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Outline

The first example: the dual of Diet problem;
Understanding duality: Lagrangian function, Lagrangian dual
function, and Lagrangian dual problem;
Conditions of optimal solution;
Four properties of duality for linear program;
Solving LP using duality: Dual simplex algorithm, Primal
and dual algorithm, and interior point method;
Applications of duality: Farkas lemma, von Neumann’ s
MiniMax theorem, Yao’s MiniMax theorem, Dual problem
in SVM, and ShortestPath problem;
Appendix: Proof of Slater theorem, and techniques to finding
initial solution to dual problem.
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Importance of duality

When minimizing a function f(x), it is invaluable to know
a lower bound of f(x) in advance. Calculation of lower
bound is extremely important to the design of approximation
algorithm and branch-and-bound method.
Duality and relaxation (say Lagrangian relaxation, integer
relaxation, convex relaxation) are powerful techniques to
obtain a reasonable lower bound.
Linear programs come in primal/dual pairs. It turns out that
every feasible solution for one of these two problems provides
a bound for the objective value of the other problem.
The dual problems are always convex even if the primal
problems are not convex.
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The first example: the dual of Diet problem.
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Revisiting Diet problem

A housewife wonders how much money she must spend on
foods in order to get all the energy (2000 kcal), protein (55
g), and calcium (800 mg) that she needs every day.

Food Energy Protein Calcium Price Quantity
Oatmeal 110 4 2 3 x1
Whole milk 160 8 285 9 x2
Cherry pie 420 4 22 20 x3
Pork beans 260 14 80 19 x4

Linear program:
min 3x1 + 9x2 + 20x3 + 19x4 money
s.t. 110x1 + 160x2 + 420x3 + 260x4 ≥ 2000 energy

4x1 + 8x2 + 4x3 + 14x4 ≥ 55 protein
2x1 + 285x2 + 22x3 + 80x4 ≥ 800 calcium
x1 , x2 , x3 , x4 ≥ 0
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Dual of Diet problem: Pricing problem

Consider a company producing protein powder, energy bar,
and calcium tablet as substitution to foods.
The company wants to design a reasonable pricing strategy to
earn money as much as possible.
However, the price cannot be arbitrarily high due to the
following considerations:

1 If the prices are competitive with foods, one might consider
choosing a combination of the ingredients rather than foods;

2 Otherwise, one will choose to buy foods directly.
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LP model of Pricing problem

Food Energy Protein Calcium Price (cents)
Oatmeal 110 4 2 3
Whole milk 160 8 285 9
Cherry pie 420 4 22 20
Pork with beans 260 14 80 19
Price y1 y2 y3

Linear program:

max 2000y1 + 55y2 + 800y3 money
s.t. 110y1 + 4y2 + 2y3 ≤ 3 oatmeal

160y1 + 8y2 + 285y3 ≤ 9 milk
420y1 + 4y2 + 22y3 ≤ 20 pie
260y1 + 14y2 + 80y3 ≤ 19 pork&beans

y1 , y2 , y3 ≥ 0
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Primal problem and Dual problem

c1 c2 ... cn

a11 a12 ... a1n b1

a21 a22 ... a2n b2

...

am1 am2 ... amn bm

Primal problem and Dual problem are two points of view
of the coefficient matrix A:

Primal problem: row point of view
Dual problem: column point of view
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Primal problem

min c1x1 + c2x2 + ... + cnxn

a11x1 + a12x2 + ... + a1nxn ≥ b1

a21x1 + a22x2 + ... + a2nxn ≥ b2

...

am1x1 + am2x2 + ... + amnxn ≥ bm
xi ≥ 0 for each i

Primal problem: row point of view (in red);

min cTx
s.t. Ax ≥ b

x ≥ 0
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Dual problem

c1 c2 ... cn≥ ≥ ≥
max

y1a11 y1a12 ... y1a1n y1b1
+ + + +

y2a21 y2a22 ... y2a2n y2b2
+ + + +
... ... ...

... ...
+ + + +

ymam1 ymam2 ... ymamn ymbm
yj ≥ 0 for each j

Dual problem: column point of view (in blue).
max bTy

s.t. y ≥ 0
ATy ≤ c
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How to write Dual problem? Case 1

For each constraint in the Primal problem, a variable is set
in the Dual problem.
If the Primal problem has inequality constraints, the
Dual problem is written as follows.

Primal problem:
min cTx
s.t. Ax ≥ b

x ≥ 0
Dual problem:

max bTy
s.t. y ≥ 0

ATy ≤ c
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How to write Dual problem? Case 2

For each constraint in the Primal problem, a variable is set
in the Dual problem.
If the Primal problem has inequality constraints, the
Dual problem is written as follows.

Primal problem:
min cTx
s.t. Ax ≤ b

x ≥ 0
Dual problem:

max bTy
s.t. y ≤ 0

ATy ≤ c
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How to write Dual problem? Case 3

For each constraint in the Primal problem, a variable is set
in the Dual problem.
If the Primal problem has equality constraints, the Dual
problem is as follows.

Primal problem:
min cTx
s.t. Ax = b

x ≥ 0
Dual problem:

max bTy
s.t.

ATy ≤ c
Note: there is neither y ≥0 nor y ≤0 constraint in the dual
problem.
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Why can the Dual problem be written as above?
— Understanding duality from the Lagrangian dual point of view
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Standard form of constrained optimization problems

Consider the following constrained optimization problem
(might be non-convex).

min f0(x)
s.t. fi(x) ≤ 0 i = 1, ...,m

hi(x) = 0 i = 1, ..., k
Here the variables x ∈ Rn and we use
D =

m∩
i=0

dom fi ∩
k∩

i=1
dom hi to represent the domain of

definition. We use p∗ to represent the optimal value of the
problem.
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An equivalent unconstrained optimization problem
We can transform this constrained optimization problem
into an equivalent unconstrained optimization problem:

min f0(x) +
m∑

i=1
I−(fi(x)) +

k∑
i=1

I0(hi(x))

where x ∈ D, I−(u) and I0(u) are indicator functions for
non-positive reals and the set {0}, respectively:

I−(u) =
{

0 u ≤ 0
∞ u > 0

I0(u) =
{

0 u = 0
∞ u ̸= 0

−2 −1 0 1 2
−5

0

5

10

u

I−(u)

−2 −1 0 1 2
−5

0

5

10

u

I0(u)
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Difficulty in solving the optimization problem

−2 −1 0 1 2
−5

0

5

10

u

I−(u)

−2 −1 0 1 2
−5

0

5

10

u

I0(u)

Intuitively, I−(u) and I0(u) represent our “infinite
dissatisfaction” with the violence of constraints.
However both I0(u) and I−(u) are non-differentiable, making
the optimization problem, although unconstrained, not easy to
solve.

min f0(x) +
m∑

i=1
I−(fi(x)) +

k∑
i=1

I0(hi(x))

Question: How to efficiently solve this optimization problem?
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Approximating I−(u) using a differentiable function (1)

−2 −1 0 1 2
−5

0
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u

I−(u)−1
t log(−u)
(t > 0)

An approximation to I−(u) is logarithm barrier function:

Î−(u) = −1
t log(−u) (t > 0)

The difference between Î−(u) and I−(u) decreases as t
increases. This approximation was used in the interior point
method.
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Approximating I−(u) using a differentiable function (2)

−2 −1 0 1 2
−5
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I−(u)
ϕ(u)

Another approximation to I−(u) is a penalty function:

Î−(u) = ϕ(u) =
{

ut u ≥ 0 (t > 1)
0 otherwise

The penalty function “penalizes” any u if it is greater than zero. It
is a “hands-off” method for converting constrainted problems into
unconstrained problems, to which an initial feasible solution is easy
to obtained. However, in some cases it cannot be applied because
the objective function is undefined or the unconstrained problem
becomes ill-conditioned as t increases.
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Approximating I−(u) using a differentiable function (3)
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−λu (λ ≤ 0)

Another approximation to I−(u) is a simple linear function:

Î−(u) = −λu (λ ≤ 0)

Despite the considerable difference between Î−(u) and I−(u),
Î−(u) still provides lower bound information of I−(u).
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Approximating I−(u) using a differentiable function (4)
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We can also approximate I−(u) using ReLU:

Î−(u) = ϕ(u) =
{

ku u ≥ 0 (k > 0)
0 otherwise
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Approximating I−(u) using a differentiable function (5)

I−(u)
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We can also approximate I−(u) using logarithm of logistic
function:

Î−(u) = ϕ(u) = log(1 + eku) (k > 0)
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Approximating I0(u) using a differentiable function
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0
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−νu

(ν ≤ 0)
−νu

(ν ≥ 0)

I0(u) can also be approximated using linear function:

Î0(u) = −νu

Although Î0(u) deviates considerably from I0(u), Î0(u) still
provides lower bound information of I0(u).
It is worth pointing out that unlike Î−(u), Î0(u) has no
restriction on ν.
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Lagrangian function
Consider the unconstrained optimization problem

min f0(x) +
m∑

i=1
I−(fi(x)) +

k∑
i=1

I0(hi(x)).

Now let’s replace I−(u) with −λu (λ ≤ 0) and replace I0(u)
with −νu. Then the objective function becomes:

L(x, λ, ν) = f0(x)−
m∑

i=1
λifi(x)−

k∑
i=1

νihi(x)

This function is called Lagrangian function, which is a lower
bound of f0(x) for any feasible solution x when λ ≤ 0.
Here we call λi Lagrangian multiplier for the i-th inequality
constraint fi(x) ≤ 0 and νi Lagrangian multiplier for the i-th
equality constraint hi(x) = 0.
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Lagrangian connecting primal and dual: An example

Primal problem:

min x2 − 2x
s.t. −x ≤ 0

Lagrangian:
L(x, λ) = x2 − 2x + λx

Note that L(x, λ) is a lower bound of the primal objective
function x2 − 2x when λ ≤ 0 and −x ≤ 0.
Dual problem:

max −1
4(2 − λ)2

s.t. λ ≤ 0
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Lagrangian connecting primal and dual

 0  1  2  3  4  5 -5 -4 -3 -2 -1  0

-15

-10

-5

 0

 5
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 15

Primal: f0(x) = x*x - 2*x
L(x,y) = x*x - 2*x + y*x

Dual: g(y) = -1.0/4.0*(2-y)*(2-y)

x y

Observation: Primal objective function ≥ Lagrangian ≥
Dual objective function in the feasible region.
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Lagrangian dual function and Lagrangian dual problem
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Lagrangian dual function
Consider the following constrained optimization problem.

min f0(x)
s.t. fi(x) ≤ 0 i = 1, ...,m

hi(x) = 0 i = 1, ..., k
Lagrangian function:

L(x, λ, ν) = f0(x)−
m∑

i=1
λifi(x)−

k∑
i=1

νihi(x)

which is a lower bound of f0(x) for any feasible solution x
when λ ≤ 0.
Now let’s consider the infimum of Lagrangian function (called
Lagrangian dual function):

g(λ, ν) = inf
x∈Rn

L(x, λ, ν)

Note: infimum rather than minimum is used here as some sets
have no minimum.
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Lagrangian dual problem

Lagrangian dual function provides lower bound of the primal
objective function, i.e.

f0(x) ≥ L(x, λ, ν) ≥ g(λ, ν)

for any feasible solution x when λ ≤ 0.
Now let’s try to find the tightest lower bound of the primal
objective function, which can be obtained by solving the
following Lagrangian dual problem:

max g(λ, ν)
s.t. λ ≤ 0
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Dual problem is always convex

Note that the Lagrangian dual function g(λ, ν) is a point-wise
minimum of affine functions over λ, ν.

g(λ, ν) = inf
x∈Rn

L(x, λ, ν)

= inf
x∈Rn

(f0(x)−
m∑

i=1
λifi(x)−

k∑
i=1

νihi(x))

Thus Lagrangian dual function g(λ, ν) is always concave
and the dual problem is always a convex programming
problem even if the primal problem is non-convex.
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Note: The dual is not intrinsic

It is worth pointing out that the dual problem and its optimal
objective value are not properties of the primal feasible set
and primal objective function alone. They also depend on the
specific constraints in the primal problem.
Thus we can construct equivalent primal optimization
problem with different duals through the following ways:

Replacing primal objective function f0(x) with h(f0(x)) where
h(u) is monotonically increasing.
Introducing new variables.
Adding redundant constraints.
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Lagrangian function and dual function: An example I
Consider the following primal problem:

min ex2
+ 4e−x2

s.t. −2e−x2
+ 1 ≤ 0 i = 1, ...,m

Lagrangian function:

L(x, λ) = ex2
+ 4e−x2 − λ(−2e−x2

+ 1)

where λ ≤ 0.

-2

 0

 2
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 8

-1.5 -1 -0.5  0  0.5  1  1.5

x

f0(x)=exp(x*x)+4exp(-x*x)
f1(x)=-2exp(-x*x)

L(x, -0.5)
L(x, -1)

L(x, -1.5)
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Lagrangian function and dual function: An example II

Lagrangian dual function:

g(λ) = inf
x∈R

L(x, λ)

=

{
5 + λ λ ≤ −1.5
2
√

4 + 2λ− λ −1.5 ≤ λ ≤ 0

 1

 2

 3

 4

 5

-5 -4 -3 -2 -1  0

lambda

g(lambda)
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Dual problem of LP problem in standard form
Consider a LP problem in standard form:

min cTx
s.t. Ax ≤ b

x ≥ 0
Lagrangian function:

L(x, λ, ν) = cTx−
∑m

i=1
λi(ai1x1+...+ainxn−bi)−

∑n

i=1
νixi

where λ ≤ 0, ν ≥ 0.
Notice that for any feasible solution x and λ ≤ 0, ν ≥ 0,
Lagrangian function is a lower bound of the primal
objective function, i.e. cTx ≥ L(x, λ, ν), and further

cTx ≥ L(x, λ, ν) ≥ inf
x∈Rn

L(x, λ, ν)

Let’s define Lagrangian dual function
g(λ, ν) = inf

x∈Rn
L(x, λ, ν) and rewrite the above inequality as

cTx ≥ L(x, λ, ν) ≥ g(λ, ν)
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Lagrangian dual function
What is the Lagrangian dual function g(λ, ν)?

g(λ, ν) = inf
x∈Rn

L(x, λ, ν)

= inf
x∈Rn

(cTx −
m∑

i=1
λi(ai1x1 + ...+ ainxn − bi)−

m∑
i=1

νixi)

= inf
x∈Rn

(λTb + (cT − λTA − νT)x)

=

{
λTb if cT = λTA + νT

−∞ otherwise

Note that D = Rn. Thus g(λ, ν) = λTb if cT = λTA + νT;
otherwise, g(λ, ν) = −∞, which is a trivial lower bound for
the primal objective function cTx.
We usually denote the domain of g(λ, ν) as
dom g = {(λ, ν)|g(λ, ν) > −∞}.
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Lagrangian dual problem
Now let’s try to find the tightest lower bound of the primal
objective function cTx, which can be calculated by solving the
following Lagrangian dual problem:

max g(λ, ν) =

{
λTb if cT = λTA + νT

−∞ otherwise
s.t. λ ≤ 0

ν ≥ 0

or explicitly representing constraints in dom g:

max λTb
s.t. λTA ≤ cT

λ ≤ 0

Note that this is actually the Dual form of LP if replacing λ
by y; thus, we have another explanation of Dual variables y
— the Lagrangian multiplier.
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An example
Primal problem:

min x
s.t. x ≥ 2

x ≥ 0
Lagrangian function:

L(x, λ, ν) = x − λ(x − 2)− νx = 2λ+ (1 − λ− ν)x
Note that when λ ≥ 0, ν ≥ 0 and x ≥ 2, L(x, λ, ν) is a lower
bound of the primal objective function x.
Lagrangian dual function:

g(λ, ν) = inf
x∈R

L(x, λ, ν) =
{

2λ if 1 − λ− ν = 0
−∞ otherwise

Dual problem:
max 2λ

s.t. λ ≤ 1
λ ≥ 0
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Deriving dual problem of linear program in slack form
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Dual problem of LP problem in slack form
Consider a LP problem in slack form:

min cTx
s.t. Ax = b

x ≥ 0
Lagrangian function:

L(x, λ, s) = cTx−
∑m

i=1
λi(ai1x1+...+ainxn−bi)−

∑n

i=1
νixi

Notice that for any feasible solution x and ν ≥ 0, Lagrangian
function is a lower bound of the primal objective
function, i.e. cTx ≥ L(x, λ, ν), and further

cTx ≥ L(x, λ, ν) ≥ inf
x∈Rn

L(x, λ, ν)

Let’s define Lagrangian dual function
g(λ, ν) = inf

x∈Rn
L(x, λ, ν) and rewrite the above inequality as

cTx ≥ L(x, λ, ν) ≥ g(λ, ν)
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Lagrangian dual function

What is the Lagrangian dual function g(λ, ν)?

g(λ, ν) = inf
x∈Rn

L(x, λ, ν)

= inf
x∈Rn

(cTx −
m∑

i=1
λi(ai1x1 + ...+ ainxn − bi)−

m∑
i=1

νixi)

= inf
x∈Rn

(λTb + (cT − λTA − νT)x)

=

{
λTb if cT = λTA + νT

−∞ otherwise

Thus g(λ, ν) = λTb if cT = λTA + νT; otherwise,
g(λ, ν) = −∞, which is a trivial lower bound for the primal
objective function cTx.
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Lagrangian dual problem

Now let’s try to find the tightest lower bound of the primal
objective function cTx, which can be calculated by solving the
following Lagrangian dual problem:

max g(λ, ν) =

{
λTb if cT = λTA + νT

−∞ otherwise
s.t. ν ≥ 0

, or explicitly representing constraints in dom g:

max λTb
s.t. λTA ≤ cT

Note that the dual problem does not have the λ ≤ 0
constraint as for any λi, λi(ai1x1 + ...+ ainxn − bi) is a lower
bound for I0(ai1x1 + ...+ ainxn − bi).
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Explanations of dual variables
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Two explanations of dual variables y: L. Kantorovich vs.
T. Koopmans

1 Price interpretation: Constrained optimization plays an
important role in economics. Dual variables are also called as
shadow price (by T. Koopmans), i.e. the instantaneous
change in the optimization objective function when constraints
are relaxed, or marginal cost when strengthening constraints.

2 Lagrangian multiplier interpretation: Dual variables are
essentially Lagrangian multiplier, which describe the effect
of constraints on the objective function (by L. Kantorovich).
For example, it can describe how much the optimal objective
function will change when bi increase to bi +∆bi. In fact, we
have ∂L(x,λ)

∂bi
= λi.
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Explanation of dual variables y: using Diet as an example
Optimal solution to primal problem with
b1 = 2000, b2 = 55, b3 = 800:

x = (14.24, 2.70, 0, 0), cTx = 67.096.
Optimal solution to dual problem:

y = (0.0269, 0, 0.0164), yTb = 67.096.
Let’s make a slight change on b, and examine its effect on
min cTx.

b1 b2 b3 min cTx
2000 55 800 67.096
2001 55 800 67.123
2000 56 800 67.096
2000 55 801 67.112

We can observe that:
y1 = 0.0269 = 67.123 − 67.096
y2 = 0 = 67.096 − 67.096
y3 = 0.0164 = 67.112 − 67.096
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Property of Lagrangian dual problem: Weak duality
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Weak duality

Let’s p∗ and d∗ denote the optimal objective value of a primal
problem and its dual problem, respectively. We always have

d∗ ≤ p∗

regardless of non-convexity of the primal problem. The
difference p∗ − d∗ is called duality gap.
Weak duality holds even if p∗ = −∞, which means the
infeasibility of the dual problem. Similarly, if d∗ = +∞, the
primal problem is infeasible.
As dual problems are always convex, it is relatively easy to
calculate d∗ efficiently and thus obtain a lower bound for p∗.
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An example of non-zero duality gap
Consider the following non-convex optimization problem.

min x1x2
s.t. x1 ≥ 0

x2 ≥ 0
x2

1 + x2
2 ≤ 1

Lagrange dual function:

g(λ) = inf
x∈Rn

(x1x2 − λ1x1 − λ2x2 + λ3(x2
1 + x2

2 − 1))

Dual problem:
max g(λ)

s.t. λ1 ≥ 0
λ2 ≥ 0
λ3 ≥ 1

2

Duality gap: p∗ = 0 > d∗ = −1
2 .
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Property of Lagrangian dual problem: Strong duality
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Strong duality

Strong duality holds if p∗ = d∗, i.e., the duality gap is 0.
Strong duality doesn’t necessarily hold for any optimization
problem, but it almost always holds for convex ones, i.e.

min f0(x)
s.t. fi(x) ≤ 0 i = 1, ...,m

Ax = b

where fi(x), (i = 0, 1, ...,m) are convex functions.
The conditions that guarantee strong duality are called
regularity conditions, one of which is the Slater’s condition.

49 / 191



Slater’s condition

Slater’s condition: Consider a convex optimization problem.
The strong duality holds if there exists a vector x ∈ relint D
such that

fi(x)<0, i = 1, ...,m, Ax = b

Suppose the first k constraints are affine, then the Slater’s
conditions turns into: there exists a vector x ∈ relintD such
that

fi(x)≤0, i = 1, ..., k, fi(x)<0, i = 1 + 1, ...,m, Ax = b

Specifically, if all constraints are affine, then the original
constraints are themselves the Slater’s conditions.
Please refer to Appendix for the proof of the Slater theorem.
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Conditions of optimal solution: KKT conditions
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Three types of optimization problems

It is relatively easy to optimize an objective function without
any constraint, say:

min f0(x)

But how to optimize an objective function with equality
constraints?

min f0(x)
s.t. hi(x) = 0 i = 1, 2, ..., p

And how to optimize an objective function with inequality
constraints?

min f0(x)
s.t. fi(x) ≤ 0 i = 1, 2, ...,m

hi(x) = 0 i = 1, 2, ..., p
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Optimization problem over equality constraints
Consider the following optimization problem:

min f0(x, y)
s.t. h(x, y) = 0

Intuition: suppose (x∗, y∗) is the optimum point. Thus at
(x∗, y∗), f0(x, y) does not change when walking along the
curve h(x, y) = 0; otherwise, we can follow the curve to make
f0(x, y) smaller, meaning that the starting point (x∗, y∗) is not
optimum.

h(x, y) = 0

(x∗, y∗)

▽h(x, y)

▽f0(x, y)

f0(x, y) = 1

f0(x, y) = 2 53 / 191



h(x, y) = 0

(x∗, y∗)

▽h(x, y)

▽f0(x, y)

f0(x, y) = 1

f0(x, y) = 2

So at (x∗, y∗), the red line tangentially touches a blue
contour, i.e. there exists a real λ such that:

▽f0(x, y) = λ▽ h(x, y)
Lagrange must have cleverly noticed that the equation above
looks like partial derivatives of some larger scalar function:

L(x, y, λ) = f0(x, y)− λh(x, y)
Necessary conditions of optimum point: If (x∗, y∗) is local
optimum, then there exists a λ such that ▽L(x∗, y∗, λ) = 0.
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Understanding Lagrangian function

Lagrangian function: a combination of the original
optimization objective function and constraints:

L(x, y, λ) = f0(x, y)− λh(x, y)
The critical point of Lagrangian L(x, y, λ) occurs at saddle
points rather than local minima (or maxima). Thus, to utilize
numerical optimization techniques, we must first transform
the problem such that the critical points lie at local minima.
This is done by calculating the magnitude of the gradient of
Lagrangian.
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Optimization problems over inequality constraints
Consider the following optimization problem:

min f0(x, y)
s.t. f1(x, y) ≤ 0

f1(x, y) ≤ 0

(x∗, y∗)

f0(x, y) = 1

f0(x, y) = 2

f1(x, y) ≤ 0

(x∗, y∗)

f0(x, y) = 1

f0(x, y) = 2

Figure: Case 1: the optimum point (x∗, y∗) lies in the curve f1(x, y) = 0.
Thus Lagrangian condition ▽L(x, y, λ) = 0 applies. Case 2: (x∗, y∗) lies
within the interior region f1(x, y)<0; thus we have ▽f0(x, y) = 0 at
(x∗, y∗)

.
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Complementary slackness

These two cases can be summarized as the following two
conditions:

(Stationary point) ▽L(x∗, y∗, λ) = 0
(Complementary slackness) λf1(x∗, y∗) = 0

Reason: In case 2, fi(x∗)<0 ⇒ λ = 0 by complementary
slackness. We further have ▽f0(x∗, y∗) = 0 since
▽L(x∗, y∗, λ) = 0.
Complementary slackness, also called orthogonality by
Gomory, essentially equals to the strong duality for convex
optimization problems.
A relaxation of this condition, i.e., λifi(x∗) = µ, where µ is a
small positive number, is used in the interior point method.
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Proof of complementary slackness
Assume that strong duality holds, i.e., p∗ = d∗. Let’s x∗ and
(λ∗, ν∗) λ∗ ≤ 0 denote the optimal solution to the primal
problem and dual problem, respectively. We have:

f0(x∗) = g(λ∗, ν∗)

= inf
x∈D

(f0(x)−
∑m

i=1
λifi(x)−

∑p

i=1
νihi(x))

≤ f0(x∗)−
∑m

i=1
λifi(x∗)−

∑p

i=1
νihi(x∗)

≤ f0(x∗)

Thus the last two inequalities turns into equalities, which
implies that Lagrangian function L(x, λ∗, ν∗) reaches its
minimum at x∗ and ∑m

i=1
λ∗

i fi(x∗) = 0.

Note that λ∗
i fi(x∗) ≥ 0. Hence λ∗

i fi(x∗) = 0 for i = 1, ...,m.
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KKT conditions for general optimization problems I

Consider the following constrained optimization problem
(might be non-convex).

min f0(x)
s.t. fi(x) ≤ 0 i = 1, ...,m

hi(x) = 0 i = 1, ..., p

Lagrangian function:

L(x, λ) = f0(x)−
m∑

i=1
λifi(x)−

k∑
i=1

νihi(x)

Let x∗ and (λ, ν) denote the optimal solutions to the primal
and dual problems, respectively. Suppose the strong duality
holds.

59 / 191



KKT conditions for general optimization problems II

Since Lagrangian function reaches its minimum at x∗, its
gradient is 0 at x∗, i.e.,

▽f0(x∗)−
m∑

i=1
λi ▽ fi(x∗)−

k∑
i=1

νi ▽ hi(x∗) = 0

Then x∗ and (λ, ν) satisfy the following KKT conditions:
1 (Stationary point) ▽L(x∗, λ, ν) = 0
2 (Primal feasibility) fi(x∗) ≤ 0, i = 1, ...,m; hi(x∗) = 0,

i = 1, ..., p
3 (Dual feasibility) λi ≤ 0, i = 1, ...,m
4 (Complementary slackness) λifi(x∗) = 0, i = 1, ...,m
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KKT conditions for convex problems I
Consider the following convex optimization problem.

min f0(x)
s.t. fi(x) ≤ 0 i = 1, ...,m

Ax = b

Lagrangian function:

L(x, λ) = f0(x)−
m∑

i=1
λifi(x)− νT(Ax − b)
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KKT conditions for convex problems II

x∗ and (λ, ν) are optimal solutions to the primal and dual
problems, respectively, if they satisfy the following KKT
conditions:

1 (Stationary point) ▽L(x∗, λ, ν) = 0
2 (Primal feasibility) fi(x∗) ≤ 0, i = 1, ...,m; Ax = b;
3 (Dual feasibility) λi ≤ 0, i = 1, ...,m
4 (Complementary slackness) λifi(x∗) = 0, i = 1, ...,m

KKT conditions, named after William Karush, Harold W.
Kuhn, and Albert W. Tucker, are usually not solved directly in
optimization; instead, iterative successive approximation is
most often used to find the final results that satisfy KKT
conditions.
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Four properties of duality for linear program
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Property 1: Primal is the dual of dual

Theorem
For linear program, primal problem is the dual of dual.

For a general optimization problem, the dual of dual is not
always the primal problem but a convex relaxation of the
primal problem.
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Property 2: Weak duality

Theorem
(Weak duality) The objective value of any feasible solution to the
dual problem is always a lower bound of the objective value of
primal problem.

It is easy to prove this property as Lagrangian function
connects primal objective function and dual objective function.
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An example: Diet problem and its dual problem
Primal problem P:
min 3x1 + 9x2 + 20x3 + 19x4 money
s.t. 110x1 + 160x2 + 420x3 + 260x4 ≥ 2000 energy

4x1 + 8x2 + 4x3 + 14x4 ≥ 55 protein
2x1 + 285x2 + 22x3 + 80x4 ≥ 800 calcium
x1 , x2 , x3 , x4 ≥ 0

Feasible solution xT = [0, 8, 2, 0]T ⇒ cTx = 112.
Dual problem D:

max 2000y1 + 55y2 + 800y3 money
s.t. 110y1 + 4y2 + 2y3 ≤ 3 oatmeal

160y1 + 8y2 + 285y3 ≤ 9 milk
420y1 + 4y2 + 22y3 ≤ 20 pie
260y1 + 14y2 + 80y3 ≤ 19 pork&beans

y1 , y2 , y3 ≥ 0

Feasible solution yT = [0.0269, 0, 0.0164]T ⇒ yTb = 67.096
The theorem states that cTx ≥ yTb for any feasible solutions x and
y.
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Proof.
Consider the following Primal problem:

min cTx
s.t. Ax ≥ b

x ≥ 0

and Dual problem:

max bTy
s.t. y ≥ 0

ATy ≤ c

Let x and y denote a feasible solution to primal and dual
problems, respectively.
We have cTx ≥ yTAx (by the feasibility of dual problem, i.e.,
yTA ≤ cT, and xT ≥ 0 )
Therefore cTx ≥ yTAx ≥ yTb (by the feasibility of primal
problem, i.e., Ax ≥ b, and y ≥ 0)
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Property 3: Strong duality
Theorem
(Strong duality) Consider a linear program. If the primal problem
has an optimal solution, then the dual problem also has an optimal
solution with the same objective value.

Proof.

Suppose x∗ =
[

B−1b
0

]
be the optimal solution to the primal

problem. We have cT − cT
BB−1A ≥ 0.

Let’s set y∗T = cB
TB−1. We will show that y∗T is the optimal

solution to the dual problem.
In fact, we have y∗Tb = cB

TB−1b = cTx∗.
That is, y∗Tb reaches its upper bound. So y∗T is an optimal
solution to the dual problem.
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Property 4: Complementary slackness

Theorem
Let x and y denote feasible solutions to the primal and dual
problems, respectively. Then x and y are optimal solutions iff
ui = yi(ai1x1 + ai2x2 + ...+ ainxn − bi) = 0 for any 1 ≤ i ≤ m, and
vj = (cj − a1jy1 − a2jy2 − ...− amjym)xj = 0 for any 1 ≤ j ≤ n.

Intuition: a constraint of primal problem is loosely restricted
⇒ the corresponding dual variable is tight.
An example: the optimal solutions to Diet and its dual are
x = (14.244, 2.707, 0, 0) and y = (0.0269, 0, 0.0164).

110x1 + 160x2 + 420x3 + 260x4 =2000
4x1 + 8x2 + 4x3 + 14x4 >55 ⇒ y2 = 0
2x1 + 285x2 + 22x3 + 80x4 =800
x1 , x2 , x3 , x4 ≥ 0

69 / 191



Proof

Proof.
ui = 0 and vj = 0 for any i and j
⇔

∑
i ui = 0 and

∑
j vj = 0 (since ui ≥ 0, vj ≥ 0)

⇔
∑

i ui +
∑

j vj = 0
⇔ (yTAx − yTb) + (cTx − yTAx) = 0
⇔ yTb = cTx
⇔ y and x are optimal solutions (by strong duality property, i.e.,
both yTb and cTx reach its bound)
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Summary: 9 cases of primal and dual problems
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Example 1: Primal has unbounded objective value and
Dual is infeasible

Primal:
min −2x1 − 2x2
s.t. x1 − x2 ≤ 1

−x1 + x2 ≤ 1
x1 ≥ 0

x2 ≥ 0

Dual:
max y1 + y2

s.t. y1 ≤ 0
y2 ≤ 0

y1 − y2 ≤ −2
−y1 + y2 ≤ −2
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Example 2: both Primal and Dual are infeasible

Primal:
min x1 − 2x2
s.t. x1 − x2 ≥ 2

−x1 + x2 ≥ −1
x1 ≥ 0

x2 ≥ 0

Dual:
max 2y1 − y2

s.t. y1 ≥ 0
y2 ≥ 0

y1 − y2 ≤ 1
−y1 + y2 ≤ −2

73 / 191



Solving linear program using duality
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KKT conditions for linear program
Consider a linear program in slack form and its dual problem:

min cTx max bTy
s.t. Ax = b s.t. yTA ≤ cT

x ≥ 0 .

The KKT conditions turns into: x and y are optimal solutions
to the primal and dual problems, respectively, if they satisfy
the following three conditions:

1 (Primal feasibility)

Ax = b, x ≥ 0
2 (Dual feasibility)

yTA ≤ cT

3 (Complementary slackness)

cTx = yTb

Question: How to obtain x and y that satisfy these three
conditions simultaneously?
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Improvement framework

We could start with an initial value of x and y that satisfy two
constraints, and attempt to improve them to reduce the
unsatisfiability of the third constraint. This improvement steps
will be repeated until all of the three constraints are satisfied.

1: Initialize (x, y) with values that satisfy two constraints;
2: while TRUE do
3: Improve x and y to reduce the unsatisfiability of the third

constraint.
4: if all the three constraints are satisfied then
5: break;
6: end if
7: end while
8: return (x, y);
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Strategy 1

1: x = x0; //Initialize x with a primal feasible solution
2: y = y0; //Calculate initial y according to complementary

slackness
3: while TRUE do
4: x =Improve(x);
5: //Improve x to reduce dual infeasibility of corresponding

y. Throughout this process, primal feasibility is maintained
and y is recalculated according to complementary slackness

6: if y is dual feasible then
7: break;
8: end if
9: end while

10: return x;
Example: Primal simplex
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Strategy 2

1: y = y0; //Initialize y with a dual feasible solution
2: x = x0; //Calculate initial x according to complementary

slackness
3: while TRUE do
4: y =Improve(y);
5: //Improve y to reduce primal infeasibility of

corresponding x. Throughout this process, dual feasibility
is maintained and x is recalculated according to
complementary slackness

6: if x is primal feasible then
7: break;
8: end if
9: end while

10: return y;
Example: Dual simplex, Primal and Dual method
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Strategy 3

1: x = x0; //Initialize x with a primal feasible solution
2: y = y0; //Initialize y with a dual feasible solution
3: while TRUE do
4: (x, y) =Improve(x, y); //Improve x and y to reduce the

unsatisfiability of complementary slackness
5: if (x, y) satisfies complementary slackness then
6: break;
7: end if
8: end while
9: return y;

Example: Interior point method
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Dual simplex method
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Revisiting primal simplex: An example

min −x3 +x4
s.t. x1 −x3 +2x4 = 2

x2 +3x3 −2x4 = 6
x1, x2, x3, x4 ≥ 0

x1 x2 x3 x4 RHS
Basis c1= 0 c2=0 c3=-1 c4=1 −z = 0

x1 1 0 -1 2 2
x2 0 1 3 -2 6

x3

x4

1 2 3 4

1

2

3

4

−x3 + 2x4 = 2
3x3 − 2x4 = 6
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Step 2

min −x3 +x4
s.t. x1 −x3 +2x4 = 2

x2 +3x3 −2x4 = 6
x1, x2, x3, x4 ≥ 0

x1 x2 x3 x4 RHS
Basis c1= 0 c2= 1

3 c3=0 c4= 1
3 −z = 2

x1 1 1
3 0 4

3 4
x3 0 1

3 1 − 2
3 2

x3

x4

1 2 3 4

1

2

3

4

−x3 + 2x4 = 2
3x3 − 2x4 = 6
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The viewpoint of dual problem
Primal problem P:

min −x3 +x4
s.t. x1 −x3 +2x4 = 2

x2 +3x3 −2x4 = 6
x1, x2, x3, x4 ≥ 0

Dual problem D:
max 2y1 +6y2

s.t. y1 ≤ 0
y2 ≤ 0

−y1 +3y2 ≤ −1
2y1 −2y2 ≤ 1

x3

x4

1 2 3 4

1

2

3

4

−x3 + 2x4 = 23x3 − 2x4 = 6 y1

y2
−1−2−3−4

−1

−2

−3

−4

−y1 + 3y2 = −1

2y1 − 2y2 = 1
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Set primal and dual solutions according to a basis
Let’s consider a linear program in slack form and its dual
problem, i.e.

Primal problem:
min cTx
s.t. Ax = b

x ≥ 0
Dual problem:

max bTy
s.t. ATy ≤ c

From any basis B of A, we can set a primal solution x and a
dual solution y simultaneously, i.e.,

Primal solution: x =

[
B−1b

0

]
. x is feasible if B−1b ≥ 0.

Dual solution: yT = cT
BB−1. y is feasible if yTA ≤ cT, i.e.,

cT = cT − cT
BB−1A = cT − yTA ≥ 0.

Note that by this setting, complementary slackness follows
as

cTx = cT
BB−1b = yTb

84 / 191



Primal feasible basis

Consider the Primal problem:

min −x3 +x4
s.t. x1 −x3 +2x4 = 2

x2 +3x3 −2x4 = 6
x1, x2, x3, x4 ≥ 0

x1 x2 x3 x4 RHS
Basis c1= 0 c2=0 c3=-1 c4=1 −z = 0

x1 1 0 -1 2 2
x2 0 1 3 -2 6

Primal variables: x; Feasible: B−1b ≥ 0.
Basis B is called primal feasible if all elements in B−1b (the
first column except for −z) are non-negative.
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Dual feasible basis

Now let’s consider the Dual problem:

max 2y1 +6y2
s.t. y1, y2 ≤ 0

−y1 +3y2 ≤ −1
2y1 −2y2 ≤ 1

Consider Primal simplex tabular again:
x1 x2 x3 x4 RHS

Basis c1= 0 c2=0 c3=-1 c4=1 −z = 0
x1 1 0 -1 2 2
x2 0 1 3 -2 6

Dual variables: yT = cT
BB−1; Feasible: yTA ≤ cT.

Basis B is called dual feasible if all elements in
cT = cT − cT

BB−1A = cT − yTA (the first row except for
−z) are non-negative.
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Another view point of the Primal Simplex algorithm

Thus another view point of the Primal Simplex algorithm
can be described as:

1 Starting point: The Primal Simplex algorithm starts with
a primal basic feasible solution (the first column in simplex
table xB = B−1b ≥ 0). By setting dual variable yT = cT

BB−1,
the complementary slackness holds, i.e., cTx = cTB−1b = yTb.

2 Improvement: By pivoting basis, we move towards dual
feasibility, i.e. the first row in simplex table
cT = cT − cT

BB−1A = cT − yTA ≥ 0. Here, we minimize
dual infeasibility by selecting a negative element in the first
row in the pivoting process. Throughout the process we
maintain the primal feasibility and complementary slackness,
i.e., cTx = cTB−1b = yTb.

3 Stopping criterion: cT = cT − cT
BB−1A ≥ 0, i.e., yTA ≤ cT.

In other words, the iteration process ends when the basis is
both primal feasible and dual feasible.
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Another viewpoint of primal simplex: Step 1

min −x3 +x4
s.t. x1 −x3 +2x4 = 2

x2 +3x3 −2x4 = 6
x1, x2, x3, x4 ≥ 0

x1 x2 x3 x4 RHS
Basis c1= 0 c2=0 c3=-1 c4=1 −z = 0

x1 1 0 -1 2 2
x2 0 1 3 -2 6

Dual solution: yT = cT
BB−1 = [0 0], which is infeasible.

x3

x4

1 2 3 4

1

2

3

4

−x3 + 2x4 = 2
3x3 − 2x4 = 6 y1

y2
−1−2−3−4

−1

−2

−3

−4

−y1 + 3y2 = −1

2y1 − 2y2 = 1
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Another viewpoint of primal simplex: Step 2

min −x3 +x4
s.t. x1 −x3 +2x4 = 2

x2 +3x3 −2x4 = 6
x1, x2, x3, x4 ≥ 0

x1 x2 x3 x4 RHS
Basis c1= 0 c2= 1

3 c3=0 c4= 1
3 −z = 2

x1 1 1
3 0 4

3 4
x3 0 1

3 1 − 2
3 2

Dual solution: yT = cT
BB−1 = [0 − 1

3 ], which is feasible.

x3

x4

1 2 3 4

1

2

3

4

−x3 + 2x4 = 2
3x3 − 2x4 = 6 y1

y2
−1−2−3−4

−1

−2

−3

−4

−y1 + 3y2 = −1

2y1 − 2y2 = 1
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Dual simplex works in just an opposite fashion

Dual simplex:
1 Starting point: The Dual Simplex algorithm starts with a

dual basic feasible solution yT = cT
BB−1 such that yTA ≤ cT,

i.e., the first row in simplex table
cT = cT − cT

BB−1A = cT − yTA ≥ 0. By setting primal
variables xB = B−1b and xN = 0, the complementary slackness
holds, i.e., cTx = cTB−1b = yTb.

2 Improvement: By pivoting basis, we move towards primal
feasibility, i.e. the first column in simplex table B−1b ≥ 0.
Here, we minimize primal infeasibility by selecting a negative
element from the first column in the pivoting process.
Throughout the process we maintain the dual feasibility and
complementary slackness, i.e., cTx = cTB−1b = yTb.

3 Stopping criterion: xB = B−1b ≥ 0. In other words, the
iteration process ends when the basis is both primal feasible
and dual feasible.
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Primal simplex vs. Dual simplex

Both primal simplex and dual simplex terminate at the
same condition, i.e. the basis is primal feasible and dual
feasible simultaneously.
However, the final objective is achieved in totally opposite
fashions— the primal simplex method keeps the primal
feasibility while the dual simplex method keeps the dual
feasibility during the pivoting process.
The primal simplex algorithm first selects an entering
variable and then determines the leaving variable.
In contrast, the dual simplex method does the opposite; it
first selects a leaving variable and then determines an entering
variable.
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Dual simplex(BI, z,A, b, c)
1: //Dual simplex starts with a dual feasible basis. Here, BI contains the

indices of the basic variables.
2: while TRUE do
3: if there is no index l (1 ≤ l ≤ m) has bl < 0 then
4: x =CalculateX(BI,A, b, c);
5: return (x, z);
6: end if;
7: choose an index l having bl < 0 according to a certain rule;
8: for each index j (1 ≤ i ≤ n) do
9: if alj < 0 then

10: ∆j = − cj
alj
;

11: else
12: ∆j = ∞;
13: end if
14: end for
15: choose an index e that minimizes ∆j;
16: if ∆e = ∞ then
17: return ``no feasible solution'';
18: end if
19: (BI,A, b, c, z) = Pivot(BI,A, b, c, z, e, l);
20: end while
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An example

Standard form:

min 5x1 + 35x2 + 20x3
s.t. x1 − x2 − x3 ≤ −2

−x1 − 3x2 ≤ −3
x1 , x2 , x3 ≥ 0

Slack form:

min 5x1 + 35x2 + 20x3
s.t. x1 − x2 − x3 + x4 = −2

−x1 − 3x2 + x5 = −3
x1 , x2 , x3 , x4 , x5 ≥ 0
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Step 1

x1 x2 x3 x4 x5 RHS
Basis c1= 5 c2=35 c3=20 c4=0 c5=0 −z = 0

x4 1 -1 -1 1 0 -2
x5 -1 -3 0 0 1 -3

Basis (in blue): B = {a4, a5}

Solution: x =

[
B−1b

0

]
= (0, 0, 0,−2,−3).

Pivoting: choose a5 to leave basis since b′2 = −3 < 0; choose
a1 to enter basis since minj,a2j<0

cj
−a2j

= c1
−a21

.
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Step 2

x1 x2 x3 x4 x5 RHS
Basis c1= 0 c2=20 c3=20 c4=0 c5=5 −z = −15

x4 0 -4 -1 1 1 -5
x1 1 3 0 0 -1 3

Basis (in blue): B = {a1, a4}

Solution: x =

[
B−1b

0

]
= (3, 0, 0,−5, 0).

Pivoting: choose a4 to leave basis since b′1 = −5 < 0; choose
a2 to enter basis since minj,a1j<0

cj
−a1j

= c2
−a12

.
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Step 3

x1 x2 x3 x4 x5 RHS
Basis c1= 0 c2=0 c3=15 c4=5 c5=10 −z = −40

x2 0 1 1
4 −1

4 −1
4

5
4

x1 1 0 −3
4

3
4 −1

4 −3
4

Basis (in blue): B = {a1, a2}

Solution: x =

[
B−1b

0

]
= (5

4 ,−
3
4 , 0, 0, 0).

Pivoting: choose a1 to leave basis since b′2 = −3
4 < 0; choose

a3 to enter basis since minj,a2j<0
cj

−a2j
= c3

−a23
.
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Step 4

x1 x2 x3 x4 x5 RHS
Basis c1= 20 c2=0 c3=0 c4=20 c5=5 −z = −55

x2
1
3 1 0 0 −1

3 1
x3 −4

3 0 1 -1 1
3 1

Basis (in blue): B = {a2, a3}

Solution: x =

[
B−1b

0

]
= (0, 1, 1, 0, 0).

Done!
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When dual simplex method is useful?
The dual simplex algorithm is most suited for problems for
which an initial dual feasible solution is easily available. It
is particularly useful for reoptimizing a problem after a
constraint has been added or some parameters have been
changed so that primal feasibility was destroyed.
An example is mixed integer programming: branching at a
fractional variable creates two sub-problems, each of which has
a newly added constraint on the variable. The addition of
new constraints or valid inequality usually breaks the primal
feasibility. However, dual feasibility usually holds as adding a
row in primal corresponds to adding a column in dual.
Trying dual simplex is particularly useful if your LP appears to
be highly degenerate, i.e. there are many vertices of the
feasible region for which the associated basis is degenerate.
We may find that a large number of iterations (moves between
adjacent vertices) occur with little or no improvement.1

1 References: Operations Research Models and Methods, Paul A.
Jensen and Jonathan F. Bard; OR-Notes, J. E. Beasley
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Primal and Dual method: another strategy to find a pair of
primal and dual variables satisfying KKT conditions
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Primal and Dual method: a brief history

In 1955, H. Kuhn proposed the Hungarian method for the
MaxWeightedMatching problem. This method
effectively explores the duality property of linear programming.
In 1956, G. Dantzig, R. Ford, and D. Fulkerson extended this
idea to solve linear programming problems.
In 1957, R. Ford, and D. Fulkerson applied this idea to solve
network-flow problem and Hitchcock problem.
In 1957, J. Munkres applied this idea to solve the
transportation problem.
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Primal and Dual method
Basic idea: It is not easy to find primal variables x and dual
variables y to satisfy the KKT conditions simultaneously. A
reasonable strategy is starting from a dual feasible y, and pose
restrictions on x according to complementary slackness. Next
a step-by-step improvement procedure was performed towards
primal feasibility of x. To achieve this goal, we minimize
primal infeasibility while maintaining both dual feasibility
and complementary slackness.

y xDual feasible y Finding ∆y that
minimizes primal infeasibility

Pose restriction on x
by complementary slackness

Update y = y + θ∆y
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Basic idea of Primal and Dual method

y xDual feasible y Finding ∆y that
minimizes primal infeasibility

Pose restriction on x
by complementary slackness

Update y = y + θ∆y

y(0) x(0)

y(1) x(1)

y(2) x(2)

... ...
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Difference between Primal and Dual and dual simplex

Both Primal and Dual and dual simplex algorithms start
with x and y that satisfy complementary slackness; however,
they differ in how to obtain such x and y.
In dual simplex, x and y are generated from the same basis B
as follows:

y x
B

We set x = B−1b and y = cBB−1. The complementary
slackness follows since cTx = bTy.
In Primal and Dual approach, we derive some xi from y
directly:

y x

a1iy1 + a2iy2 + ...+ amiym<ci ⇒ xi = 0
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Three steps of Primal and Dual method

Primal P:

min c1x1 + c2x2 + ... + cnxn
s.t. a11x1 + a12x2 + ... + a1nxn = b1 (y1)

a21x1 + a22x2 + ... + a2nxn = b2 (y2)
...

am1x1 + am2x2 + ... + amnxn = bm (ym)
x1 , x2 , ... , xn ≥ 0

Dual D:

max b1y1 + b2y2 + ... + bmym
s.t. a11y1 + a21y2 + ... + am1ym ≤ c1 (x1)

a12y1 + a22y2 + ... + am2ym ≤ c2 (x2)
...

a1ny1 + a2ny2 + ... + amnym ≤ cn (xn)

Let’s start with a dual feasible solution y and construct a primal solution
x that satisfies the complementary slackness first.
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Step 1: y ⇒ x I

Dual problem D:

max b1y1 + b2y2 + ... + bmym
s.t. a11y1 + a21y2 + ... + am1ym ≤ c1 (′=′⇒ x1 ≥ 0)

...
a1ny1 + a2ny2 + ... + amnym ≤ cn (′<′⇒ xn = 0)

How to set x that satisfies the complementary slackness?
1 Let’s use J to record the index of tight constraints where

“=” holds. We set xi = 0 if the ith constraint is not tight:
a1iy1 + a2iy2 + ...+ amiym<ci ⇒ xi = 0
(Reason: Complement slackness requires that
(a1iy1 + a2iy2 + ...+ amiym − ci)× xi = 0.)
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Step 1: y ⇒ x II
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Step 1: y ⇒ x III

2 Now y is dual feasible, and we represent the complementary
slackness as

xi = 0, i /∈ J

If we can find a x such that x is primal feasible and satisfies
the complementary slackness, then all the three KKT
conditions hold and thus both x and y are optimal solution.

3 We can find such x through solving the following restricted
primal (RP), which has complementary slackness as an
appended constraint:

a11x1 + a12x2 + ... + a1nxn = b1
a21x1 + a22x2 + ... + a2nxn = b2

...
am1x1 + am2x2 + ... + amnxn = bm

xi = 0 i /∈ J
xi ≥ 0 i ∈ J
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But how to solve RP? I

RP:

a11x1 + a12x2 + ... + a1nxn = b1
a21x1 + a22x2 + ... + a2nxn = b2

...
am1x1 + am2x2 + ... + amnxn = bm

xi = 0 i /∈ J
xi ≥ 0 i ∈ J

How to solve RP? Recall that Ax = b, x ≥ 0 can be solved via
solving an extended LP.
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But how to solve RP? II

RP (extended through introducing slack variables):

min w = s1 +s2 ... +sm
s.t. s1 +a11x1 ... +a1nxn = b1

s2 +a21x1 ... +a2nxn = b2
... ...

sm +am1x1 ... +amnxn = bm
xi = 0 i /∈ J
xi ≥ 0 i ∈ J
si ≥ 0 ∀i

Intuitively, RP aims to minimize infeasibility of
Ax = b, x ≥ 0.

1 If wOPT = 0, then we find a feasible solution to RP, implying
that y is an optimal solution;

2 If wOPT > 0, y is not an optimal solution.
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Step 2: x ⇒ ∆y I

Alternatively, we can solve the dual of RP, called DRP:

max w = b1y1 + b2y2 + ... + bmym
s.t. a11y1 + a21y2 + ... + am1ym ≤ 0

a12y1 + a22y2 + ... + am2ym ≤ 0
...

a1|J|y1 + a2|J|y2 + ... + am|J|ym ≤ 0
y1, y2, ... ym ≤ 1

1 If wOPT = 0, y is an optimal solution.
2 If wOPT > 0, y is not an optimal solution. However, the

optimal solution to DRP, denoted as ∆y, can be used to
improve y as RP aims to minimize primal infeasibility.
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The difference between DRP and D
Dual problem D:

max b1y1 + b2y2 + ... + bmym
s.t. a11y1 + a21y2 + ... + am1ym ≤ c1

a12y1 + a22y2 + ... + am2ym ≤ c2
...

a1ny1 + a2ny2 + ... + amnym ≤ cn

DRP:
max w = b1y1 + b2y2 + ... + bmym

s.t. a11y1 + a21y2 + ... + am1ym ≤ 0
a12y1 + a22y2 + ... + am2ym ≤ 0

...
a1|J|y1 + a2|J|y2 + ... + am|J|ym ≤ 0

y1, y2, ... ym ≤ 1

How to write DRP from D?
Replacing ci with 0;
Keeping only |J| restrictions in DRP;
Additional constraints: y1, y2, ..., ym ≤ 1;
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Step 3: ∆y ⇒ y I

Why ∆y can be used to improve y?
From the point of view of RP, the corresponding primal
variables x minimizes primal infeasibility.
Now we explain this from the point of view of objective value.
Consider an improved dual solution y′ = y+θ∆y, θ > 0. We
have:
Objective function: Since ∆yTb = wOPT > 0,
y′Tb = yTb + θwOPT > yTb. In other words, (y + θ∆y) is
better than y.
Constraints: The dual feasibility requires that:

For any j ∈ J, a1j∆y1 + a2j∆y2 + ...+ amj∆ym ≤ 0. Thus we
have y′Taj = yTaj + θ∆yTaj ≤ cj for any θ > 0.
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Step 3: ∆y ⇒ y II

For any j /∈ J, there are two cases:
1 ∀j /∈ J, a1j∆y1 + a2j∆y2 + ...+ amj∆ym ≤ 0:

Thus y′ is feasible for any θ > 0 since for ∀1 ≤ j ≤ n,

a1jy′
1 + a2jy′

2 + ...+ amjy′
m (1)

= a1jy1 + a2jy2 + ...+ amjym (2)
+ θ(a1j∆y1 + a2j∆y2 + ...+ amj∆ym) (3)
≤ cj (4)

Hence dual problem D is unbounded and the primal problem
P is infeasible.

2 ∃j /∈ J, a1j∆y1 + a2j∆y2 + ...+ amj∆ym > 0:
We can safely set θ ≤ cj−(a1jy1+a2jy2+...+amjym)

a1j∆y1+a2j∆y2+...+amj∆ym
=

cj−yTaj
∆yTaj

to
guarantee that y′Taj = yTaj + θ∆yTaj ≤ cj.
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Primal and dual algorithm

Primal P

x

Step 1: y ⇒ x

Dual D

y

Step 2: x ⇒ ∆y
Restricted
Primal

RP
x

Step 3: y = y+θ∆y

Dual of RP
DRP

∆y
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Primal and dual algorithm
1: Infeasible = “No”

Optimal = “No”
y = y0; //y0 is a feasible solution to the dual problem D

2: while TRUE do
3: Finding tight constraints index J, and set corresponding xj = 0 for

j /∈ J.
4: Thus we have a smaller RP.
5: Solve DRP. Denote the solution as ∆y.
6: if DRP objective function wOPT = 0 then
7: Optimal=“Yes”
8: return y;
9: end if

10: if ∆yTaj ≤ 0 (for all j /∈ J) then
11: Infeasible = “Yes”;
12: return ;
13: end if
14: Set θ = min

cj−yTaj
∆yTaj

for ∆yTaj > 0, j /∈ J.
15: Update y as y = y + θ∆y;
16: end while
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Advantages of Primal and Dual algorithm

Primal and dual algorithm ends if using anti-cycling rule.
(Reason: the objective value yTb increases if there is no
degeneracy.)
Both RP and DRP do not explicitly rely on c. In fact, the
information of c is represented in J.
This leads to another advantage of primal and dual technique, i.e.,
RP is usually a purely combinatorial problem. Take
ShortestPath as an example. RP corresponds to a “connection”
problem. An optimal solution to DRP usually has combinatorial
explanation, especially for graph-theory problems.
More and more constraints become tight in the primal and dual
process.
Unlike dual simplex starting from a dual basic feasible solution,
Primal and Dual method requires only a dual feasible solution.
(See Lecture 10 for a primal and dual algorithm for
MaximumFlow problem. )
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ShortestPath: Dijkstra’s algorithm is essentially Primal_Dual
algorithm
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ShortestPath problem

INPUT: n cities, and a collection of roads. A road from city i to j
has a distance d(i, j). Two specific cities: s and t.
OUTPUT: the shortest path from city s to t.

s
u

v
t

5

61
8

2
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ShorestPath problem: Primal problem
s

u

v
t

5

61
8

2

x1

x4
x3

x2

x5

Primal problem: set variables for roads (Intuition: xi = 0/1
means whether edge i appears in the shortest path), and a
constraint means that “we enter a node through an edge and
leaves it through another edge”.
min 5x1 + 8x2 + 1x3 + 6x4 + 2x5
s.t. x1 + x2 = 1 vertex s

− x4 − x5 = −1 vertex t
−x1 + x3 + x4 = 0 vertex u

− x2 − x3 + x5 = 0 vertex v
x1 , x2 , x3 , x4 , x5 = 0/1

119 / 191



ShorestPath problem
s

u

v
t

5

61
8

2

x1

x4
x3

x2

x5

Primal problem: relax the 0/1 integer linear program into
linear program by the totally uni-modular property.
min 5x1 + 8x2 + 1x3 + 6x4 + 2x5
s.t. x1 + x2 = 1 vertex s

− x4 − x5 = −1 vertex t
−x1 + x3 + x4 = 0 vertex u

− x2 − x3 + x5 = 0 vertex v
x1 , x2 , x3 , x4 , x5 ≤ 1
x1 , x2 , x3 , x4 , x5 ≥ 0
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ShorestPath problem: simplification
s

u

v
t

5

61
8

2

x1

x4
x3

x2

x5

Primal problem: relax the 0/1 integer linear program into
linear program by the totally uni-modular property.

min 5x1 + 8x2 + 1x3 + 6x4 + 2x5
s.t. x1 + x2 = 1 vertex s

− x4 − x5 = −1 vertex t
−x1 + x3 + x4 = 0 vertex u

− x2 − x3 + x5 = 0 vertex v
x1 , x2 , x3 , x4 , x5 ≥ 0
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Dual of ShortestPath problem

s
u

v
t

5

618

2

height

yt
yv

yu
ys

Dual problem: set variables for cities. (Intuition: yi means
the height of city i; thus, ys − yt denotes the height difference
between s and t, providing a lower bound of the shortest path
length.)

max ys − yt
s.t. ys − yu ≤ 5 x1 : edge (s, u)

ys − yv ≤ 8 x2 : edge (s, v)
yu − yv ≤ 1 x3 : edge (u, v)

− yt + yu ≤ 6 x4 : edge (u, t)
− yt + yv ≤ 2 x5 : edge (v, t)
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A simplified version

s
u

v
t

5

618

2

height

yt
yv

yu
ys

Dual problem: simplify by setting yt = 0 (and remove the
2nd constraint in the primal problem P, accordingly)

max ys
s.t. ys − yu ≤ 5 x1 : edge (s, u)

ys − yv ≤ 8 x2 : edge (s, v)
yu − yv ≤ 1 x3 : edge (u, v)
yu ≤ 6 x4 : edge (u, t)

yv ≤ 2 x5 : edge (v, t)
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Iteration 1 I

Dual feasible solution: yT = (0, 0, 0). Let’s check the constraints in
D:

ys − yu < 5 ⇒ x1 = 0
ys − yv < 8 ⇒ x2 = 0

yu − yv < 1 ⇒ x3 = 0
yu < 6 ⇒ x4 = 0

yv < 2 ⇒ x5 = 0

Identifying tight constraints in D: J = Φ, implying that
x1, x2, x3, x4, x5 = 0.

RP:

min s1 +s2 +s3
s.t. s1 +x1 +x2 = 1 node s

s2 −x1 +x3 +x4 = 0 node u
s3 −x2 −x3 +x5 = 0 node v

s1, s2, s3, ≥ 0
x1, x2, x3, x4, x5 = 0
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Iteration 1 II

DRP:
max ys

s.t. ys ≤ 1
yu ≤ 1

yv ≤ 1

Solve DRP using combinatorial technique: optimal solution
∆yT = (1, 0, 0). Note: the optimal solution is not unique

Step length θ: θ = min{ c1−yTa1
∆yTa1

, c2−yTa2
∆yTa2

} = min{5, 8} = 5

Update y: yT = yT + θ∆yT = (5, 0, 0).
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Iteration 1 III

s

u v t

5 8

1 2

6

height

yu = yv = yt = 0

ys = 5

From the point of view of Dijkstra’s algorithm:
Optimal solution to DRP is ∆yT = (1, 0, 0): the explored
vertex set S = {s} in Dijkstra’s algorithm. In fact, DRP is
solved via identifying the nodes reachable from s.
Step length θ = min{ c1−yTa1

∆yTa1
, c2−yTa2

∆yTa2
} = min{5, 8} = 5:

finding the closest vertex to the nodes in S via comparing all
edges going out from S.

126 / 191



Iteration 2 I

Dual feasible solution: yT = (5, 0, 0). Let’s check the constraints in
D:

ys − yu = 5
ys − yv < 8 ⇒ x2 = 0

yu − yv < 1 ⇒ x3 = 0
yu < 6 ⇒ x4 = 0

yv < 2 ⇒ x5 = 0

Identifying tight constraints in D: J = {1}, implying that
x2, x3, x4, x5 = 0.

RP:

min s1 +s2 +s3
s.t. s1 +x1 +x2 = 1 node s

s2 −x1 +x3 +x4 = 0 node u
s3 −x2 −x3 +x5 = 0 node v

s1, s2, s3, ≥ 0
x2, x3, x4, x5 = 0
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Iteration 2 II

DRP:
max ys

s.t. ys − yu ≤ 0
ys , yu , yv ≤ 1

Solve DRP using combinatorial technique: optimal solution
∆yT = (1, 1, 0). Note: the optimal solution is not unique

Step length θ:
θ = min{ c2−yTa2

∆yTa2
, c3−yTa3

∆yTa3
, c4−yTa4

∆yTa4
} = min{3, 1, 6} = 1

Update y: yT = yT + θ∆yT = (6, 1, 0).
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Iteration 2 III

s

u

v t

5

1

2

6
8

height

yv = yt = 0

ys = 6

yu = 1

From the point of view of Dijkstra’s algorithm:
Optimal solution to DRP is ∆yT = (1, 1, 0): the explored
vertex set S = {s, u} in Dijkstra’s algorithm. In fact, DRP is
solved via identifying the nodes reachable from s.
Step length
θ = min{ c2−yTa2

∆yTa2
, c3−yTa3

∆yTa3
, c4−yTa4

∆yTa4
} = min{3, 1, 6} = 1:

finding the closest vertex to the nodes in S via comparing all
edges going out from S.
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Iteration 3 I

Dual feasible solution: yT = (6, 1, 0). Let’s check the constraints in
D:

ys − yu = 5
ys − yv < 8 ⇒ x2 = 0

yu − yv = 1
yu < 6 ⇒ x4 = 0

yv < 2 ⇒ x5 = 0

Identifying tight constraints in D: J = {1, 3}, implying that
x2, x4, x5 = 0.

RP:

min s1 +s2 +s3
s.t. s1 +x1 +x2 = 1 node s

s2 −x1 +x3 +x4 = 0 node u
s3 −x2 −x3 +x5 = 0 node v

s1, s2, s3, ≥ 0
x2, x4, x5 = 0
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Iteration 3 II

DRP:
max ys

s.t. ys − yu ≤ 0
yu − yv ≤ 0

ys , yu , yv ≤ 1

Solve DRP using combinatorial technique: optimal solution
∆yT = (1, 1, 1).

Step length θ: θ = min{ c4−yTa4
∆yTa4

, c5−yTa5
∆yTa5

} = min{5, 2} = 2

Update y: yT = yT + θ∆yT = (8, 3, 2).
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Iteration 3 III

s

u

v

t

5

1

2
6

8

height

yv = 2

yt = 0

ys = 8

yu = 3

From the point of view of Dijkstra’s algorithm:
Optimal solution to DRP is ∆yT = (1, 1, 1): the explored
vertex set S = {s, u, v} in Dijkstra’s algorithm. In fact, DRP is
solved via identifying the nodes reachable from s.
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Iteration 3 IV

Step length θ = min{ c4−yTa4
∆yTa4

, c5−yTa5
∆yTa5

} = min{5, 2} = 2:
finding the closest vertex to the nodes in S via comparing all
edges going out from S.
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Iteration 4 I

Dual feasible solution: yT = (8, 3, 2). Let’s check the constraints in
D:

ys − yu = 5
ys − yv < 8 ⇒ x2 = 0

yu − yv = 1
yu < 6 ⇒ x4 = 0

yv = 2

Identifying tight constraints in D: J = {1, 3, 5}, implying that
x2, x4 = 0.

RP:

min s1 +s2 +s3
s.t. s1 +x1 +x2 = 1 node s

s2 −x1 +x3 +x4 = 0 node u
s3 −x2 −x3 +x5 = 0 node v

s1, s2, s3, ≥ 0
x2, x4 = 0
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Iteration 4 II

DRP:
max ys

s.t. ys − yu ≤ 0
yu − yv ≤ 0

yv ≤ 0
ys , yu , yv ≤ 1

Solve DRP using combinatorial technique: optimal solution
∆yT = (0, 0, 0). Done!
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Iteration 4 III

s

u

v

t

5

1

2
6

8

height

yv = 2

yt = 0

ys = 8

yu = 3

From the point of view of Dijkstra’s algorithm:
Optimal solution to DRP is ∆yT = (0, 0, 0): there is a path
from s to t, forcing ys = 0 (note yt is fixed to be 0). This
corresponds to the explored node set S = {s, u, v, t} in
Dijkstra’s algorithm.

Another intuitive explanation: the tightest rope when picking up s.
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Application 1: A succinct proof of Farkas lemma [1894]
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Theorem (Farkas lemma)
Given vectors a1, a2, ..., am, c ∈ Rn. Then either

1 c ∈ C(a1, a2, ..., am); or
2 there is a vector y ∈ Rn such that for all i, yTai ≥ 0 but

yTc < 0.

a1

a2

C(a1, a2)

c
y

y

Figure: Case 1: c ∈ C(a1, a2)

a1

a2

C(a1, a2)

c

y

Figure: Case 2: c /∈ C(a1, a2)

Here, C(a1, ..., am) denotes the cone spanned by a1, ..., am,
i.e. C(a1, ..., am) = {x|x =

∑m
i=1 λiai, λi ≥ 0}.
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Proof.
Suppose for any vector y ∈ Rn, yTai ≥ 0 (i = 1, 2, ...,m), we always
have yTc ≥ 0. We will show that c should lie within the cone
C(a1, a2, ..., am).
Consider the following Primal problem:

min cTy
s.t. aT

i y ≥ 0 i = 1, 2, ...,m

It is obvious that the Primal problem has a feasible solution y = 0,
and is bounded since cTy ≥ 0.
Thus the Dual problem also has a bounded optimal solution:

max 0
s.t. xTAT = cT

x ≥ 0

In other words, there exists a vector x such that c =
∑m

i=1 xiai and
xi ≥ 0.
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Variants of Farkas’ lemma

Farkas’ lemma lies at the core of linear optimization. Using Farkas’
lemma, we can prove Separation theorem, and MiniMax
theorem in the game theory.

Theorem
Let A be an m × n matrix, and b ∈ Rm. Then either

1 Ax = b, x ≥ 0 has a feasible solution; or
2 there is a vector y ∈ Rm such that yTA ≥ 0 but yTb < 0.
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Variants of Farkas’ lemma

Theorem
Let A be an m × n matrix, and b ∈ Rm. Then either

1 Ax ≤ b has a feasible solution; or
2 there is a vector y ∈ Rm such that y ≥ 0, yTA ≥ 0 but

yTb < 0.
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Caratheodory’s theorem

Theorem
Given vectors a1, a2, ..., am ∈ Rn. If x ∈ C(a1, a2, ..., am), then
there is a linearly independent vector set of a1, a2, ..., am, say
a1, a2, ..., ar, such that x ∈ C(a1, a2, ..., ar).
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Separation theorem

Theorem
Let C ⊆ Rn be a closed, convex set, and let x ∈ Rn. If x /∈ C, then
there exists a hyperplane separating x from C.
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Application 2: von Neumann’s MiniMax theorem on game theory
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Game theory
Game theory studies competing and cooperative behaviours
among intelligent and rational decision-makers.
In 1928, John von Neumann proved the existence of
mixed-strategy equilibria in two-person zero-sum games.
In 1950, John Forbes Nash Jr. developed a criterion of mutual
consistency of players’ strategies, which applies to a wider
range of games than that proposed by J. von Neumann. He
proved the existence of Nash equilibrium in every n-player,
non-zero-sum, non-cooperative game (not just 2-player,
zero-sum games).
Game theory was widely applied in mathematical economics,
in biology (e.g., analysis of evolution and stability) and
computer science (e.g., analysis of interactive computations
and lower bound on the complexity of randomized algorithms,
the equivalence between linear program and two-person
zero-sum game).
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Paper-rock-scissors: an example of two-player zero-sum
game

Paper-rock-scissors is a hand game usually played by two
players, denoted as row player and column player: each player
selects one of the three hand shapes, including “paper”,
“rock”, and “scissors”; then the players show their selections
simultaneously.
It has two possible outcomes other than tie: one player wins
and the other player loses, which can be formally described
using the following payoff matrix.

Paper Rock Scissors
Paper 0, 0 1, -1 -1, 1
Rock -1, 1 0, 0 1, -1

Scissors 1, -1 -1, 1 0, 0

Each player attempts to select appropriate action to maximize
his gain.
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Matching penny: another example of two-person zero-sum
game

Matching pennies is a game played by two players, namely,
row player and column player. Each player has a penny and
secretly turns it to head or tail. The players then reveal their
selections simultaneously.
If the pennies match, then row player keeps both pennies;
otherwise, column player keeps both. The payoff matrix is as
follows.

Head Tail
Head 1, -1 -1, 1
Tail -1, 1 1, -1

Each player tries to maximize his gain via making an
appropriate selection.
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Simultaneous games vs. sequential games
Simultaneous games are games in which all players move
simultaneously. Thus, no player have information of the
others’ selections in advance.
Sequential games are games in which the later player has
some information, although maybe imperfect, of previous
actions by the other players. A complete plan of action for
every stage of the game, regardless of whether the action
actually arises in play, is denoted as a (pure) strategy.
Normal form is used to describe simultaneous games while
extensive form is used to describe sequential games.
J. von Neumann proposed an approach to transform
strategies in sequential games into actions in
simultaneous games.
Note that the transformation is one-way, i.e., multiple
sequential games might correspond to the same simultaneous
game, and it may result in an exponential blowup in the size
of the representation.
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Normal form

A game Γ in normal form among m players contains the
following items:

Each player k has a finite number of pure strategies
Sk = {1, ..., nk}.
Each player k is associated with a payoff function
Hk : S1 × S2 × ...× Sm → R.

To play the game, each player selects a strategy without
information of others, and then reveals the selection
simultaneously. The players’ gain are calculated using
corresponding payoff functions.
Each player attempts to maximize his gain via selecting an
appropriate strategy.
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Two-person zero-sum game in normal form

In a two-person zero-sum game game Γ, a player’s gain or less
is exactly balanced by the other player’s loss or gain, i.e.,

H1(s1, s2) + H2(s1, s2) = 0.

Thus we can define another function

H(s1, s2) = H1(s1, s2) = −H2(s1, s2)

and represent it using a payoff matrix.
Head Tail

Head 1 -1
Tail -1 1

Row player aims to maximize H(s1, s2) by selecting an
appropriate strategy s1 while column player aims to minimize
H(s1, s2) by selecting an appropriate strategy s2.
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von Neumann’s MiniMax theorem: motivation
When analyzing a two-person zero-sum game Γ, von
Neumann noticed that the difficulty comes from the difference
between games and ordinary optimization problems: row
player tries to maximize H(s1, s2); however, he can
control s1 only as he has no information of the other
player’s selection s2, and so does column player.
Thus von Neumann suggested to investigate two auxiliary
games without this difficulty, denoted as Γ1 and Γ2, before
attacking the challenging game Γ.

1 Γ1: Row player selects a strategy s1 first, and exposes his
selection to column player before column player selects a
strategy s2.

2 Γ2: Column player selects a strategy s2 first, and exposes his
selection to row player before row player selects a strategy s1.

The two auxiliary games are much easier than the original
game Γ, and more importantly, they provide upper and lower
bounds for Γ.
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Auxiliary game Γ1

Let’s consider column player first. As he knows row player’s
selection s1, the objective function H(s1, s2) becomes an
ordinary optimization function over a single variable s2, and
column player can simply select a strategy s2 with the
minimum objective function value mins2 H(s1, s2).

Head Tail Row minimum
Head -2 1 -2
Tail -1 2 v1 = −1

Now consider row player. When he selects a strategy s1, he
can definitely predict the selection of column player. Since
mins2 H(s1, s2) is an ordinary function over a single s1, it is
easy for row player to select a strategy s1 with the maximum
objective function value

v1 = max
s1

min
s2

H(s1, s2).
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Auxiliary game Γ2

Let’s consider row player first. As he knows column player’s
selection s2, the objective function H(s1, s2) becomes an
ordinary optimization function over a single variable s1, and
row player can simply select a strategy s1 with the maximum
objective function value maxs1 H(s1, s2).

Head Tail
Head -2 1
Tail -1 2

Column maximum v2 = −1 2
Now consider column player. When he selects a strategy s2,
he can definitely predict the selection of row player. Since
maxs1 H(s1, s2) is an ordinary function over a single variable
s2, it is easy for column player to select a strategy s2 with the
minimum objective function value

v2 = min
s2

max
s1

H(s1, s2).
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Γ1 and Γ2 bound Γ

For row player, it is clearly Γ1 is disadvantageous to him as he
should expose his selection s1 to column player.
On the contrary, Γ2 is beneficial to row player as he knows
column player’s selection s2 before making decision.

Head Tail Row minimum
Head -2 1 -2
Tail -1 2 v1 = −1

Column maximum v2 = −1 2
Thus these two auxiliary games provides lower and upper
bounds:

v1 ≤ v ≤ v2

where v denotes row player’s gain in the original game Γ. In
other words, we always have:

max
s1

min
s2

H(s1, s2) ≤ min
s2

max
s1

H(s1, s2).
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Case 1: v1 = v2

For a game with the following payoff matrix, we have
v1 = v = v2 and call this game strictly determined.

Head Tail Row minimum
Head -2 1 -2
Tail -1 2 v1 = −1

Column maximum v2 = −1 2
The saddle point of the payoff matrix H(s1, s2) represents a
pure strategy equilibrium. In this equilibrium, each player
has nothing to gain by changing only his own strategy. In
addition, knowing the opponent’s selection will bring no
gain.
von Neumann proved the existence of the optimal strategy in
a perfect information two-person zero-sum game, e.g., chess.
L. S. Shapley further showed that a finite two-person
zero-sum game has a pure strategy equilibrium if every 2 × 2
submatrix of the game has a pure strategy equilibrium [?].
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Case 2: v1 < v2

In contrast, matching penny does not have a pure strategy
equilibrium as there is no saddle point in the payoff matrix.
So does the paper-rock-scissors game.

Head Tail Row minimum
Head 1 -1 -1
Tail -1 1 v1 = −1

Column maximum v2 = 1 1
This fact implies that knowing the opponent’s selection might
bring gain; however, it is impossible to know the opponent’s
selection as the players reveal their selections simultaneously.
In this case, let’s play a mixed strategy rather than a pure
strategy.
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From pure strategy to mixed strategy

A mixed strategy is an assignment of probability to pure
strategies, allowing a player to randomly select a pure
strategy.
Consider the payoff matrix as below. If the row player select
strategy A with probability 1, he is said to play a pure
strategy. If he tosses a coin and select strategy A if the coin
lands head and B otherwise, then he is said to play a mixed
strategy.

A B
A 1 -1
B -1 1
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Two types of interpretation of mixed strategy

From a player’s viewpoint: J. von Neumann described the
motivation underlying the introduction of mixed strategy as
follows: since it is impossible to exactly know opponent’s
selection, a player could switch to protect himself by
“randomly selecting his own strategy”, making it difficult
for the opponent to know the player’s selection. However, this
interpretation came under heavy fire for lacking of behaviour
supports: Seldom do people make choices following a lottery.
From opponent’s viewpoint: Robert Aumann and Adam
Brandenburger interpreted mixed strategy of a player as
opponent’s “belief” of the player’s selection. Thus, Nash
equilibrium is an equilibrium of “belief” rather than actions.
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Existence of mixed strategy equilibrium
Consider a mixed strategy game: row player has m strategies
available and he selects a strategy s1 according to a
distribution u, while column player has n strategies available
and he selects a strategy s2 according to a distribution v, i.e.,

Pr(s1 = i) = ui, i = 1, ..., n Pr(s2 = j) = vj, j = 1, ...,m

Here, u and v are independent.
Thus the expected gain of row player is:∑m

i=1

∑n

j=1
uiHijvj = uTHv

The row player attempts to minimize uTHv via selecting an
appropriate u, while column player attempts to maximize it
via selecting an appropriate v.
Now let’s consider the two auxiliary games Γ1 and Γ2 again
and answer the following questions: what happens if row
player exposes his mixed strategy to column player? And if we
reverse the order of the players?
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von Neumann’s MiniMax theorem [1928]

This question has been answered by the von Neumann’s
MiniMax theorem.

Theorem

max
u

min
v

uTHv = min
v

max
u

uTHv

The theorem states that knowing the other player’s
strategy will bring no gain in a mixed-strategy zero-sum
game, and the order doesn’t change the value.
A mixed-strategy Nash equilibrium exists for any
two-person zero-sum game with a finite set of actions. A
Nash equilibrium in a two-player game is a pair of strategies,
each of which is a best response to the other.
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Pure strategy vs. mixed strategy

Pure strategy:

max
s1

min
s2

H(s1, s2) ≤ min
s2

max
s1

H(s1, s2).

Mixed strategy:

max
u

min
v

uTHv = min
v

max
u

uTHv
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von Neumann’s MiniMax theorem: proof

Let’s consider the auxiliary game Γ1 first, in which the
strategy of row player, i.e., u, was exposed to column player.
This is of course beneficial to column player since he can
select the optimal strategy v to minimize uTHv, which is

inf{uTHv|v ≥ 0, 1Tv = 1} = min
j=1,...,n

(uTH)j

Thus row player should select u to maximize the above value,
which can be formulated as a linear program:

max min
j=1,...,n

(uTH)j

s.t. 1Tu = 1
u ≥ 0
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von Neumann’s MiniMax theorem: proof
The linear program can be rewritten as below.

max s
s.t. uTH ≥ s1T

1Tu = 1
u ≥ 0

Similarly we consider the auxiliary game Γ2 and calculate the
optimal strategy v by solving the following linear program.

min t
s.t. Hv ≤ t1

1Tv = 1
v ≥ 0

These two linear programs are both feasible and form
Lagrangian dual. Thus they have the same optimal objective
value according to the strong duality property.
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An example: paper-rock-scissors game
For the paper-rock-scissors game, we have the following two
linear programs.

Linear program for Γ1:
max s

s.t. 0u1 − u2 + u3 ≥ s
u1 + 0u2 − u3 ≥ s

−u1 + u2 + 0u3 ≥ s
u1 + u2 + u3 = 1
u1, u2, u3 ≥ 0

Linear program for Γ2:
min t
s.t. 0v1 + v2 − v3 ≤ t

−v1 + 0v2 + v3 ≤ t
v1 − v2 + 0v3 ≤ t
v1 + v2 + v3 = 1
v1, v2, v3 ≥ 0

The mixed strategy equilibrium is uT = [1
3 ,

1
3 ,

1
3 ] and

uT = [1
3 ,

1
3 ,

1
3 ] with the game value 0.
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Comments on the mixed strategy equilibrium by von
Neumann

Note that a mixed strategy equilibrium always exists no
matter whether the payoff matrix H has a saddle point or not.
Regardless of column player’s selection, row player can select
an appropriate strategy to guarantee his gain v1 ≥ 0.
Regardless of row player’s selection, column player can select
an appropriate strategy to guarantee row player’s gain v1 ≤ 0.
Using the strategy uT = [1

3 ,
1
3 ,

1
3 ], row player can guarantee

that he “won’t lose”, i.e., the probability of losing is less than
the probability of winning.
The strategy uT = [1

3 ,
1
3 ,

1
3 ] is designed for “protecting

himself” rather than “attacking his opponent”, i.e., it cannot
be used to benefit from opponent’s fault.
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Application 3: Yao’s MiniMax principle [1977]
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Yao’s MiniMax principle

Consider a problem Π. Let A = {A1,A2, ...,An} be
algorithms to Π, and I = {I1, I2, ..., Im} be the inputs with a
given size. Let T(Ai, Ij) be the running time of algorithm Ai
on the input Ij.

A1 A2
I1 T11 T12
I2 T21 T22

Thus max
Ij∈I

T(Ai, Ij) represents the worst-case time for the
deterministic algorithm Ai.
For a randomized algorithms, however, it is usually difficult to
bound its expected running time on worst-case input.
Yao’s MiniMax principle provides a technique to build lower
bound for the expected running time of any randomized
algorithm on its worst-case input.
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Expected running time of a randomized algorithm Aq

A “Las Vegas” randomized algorithm can be viewed as a
distribution over all deterministic algorithms
A = {A1,A2, ...,An}.
Specifically, let q be a distribution over A, and Aq be a
randomized algorithm chosen according to q, i.e., Aq refers to
a deterministic algorithm Ai with probability qi.
Given a input Ij, the expected running time of Aq can be
written as

E[T(Aq, Ij)] =
n∑

i=1
qiT(Ai, Ij)

Thus max
Ij∈I

E[T(Aq, Ij)] represents the expected running time
of Aq on its worst-case input.
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Expected running time of a deterministic algorithm Ai on
random input

Now consider a deterministic algorithm Ai running on random
input.
Let p be a distribution over I, and Ip be a random input
chosen from I, i.e., Ip refers to Ij with probability pj.
Given a deterministic algorithm Ai, its expected running time
on random input Ip can be written as

E[T(Ai, Ip)] =
m∑

j=1
pjT(Ai, Ij)

Thus min
Ai∈A

E[T(Ai, Ip)] represents the expected running time
of the best deterministic algorithm on the random input Ip.
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Yao’s MiniMax principle

Theorem
For any random input Ip and randomized algorithm Aq,

min
Ai∈A

E[T(Ai, Ip)] ≤ max
Ij∈I

E[T(Aq, Ij)]

To establish a lower bound for the expected running time of a
randomized algorithm on its worst-case input, it suffices to
find an appropriate distribution over inputs and prove that on
this random input, no deterministic algorithm can do better
than the randomized one.
The power of this technique lies at the fact that one can
choose any distribution over inputs and the lower bound is
constructed based on deterministic algorithms.

170 / 191



Yao’s MiniMax principle: proof

Proof.

min
Ai∈A

E[T(Ai, Ip)] ≤ max
u∈∆m

min
Ai∈A

E[T(Ai, Iu)] (1)

= max
u∈∆m

min
v∈∆n

E[T(Av, Iu)] (2)

= min
v∈∆n

max
u∈∆m

E[T(Av, Iu)] (3)

= min
v∈∆n

max
Ij∈I

E[T(Av, Ij)] (4)

≤ max
Ij∈I

E[T(Aq, Ij)] (5)

Here, ∆n denotes the set of n-dimensional probability vectors.
Equation (3) follows by the von Neumann’s MiniMax
theorem.
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Appendix: Slater theorem
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Strong duality and Slater’s condition [Morton Slater, 1950]

Slater’s condition is a sufficient condition for strong duality to
hold for a convex optimization problem.
Consider a convex optimization problem.

min f0(x)
s.t. fi(x) ≤ 0 i = 1, ...,m

Ax = b

where fi(x) (i = 0, 1, ...,m) are convex.

We use D =
m∩

i=0
dom fi to represent the domain of definition.

We use p∗ to represent the optimal value of the problem and
d∗ the optimal value of the dual problem.
For the sake simplicity, we assume that p∗ is finite and the
interior of D is non-empty, i.e. relint D = int D.
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Slater’s conditions for general convex problem

Slater’s condition: There exists a vector (called Slater vector)
x̃ ∈ relint D such that the inequality constraints strictly
hold:

fi(x̃)<0, i = 1, ...,m, Ax̃ = b

Theorem
If Slater’s condition holds, then there is no duality gap, i.e.
p∗ = d∗, and the set of dual optimal solutions is non-empty and
bounded.
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Slater’s condition for convex program over linear
constraints

Affine constraints are not required to hold strictly, i.e.,
suppose the first k constraints are affine, the Slater’s condition
becomes: There exists a Slater vector x̃ ∈ relintD such that

fi(x̃)≤0, i = 1, ..., k, fi(x̃)<0, i = k + 1, ...,m, Ax̃ = b

A special case is convex program over linear constraints.

min f0(x)
s.t. Ax ≤ b

where f0(x) is convex. For such problems, Slater’s condition
simply reduces to: there exists a Slater vector
x̃ ∈ relint domf0 such that Ax̃ ≤ b.
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Example 1: Least square problem

Primal problem:
min xTx
s.t. Ax = b

Dual problem:
max−1

4yTAATy − bTy

Strong duality always holds if the primal problem is feasible,
i.e., there exists a x̃ such that Ax̃ = b.
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Example 2: Linear program

Primal problem:
min cTx
s.t. Ax ≥ b

x ≥ 0
Dual problem:

max bTy
s.t. y ≥ 0

ATy ≤ c
For linear programs, strong duality always holds if the primal
problem is feasible. Similarly, strong duality always holds if
the dual problem is feasible.
The only case where strong duality fails is that neither primal
nor dual problems is feasible.
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Example 3: Quadratic objective over quadratic constraints
I

Primal problem:

min 1
2xTP0x + qT

0 x + r0
s.t. 1

2xTPix + qT
i x + ri ≤ 0 i = 1, ...,m

where P0 is positive definite, and Pi (i = 1, ..,m) are
semi-positive definite.
Lagrangian function:

L(x, λ) = 1
2xTP(λ)x + q(λ)Tx + r(λ)

where

P(λ) = P0−
m∑

i=1
λiPi, q(λ) = q0−

m∑
i=1

λiqi, r(λ) = r0−
m∑

i=1
λiri

.
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Example 3: Quadratic objective over quadratic constraints
II

Lagrangian dual function:

g(λ) = inf
x

L(x, λ) = −1
2q(λ)TP(λ)−1q(λ) + r(λ)

as P(λ) is positive definite when λ ≤ 0.
Dual problem:

max −1
2q(λ)TP(λ)−1q(λ) + r(λ)

s.t. λ ≤ 0

According to Slater’s condition, strong duality holds when
quadratic constraints strictly hold, i.e., there exists a Slater
vector x such that 1

2xTPix + qT
i x + ri<0 (i = 1, ...,m).
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An example not satisfying the Slater’s condition

Primal problem:

min e−
√x1

√x2

s.t. x1 ≤ 0

Here D = {x | x1 ≥ 0, x2 ≥ 0} and
relint D = {x | x1 > 0, x2 > 0}.
For this problem, Slater’s condition fails as there is no vector
x̃ ∈ relint D such that x1 ≤ 0. In fact, there is a duality gap.
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Basic idea of the proof
We will use a simple problem with a single constraint to
explain the basic idea of the proof.

min f0(x)
s.t. f1(x) ≤ 0

Lagrangian dual function:
g(λ) = inf

x∈D
(f0(x) + λf1(x))

To prove the theorem, it suffices to prove that when Slater’s
condition holds, d∗ = maxλ≥0 g(λ) ≥ p∗, i.e. there exists a
λ (λ ≥ 0) such that

g(λ) = inf
x∈D

(f0(x) + λf1(x)) ≥ p∗.

Basic idea: The Slater’s condition states the existence of a
x̃ ∈ D such that f1(x̃) < 0. Let’s denote ũ = f1(x̃) and
t̃ = f0(x̃). The two points, namely, (0, p∗) and (ũ, t̃), such
that ũ < 0 but t̃ ≥ p∗ guarantees the existence of a λ ≥ 0
such that for any x ∈ D, f0(x) + λf1(x) ≥ p∗.
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t

o u

p∗

d∗

B

A(ũ, t̃)

λ0t + λ1u = α

To find a λ ≥ 0 such that for any x ∈ D, f0(x) + λf1(x) ≥ p∗,
we first collect all possible values of f0(x) and f1(x)

G = {(f0(x), f1(x)) | x ∈ D}
and then construct its epigraph set

A = {(u, t) |∃ x ∈ D, f1(x) ≤ u, f0(x) ≤ t}.
Next we define another set

B = {(0, t) | t<q∗}.
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t

o u

p∗

d∗

B

A(ũ, t̃)

λ0t + λ1u = α

We claim that both A and B are convex and they are disjoint.
By Separating Hyperplane Theorem, there exists a hyperplane
λ0t + λ1u = α such that for any (u, t) ∈ A

λ0t + λ1u ≥ λ0p∗

We can further claim that λ0>0 and λ1 ≥ 0. By setting
λ = λ1

λ0
≥ 0, we finally prove that for any (u, t) ∈ A

t + λu ≥ p∗, and thus for any x ∈ D
f0(x) + λf1(x) ≥ p∗.
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Proof of claim 1: A and B are convex and disjoint
t

o u

p∗

d∗

B

A(ũ, t̃)

λ0t + λ1u = α

By the convexity of f0(x) and f1(x), it is clear A is convex.
Suppose there exists a point (u, t) ∈ A ∩ B.
(u, t) ∈ B implies u = 0, t < p∗ while (u, t) ∈ A implies the
existence of a x ∈ D such that

f0(x) ≤ t<p∗

which contradicts the optimality of p∗.
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Proof of claim 2: λ0t + λ1u ≥ λ0p∗ for any (u, t) ∈ A
t

o u

p∗

d∗

B

A(ũ, t̃)

λ0t + λ1u = α

By Separating Hyperplane Theorem, we have
λ0t + λ1u ≥ α for any (u, t) ∈ A
λ0t + λ1u ≤ α for any (u, t) ∈ B

Note that λ1 ≥ 0 and λ0 ≥ 0 (Otherwise, λ1t + λ0u will not
have a lower bound over A.)
For any (0, t) ∈ B, λ0t ≤ α holds, implying λ0p∗ ≤ α.
Therefore, we have λ0t + λ1u ≥ α ≥ λ0p∗ for any (u, t) ∈ A.
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Proof of claim 3: λ0>0

t

o u

p∗

d∗

B

A(ũ, t̃)

λ0t + λ1u = α

Assuming λ0 = 0, the inequality λ0t + λ1u ≥ λ0p∗ reduces
into λ1u ≥ 0 for any (u, t) ∈ A, impling that for any x ∈ D

λf1(x) ≥ 0.

This contradicts with the existence of a Slater’s vector
x̃ ∈ relint D such that f1(x)<0.
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Appendix: Finding initial solution to dual problem
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Finding initial solution to dual problem
Consider a primal problem P:

min c1x1 + c2x2 + ... + cnxn
a11x1 + a12x2 + ... + a1nxn = b1
a21x1 + a22x2 + ... + a2nxn = b2

...
am1x1 + am2x2 + ... + amnxn = bm

xi ≥ 0 for each i

and its dual problem D:

max b1y1 + b2y2 + ... + bmym
a11y1 + a21y2 + ... + am1ym ≤ c1
a12y1 + a22y2 + ... + am2ym ≤ c2

...
a1ny1 + a2ny2 + ... + amnym ≤ cn

If ci ≥ 0, it is easy to set initial dual solution yj = 0 j = 1, ...,m. In
general, however, it is not easy to obtain an initial dual solution
directly.
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Solving modified primal [Beale, 1954; Dantzig, 1956]
Let’s modify P by adding an extra constraint:

min c1x1 + c2x2 + ... + cnxn
s.t. x1 + x2 + ... + xn ≤ b0

a11x1 + a12x2 + ... + a1nxn = b1
a21x1 + a22x2 + ... + a2nxn = b2

...
am1x1 + am2x2 + ... + amnxn = bm

x1, x2, ... xn ≥ 0
and consider the corresponding dual problem:
max b0y0 + b1y1 + b2y2 + ... + bmym

s.t. y0+ a11y1 + a21y2 + ... + am1ym ≤ c1
y0+ a12y1 + a22y2 + ... + am2ym ≤ c2

...
y0+ a1ny1 + a2ny2 + ... + amnym ≤ cn

y0 ≤ 0
Here x0 is a slack variable, b0 is unspecified but is thought of as
being arbitrarily large. Notice that a feasible dual solution is readily
available: y0 = min{0, c1, ..., cn} and yi = 0 for i > 0.
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Finding initial dual basic feasible solution
The initial dual basic feasible solution can be constructed by
pivoting using x0 as leaving variable and using xi with the
minimum ci as entering variable. Note that the choice of
entering variable ensure that all entries in the first row is
nonnegative and thus we have a dual basic feasible solution.
For example, consider the following primal problem:

min −x1 −5x2 +x3
s.t. 2x1 −x2 +x3 ≤ 1

3x1 +4x2 −x3 ≤ 1
x1, x2, x3 ≥ 0

and the modified primal:
min −x1 −5x2 +x3
s.t. x0 +x1 +x2 +x3 = M

2x1 −x2 +x3 +x4 = 1
3x1 +4x2 −x3 +x5 = 1

x0, x1, x2, x3, x4, x5 ≥ 0
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Finding initial dual basic feasible solution: An example
The corresponding simplex tabular is:

x0 x1 x2 x3 x4 x5 RHS
Basis c0=0 c1=-1 c2=-5 c3= 1 c4=0 c5=0 −z = 0

x0 1 1 1 1 0 0 M
x4 0 2 -1 1 1 0 1
x5 0 3 4 -1 0 1 1

Now let x0 leave and x2 enter the basis. The new tableau is
dual feasible (although not primal feasible).

x0 x1 x2 x3 x4 x5 RHS
Basis c0=5 c1=4 c2=0 c3= 6 c4=0 c5=0 −z = −5M

x2 1 1 1 1 0 0 M
x4 1 3 0 0 1 0 1 + M
x5 -4 -1 0 -5 0 1 1 − 4M

More practical approaches please refer to Koberstein2007.
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