Randomized Algorithms

Prabhakar Raghavan
IBM Almaden Research Center

San Jose, CA.

— Typeset by Foll TEX —

Deterministic Algorithms

——= ALGORITHM _—

OUTPUT

Goal: To prove that the
algorithm solves the problem
correctly (always) and quickly
(typically, the number of steps
should be polynomial In the
size of the input).

— Typeset by Foll TEX - 1

Randomized Algorithms

INPUT
—= ALGORITHM >

OUTPUT

RANDOM NUMBERS

e In addition to input, algorithm
takes a source of random
numbers and makes random
choices during execution.

e Behavior can vary even on a
fixed Iinput.

— Typeset by Foll TEX - 2

Randomized Algorithms

INPUT
—= ALGORITHM

RANDOM NUMBERS

OUTPUT

e Design algorithm -+ analysis
to show that this behavior Is
likely to be good, on every

Input.

(The likelihood is over the

random numbers only.)

— Typeset by Foll TEX -

Not to be confused with the
Probabilistic Analysis of
Algorithms

RANDOM

INPUT
E— ALGORITHM =

OUTPUT
DISTRIBUTION

e Here the input 1s assumed
to be from a probability
distribution.

e Show that the algorithm works
for most inputs.

— Typeset by Foll TEX - 4

Monte Carlo and Las Vegas

A Monte Carlo algorithm runs
for a fixed number of steps,
and produces an answer that Is
correct with probability > 1/3.

A Las Vegas algorithm always
produces the correct answer;
its running time Is a random
variable whose expectation is
bounded (say by a polynomial).

— Typeset by Foll TEX - 5

Monte Carlo and Las Vegas

These probabilities/expectations
are only over the random
choices made by the algorithm
— Independent of the input.

Thus Independent repetitions
of Monte Carlo algorithms drive
down the failure probability
exponentially.

— Typeset by Foll TEX - 6

Advantages of randomized
algorithms

e Simplicity
e Performance

For many problems, a randomized
algorithm I1s the simplest, the
fastest, or both.

— Typeset by Foll TEX - 7

Scope

e Number-theoretic algorithms:
Primality testing (Monte Carlo).

e Data structures: Sorting,
order statistics, searching,
computational geometry.

e Algebraic identities: Polynomial
and matrix identity verification.
Interactive proof systems.

— Typeset by Foll TEX - 8

e Mathematical programming:

Faster algorithms for linear
orogramming. Rounding linear
orogram solutions to Integer
brogram solutions.

e Graph algorithms: Minimum
spanning trees, shortest paths,
minimum cuts.

e Counting and enumeration:
Matrix permanent. Counting
combinatorial structures.

— Typeset by Foll TEX - 9

e Parallel and distributed computing:
Deadlock avoidance, distributed
consensus.

e Probabilistic existence proofs:
Show that a combinatorial
object arises with non-zero
probability among objects drawn
from a suitable probability

space.

— Typeset by Foll TEX - 10

Derandomization: First devise

a randomized algorithm, then
argue that it can be "derandomized

to yield a deterministic algorithm.

— Typeset by Foll TEX - 11

Game-tree evaluation

e Tree with alternating MAX/MIN
nodes.

Each leaf has a real value.

e Goal: To evaluate the root.

— Typeset by Foll TEX - 12

Game-tree evaluation

e Cost: The number of leaves
Inspected.

e Algorithm: Computes leaf-
Inspection sequence.

— Typeset by Foll TEX - 13

Simple special case

e Uniform binary tree, height h,
with n = 2" leaves.

e All values are boolean, so
MAX—OR and MIN—AND.

Exercise: Every deterministic
algorithm can be forced to read
n leaves.

— Typeset by Foll TEX - 14

Randomized algorithm

Evaluate (recursively) a random
child of the current node.

If this does not determine
the value of the current node,
evaluate the other child.

— Typeset by Foll TEX - 15

Analysis of tree evaluation

AND-OR trees of depth 2k (k

levels of AND and k& levels of
OR on any path); will prove by
induction on k.

Expected cost for an OR
subtree evaluating to 1:

1.3’f—1_|_1.2.3’f—1:§.3’f—1.
2 2 2

— Typeset by Foll TEX - 16

Analysis of tree evaluation

For an OR subtree evaluating
to 0, we must evaluate both
of Its subtrees, Incurring cost

2(31).

Now consider the root AND:
(a) If it is 1, both OR subtrees
must evaluate to 1; expected
cost paid is twice above, = 3.

(b) If it is 0, at least one OR
subtree evaluates to O.

— Typeset by Foll TEX - 17

Game tree analysis

Expected cost for root AND
evaluating to O:

2) Sk—l I ;23]{—1 S Sk

Number of leaves in tree = 4"

Thus expected cost of randomized
algorithm < n%73

— Typeset by Foll TEX - 18

Lower bounds and the
minimax principle

Basic Idea: For a lower
bound on the performance of
all randomized algorithms for a
problem, derive instead a lower
bound for any deterministic
algorithm for the problem when
the Inputs are drawn from a
probability distribution (of your
choice).

— Typeset by Foll TEX - 19

Let 7 denote the set of
iInstances of the problem, and
A the set of deterministic
algorithms for the problem.
Any randomized algorithm can
be viewed as a probability
distribution on the algorithms in

A.

— Typeset by Foll TEX - 20

Minimax Principle

For all distributions p over Z
and g over A,

min E|C(],, A)] < maxE|C(I, A,)].

Ac A el

— Typeset by Foll TEX - 21

Lower bound for game tree
evaluation

We will specify a probability
distribution on instances (0/1
values for the leaves) and lower
bound the expected running
time of any deterministic algorithm.

— Typeset by Foll TEX - 22

NOR trees instead

Exercise: Show that a balanced
AND-OR tree of even depth is
equivalent to a tree of the same
depth, all of whose nodes are

NOR nodes.

We will show the lower bound
for a NOR tree with n leaves.

— Typeset by Foll TEX - 23

The input distribution

Let p= (3 —/5)/2.

Claim: The value of any
node 1s 1 with probability p,
independent of all other nodes
at the same level.

Claim: Any deterministic
algorithm may as well determine
the value of one sub-tree of a
node, before inspecting any leaf
of its sibling sub-tree.

— Typeset by Foll TEX - 24

The Analysis

Let W (h) be the expected
number of leaves it Iinspects In
determining the value of a node
at distance h from the leaves.

Clearly
Wi(h)=W(h-1)+(1—p)W (h—1).

Letting h = log, n, this gives a
lower bound of nY %%,

— Typeset by Foll TEX - 25

Exercise: Why is this lower
bound weak?

— Typeset by Foll TEX - 26

The 2-SAT Problem

Given a set of boolean clauses

in CNF each containing two
literals, find a satistying assignment
If one exists.

(1 + 24)(Tq + x3) (T2 + X3) - - -

e Start with any tentative assignment

o If there Is an unsatisfied
clause, pick one of Its two
literals at random, and flip it.

— Typeset by Foll TEX - 27

o If no solution found in 2n?
steps, declare “none exists’ .

Monte Carlo: If a solution
exists, will find it with probability
> 1/2.

If not, will always declare “none
exists’ .

— Typeset by Foll TEX - 28

Random Walk Analysis

What i1s the probability of
missing a satisfying assignment
in 2n° steps?

e Fix any particular satistying
assignment A.

e Consider the number of literals
on which the algorithm’s
tentative assignment agrees
with A.

— Typeset by Foll TEX - 29

e Thisis a random walk on the
Integers that Increases with

probability at least 1/2 at
each step.

Expected time to find an
assignment < n?.

Markov's inequality = probability
of missing an assignment in 2n?
steps is < 1/2.

— Typeset by Foll TEX - 30

Binary planar partitions
(4
P

~

Given n non-intersecting line-

segments In the plane, build a
small linear decision tree that
has (pieces of) at most one
segment in each cell.

L3

— Typeset by Foll TEX - 31

Autopartitions

Choose the Input segments in
random order.

Extend the chosen segment (if
necessary) to cut any cells
where it 1s not “alone”.

The expected size of the
resulting tree 1s < n + 2nH,,

— Typeset by Foll TEX - 32

Analysis of autopartition size

AN\

Define [(u) to be the line
containing segment u.

u - v denotes [(u) cuts v in
the constructed tree.

index(u,v) ist if [(u) intersects
1 — 1 other segments before
hitting v.

— Typeset by Foll TEX - 33

Autopartitions

Priu 4v] <1/(index(u,v)+1).

Thus the expected size of the
tree constructed iIs

n—I—ZZPr[u—IfU

U vFEU

n—I_LLmdea: (u,v) + 1

U ’U U

— Typeset by Foll TEX - 34

For any u, 4, index(u,v) = 1 for
at most two v: thus the above
sumis < n+ 2nH,,.

It follows that for any n
segments In the plane, there
always exists an autopartition of
size O(nlogn).

— Typeset by Foll TEX - 35

Matrix product verification

Suppose A, B and C are n X
n matrices with entries from a
finite field F. We wish to verity
whether AB = C.

Multiplying out takes about
n3 steps — this can be cut to
O(n?*>?) steps using sophisticated
algorithms.

— Typeset by Foll TEX - 36

Simple randomized
algorithm

e Pick an mn-vector x with
entries randomly drawn from

F.

e Compute z = A(Bx).
If 2= Cx output AB = C,
else output AB # C'.

Takes O(n?) steps.

— Typeset by Foll TEX - 37

Simple randomized
algorithm

If AB = C', will always output
AB =C.

It AB # (', will output
AB = C with probability at
most 1/|F|.

— Typeset by Foll TEX - 38

Sources

R.M. Karp. An introduction to
randomized algorithms. Discrete
Applied Mathematics, 34:165—-
201, 1991.

R. Motwani and P. Raghavan.
Randomized Algorithms. Cambridge
University Press, 1995.

D. J. A. Welsh. Randomised
algorithms. Discrete Applied
Mathematics, 5:133-145, 1983.

— Typeset by Foll TEX - 39

