 22 , and 23 . 
The nonbasic variables in this dual problem are deviations from these initial values and are 
therefore indicated by 2", 2", and 2~; as soon as they become basic, their full value is used 
and the stars are deleted. 

4. Kantorovieh's Method and the Parametric Method 

First, a short description of Kantorovich's method is given. The starting point is the 
generation of an initial feasible and optimal solution for the given initial values of soil 
moved, which are ~1 = 3.62, 22 = 6.25, 23 = 5.208. The value of one hour of  the first 
excavator used for the three types of soil is then 

380.43, 350, 219.67, 

and for the second and third excavator 

387.68,412.5, 432.29, 
231.88,237.5,276.04. 

The excavators are then allocated to the type of soil which gives the maximum value, so 
that the first excavator is allocated to soil 1 and the other two to soil 3. This results in the 
following amounts of soils 1, 2, and 3 produced: 

105, 0, 136. 

Since we want to maximize Zo = Min. z*, where z* is the amount of soil j produced, we 
want to increase z* and in_order to do this optimally, we increase the value of  soil 2, indi- 
cated by 22, upwards from 22 = 6.25 until the value of the production of soil 2 by one of the 
machines becomes equal to the value of its present production so that it can be switched 
from its present use to soil 2. The best use of machine 1 is at present soil 1 where it yields 
380.43. The value of 22 for which it is profitable ,to use machine 1 for soil 2 is 
380.43/56 = 6.79 and the corresponding values for machines 2 and 3 are 432.29/66 = 6.55 
and 276.04/38 = 7.26. Hence 22 is increased to 6.55; at this point machine 2 can be used 
both for soil 2 and 3. The use of machine 2 for soil 2, and together with this Zo -- min z*, can 
be increased until (1) the machine 2 is entirely used for soil 2 and not for soil 3 at all; (2) the 
production of soil 2 has become equal to that of soil 1 (z* = z~), (3) the production of soil 
2 has become equal to that of soil 3 (z* = z*). In this case (3) happens first. Hence a new 
solution is obtained from the equations 

X l l  = 1, 
X22 "~ X23 = 1, 
X33 ~ 1~ 
z* = 105 x11, 
x* = 66 x22, 
z~ = 83 x23 + 53 x33. 

(20) 

The solution of this system of equations is 

xl1 = 1, x22 = .913, x23 = .087, x33 = 1, 
z~ = 105, zo = z~ = z* = 60.26. 
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Tableau  B . V . V . B . V .  27 2~ 2~ u 1 u 2 u 3 

gc - 1  - 1  - 1  
gzo - 15.078 1 1 1 
v l l  - 3 8 0 . 4 3  105 - 1  
v12 - 3 5 0  56 - 1 

0 v13 - 2 9 1 . 6 7  56 - 1 
v21 - 3 8 7 . 6 8  107 - 1 
v22 - 4 1 2 . 5  66 - 1 
v23 - 4 3 2 . 2 9  83 --1  
v31 - 2 3 1 . 8 8  64 - 1 
v31 - 2 3 7 . 5  38 - 1 
V33 --276.04 53 --1  

27 2~ 2~ Vll V23 V33 

- 1 3 6  - -  1 - 1 - 1 

1 

gc 1088.76 
gzo - 15.078 
u I 380.43 
v12 30.43 
v13 88.76 
v21 44.61 
v22 19.79 
u z 432.29 
v31 44.16 
v32 38.54 
u 3 276.04 

- 1 0 5  

1 1 

- 1 0 5  - 1 

- 1 0 5  5 6  - 1 

- 1 0 5  56 - 1 

107 - 8 3  
66 -~83 

- 8 3  
64 - 5 3  

38 - 5 3  
- 5 3  

- 1  
- 1  
- 1  

- 1  
--1 
--1 

27 v~2 2~ vll v~3 v~3 

gc 1088.76 
gzo - 15.378 
u 1 380.43 
v12 13.638 
v13 88.76 
v21 44.76 
22 6.55 
u z 432.29 
v31 44.16 
v32 27.146 
u 3 276.04 

- 1 0 5  - -  1 3 6  - 1 - 1 - -  1 

1 - 0 . 0 1 5 1 5  2.2576 0.01515 
- 1 0 5  - 1 

- 105 - 0 . 8 4 8  70.424 - 1  0.848 
- 105 56 - 1 

107 - 8 3  - 1  
0.01515 - 1.2576 - 0 . 0 1 5 1 5  

- 8 3  - 1  
64 - 5 3  - 1 

- 5 7 6  --5.212 0.576 - 1 
- 5 3  - 1 

27 V22 V12 Vll V22 V33 

- 3 0 7 . 7 7  . 1 . 6 3 8 6  1.9312 - 2 . 9 3 1 1 5  6.3855 - 1 
4.366 0.01205 - 0 . 0 3 2 0 6  0.03206 - 1.2048 

- 1 0 5  - 1 

- 1.491 - 0 . 0 1 2 0 5  0.0142 - 0 . 0 1 4 2  0.01205 
- 2 1 . 5 0 6  0.6747 - 0 . 7 9 5 1 8  - 0 . 2 0 4 8  - 6 . 7 4 7 0  
- 16.75 - 1  1.1786 - 1 . 1 7 8 6  

- 1 . 8 7 5  0.01786 - 0 . 0 1 7 8 6  - 5 . 5 5 1 1  
--123.75 - 1  1.1786 - 1 . 1 7 8 6  

gc 1115.098 
gzo --15.815 
u 1 380.43 
23 5.402 
v13 77.915 
vzl 60.684 
22 6.793 
u 2 448.36 
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TABLE 3. Continued. 

Tableau B.V.V.B.V. ~ L~ ~ ul u 2 u 3 

v31 54.424 --15.022 -0.63855 0.75258 -0.75258 6.3855 --1 
v32 28.155 -7.771 -0.63855 0.0741 -0.07401 6.3855 - 1 
u 2 286.304 -79.021 --6.3855 0.75258 -0.75258 6.3855 - 1 

v22 v~2 vll  v23 va3 

g 70.493 -0.7892 -0.3286 --0.6714 -0.2108 - 1  
21 0.229 
u 1 24.05 
23 0.3415 
v13 4.9258 

4 v21 3.8365 
22 0.429 
U 2 28.344 
V31 3.4405 
V32 1.7799 
U 3 18.099 

At  this point  Zo can be increased by increasing both  z* and z*, Which is done  by increasing 
both  22 and 23, but 22 is linked.to 23 via machine 2.23 should be increased until it becomes 
profitable to allocate another  machine, in this case machine 1, to soil 2 or  3. (For  reasons o f  
comput ional  convenience Kan torov ich  chose to decrease 21 instead.) 

We then solve for  23 as follows: if machine 1 is to be used for soil 2, we have: 

5622 = 380.43, 
6622 = 8323, 

which implies 23 = 5.4; if machine 1 is to be used for soil 3, we have: 

5623 = 380.43 

or  ~-3 = 6.79. Other  allocations are irrelevant, so that  we take ~,3 = 5.4, at which point  x12 
can become positive. 

The value o f  x12 is determined by the equat ions o f  (20), except that  the first equat ion is 
n o w  

xl l  q-x12 = 1. 

Since there is an addit ional variable, there should be an addit ional equation.  This equat ion 
can be z~ = z* = z o, which leads to 

Zo = 70.5, xl l  = .6715, x12 = .3285, x22 = .789, x23 = .211, x3a = 1. 

Other  possibilities are x 11 = 0 and x22 = 0 which both  lead to lower z o values or  infeasible 
solutions. 

This new solution must  be optimal because it gives for the resolving multipliers 
21 = 3.62, 22 = 6.72, 23 = 5.4, an allocation in which each machine is allocated to its best 
u s e .  
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To point out the equivalence of  this method with the parametric method applied in 
Tables 2 and 3, let us first consider the dual problem, which is: 
Minimize 

f = u  1 + u  2 + u  3 - z o ( 2 1 + 2 2 + 2 3 )  

subject to 

10521 - ul + v l l  = 0, 
5622 - ul + v12 = 0, 
5623 - u l + v 1 3  = 0, 

1 0 7 2 1 - u  1 +v21  = 0 ,  
6622 - u2 + v22 = 0, 
8323 - u 2 + Vz3 = 0, 
6 4 2 1 - u  3 + v 3 1  = 0 ,  
3 8 2 2 - u  3 + v 3 2 = 0 ,  
5 3 2 2 - u 3 + v 3 3  = 0. 

21,22,23, ul,  u2, u3, vxx , . .  , v33 2 0. 

The u-variables stand for the dual variables or shadow prices of  the machines, which 
Kantorovich does not explicitly introduce, and the v-variables for minus the profitability of  
using machine i for soil j; these profitabilities should be nonpositive for optimal solutions. 
In Kantorovich 's  method,  the v-variables, if  nonzero, are implied by the difference of  the 
maximum value which a machine can produce and the value in a particular allocation: 

237.5 + 382~ + v32 = u 3, 
276.04 + 532~ + v33 = u 3. 

These equations correspond with the rows of  Tableau 0 in Table 3. 
I f  2~ = 2* = 2* = 0, u 1 = 380.43, via = 0, then v12 and v13 will be nonnegative. This 

corresponds with pivoting in the element - 1 in the row of  v 11 and the column of u 1. The 
other two pivots are explained in the same way. Hence, taking the allocation of the 
machines with the maximum value results in a feasible solution to the dual problem and 
therefore an optimal solution to the primal problem. From Tableau 0 of  Table 2 it is 
obvious that this solution will also be feasible for the primal problem. 

Tableau 1 of  Table 2 then indicates that  an increase in Zo f rom 0 is stopped at Zo = 0 
because otherwise the slack variable z2 becomes negative. This is equivalent with min 
Zo = 27 j = z* = z*. In order to increase Zo, z* should be increased, and to do this optimally, 
we should increase ~2- In Tableau 1 of  Table 3 such an increase in L* is considered and it is 
found that for 2* = 19.79/66 = .30, v22 becomes 0, which is equivalent to 22 = 6.55. I f  
v22 = 0, x22 can be increased, which is what happens in the primal problem, Tableau 1 of  
Table 2. After t ransformation with - 6 6  as a pivot, Tableau 2 of  Table 2 is found. 

Now Zo can be increased f rom 0; its maximum happens to be 60.26 at which point z 3 
becomes 0, which means that Zo = z* = z~; the possibilities connected with z 1 = 0 and 
xl 1 = 0 are also considered but they involve negative values for z3. 

Kantorovich then considers an increase in 23 to increase z o = z~. In the tableaux the 
same thing happens by selecting a pivot in the row of  z 3 in Tableau 2 of  Table 2 or in the 
column of  2* in Tableau 2 of  Table 3. We shall not go into further details. 

The final values of  the resolving multipliers are only relative values. The proper values 
should sum to 1 because of  the equation in dual problem: 

2 1 + 2 2 + 2 ~  1. 

Hence the values are 2 x = .229, 22 = .429, 23 = .342. 
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5. Concluding Remarks 

Kantorovich gives three more examples of application of his method of resolving 
multipliers, one for a larger problem of type A and one each for problems of the type B and 
C (see reference 5). None of these examples follows the described method exactly. There 
may be two reasons for this, the first one being that Kantorovich attempted to use compu- 
tational shortcuts and the second that at that time Kantorovich did not find it useful to 
adjust both primal and dual variables as systematically as can be done. The result is that for 
these examples his method appears to be a trial-and-error procedure; this may be one of the 
reasons why so little has been written about the method. 

In his book The Best Use of Economic Resources which was published in Russia in 1959, 
Kantorovich restates his method, which he then called 'the method of adjusting multipliers 
(valuations)'. In this restatement the computation of the multipliers or dual variables and 
of the primal variables is given in a form which is closer to the first equivalent parametric 
formulation given above, as implemented in Table 1. The form in which the method is 
stated is similar to that in which the primal-dual method of Dantzig, Ford and Fulkerson 
(see reference 3) is stated; Kantorovich indicates: 'In very recent years a similar method has 
begun to be used in other countries'. 

In this respect it can be noted that the primal-dual method can also be formulated as a 
parametric method, x However, the situations in which both methods are used are different. 
Whereas the primal-dual method starts with an infeasible but optimal solution, the method 
of resolving multipliers starts with a feasible solution but an incorrect objective function, 
which is gradually changed into the correct one. 

The most striking difference between Kantorovich's method and modern linear program- 
ming methods is that Kantorovich always returns to the original primal and dual equation 
systems, while the modern methods work with transformed forms of only one of these 
systems. In principle, Kantorovich has to solve an equation system for each possible new 
basic variable and for each possible leaving basic variable, but knowledge of the structure 
of the equation systems facilitates this to a large extent. This may be one of the reasons why 
Kantorovich deals with linear programming problems of a given structure. 

Some early methods for quadratic programming, for instance Houthakker's capacity 
method (reference 4) and Theil and van de Panne's combinatorial method (reference 12) at 
each step start from the original equation system and are rather inefficient for that reason. 
It is not surprising that for linear programming a method with the same characteristics has 
been proposed. The efficiency of Dantzig's simplex method compared with Kantorovich's 
method is obvious. 

On the other hand, the pathbreaking nature of Kantorovich's work in 1939 is beyond 
dispute and not until one or two decades later did western literature begin to display 
insights in linear programming models equal to those given by Kantorovich's paper. 
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