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1. Introduction

fhe Present paper was inspired by the work of Kuhn and Tucker [1] l.
These authors trensformed a certain clacs of constrained meximum pro-
blems into equivalent saddle value (minimax) problems,

Their work seems to hinge on the consideration of still a third
type of problem. A very simple but illustretive form of this problem is
the following: let x € positive orthant of some finite dimensional
Euclidean space, and let f s8nd g be real valued functions of x with
the property that whenever f 2 O, then also g z O; under whet conditions
can one then conclude that 3 a non-negative constant u such thst
uf gg for all x g 0?

Kuhn and Tucker showed that if f is conceve and differentiasble, if
g 1is convex end differentiable, and if the set [x} f{x} 2 0} satisfies
certain regularity restrictions, then there does indeed exist such a u.

~Two directions for generalization are presented:

First of ell, the Kuhn-Tucker argument rests heavily on the

1. Numerzls in brackets refer to the list of referencesz at the end.
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ldifferentiability of the functions, although they express the opinion
that their theorems are true without this assumption. Is this the case?

Secondly, the inequalit& uf £ g may be thought of as a relation
between f and g. From this poinl of view, it would appear that a best
possible'theorem which concludes that uf £g would make assumptions about
- only gn relation to é, and vice versa.

In this paper it is shown how the second generalization may be part-
ly achieved, and that even with this generalization, differentiability
may be dispensed with entirely.

The next section will give a detailed account of the generalized
theoren hinted st above. The last section will be devoted to an appli-
cation of this theorem to transforming a class of constrained minimum
problems intc equivalent saddle value problems.

2. The Main Theorem

Throughout this section, x, u, and Vv will be points in the positive
orthants of n, %k, &and h dimensional Euclidean spaces respectively.

Theorem 1. Let fl, ey fk and Bys vees By be continucus real

valued functions of x = (xl, vees xn) for x 2 0 with the follow-

ing properties:
1° If at eny point x all f,(x) 20, then for that
X some gd(x) 20

Q

2° 3x such that all f,(x) >0

° If for some x* and X JA; 20 i=1, .., k, B 20

J
J=1, «vs; h and C of arbitrary sigﬁ such that

i

1 1
LA f,(x7)+C=¢ B, g, (x™)

2
IB . (x
3233 (x")
then for 811 x = Qxl + (1-¢) x 0<o<l

1

and I A; fi(xe) + C

b
LAt (x) +C 3z By g, (x)



Assertion: 3“11 cees W z 0, Vir vees Yy =20 r v‘j =1

"

such' thet for ell x z O
Ly f, (x) gt vy E; (x)

Before proceeding with the sequence of lemmas necessary to prove

theorem 1 some discussion of the hypotheses of that theorem is in order.

1° 15 clearly essentisl for the truth of the theorem.

2° corresponds to the condition of regularity of the constraint
set 1in the Kuhn-Tucker treatment. It may possibly be weskened, but

certainly not dispensed with altogether as the example
2
£ (x) = -(x-1) g (x) =1 -x

shows, Here f (x) is concave, g (x) convex, and 1° is satisfied.

Nevertheless uf g g for some u a2 O is impossible as is easily verified.

Q

3

is of course the most controversial hypothesis of all. On the
debit side is the fact that any non-negative linear combinetion of the

£ say f, must, as a consequence of 30, be quasi-conceve (i.e. for

1)
all real B, (x : f (x) 2 B} is convex), while any non-negative linear
combination of the gj, say g, must be quasi-conveXx (i.e. for all real

a, {x: g (x) g} is convex). This is on the @ebit side because it

puts conditions on the £, which are independent of the gj.

i
Parentheticelly we observe that a weaker version of 3° in which

"A, 20" and "B, 2 0" are replaced by "A, > 0" and "Bj>o" which

i J
a priori ;ppears to avold the asbove difficulty, actuaelly implies 30.

(This can eassily be shown.)
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On the credit side is that if all the fi are concave and all the
gj convex (the Kuhn-Tucker.case), then 30 is sutomatically satisfied.
What this amounts to 1s that if & concave function interpolates a convex
function at two points, then the concave function dominates the convex
function in between.

Moreover, 30 is satisfied by still other functions. Let f and g
be strictly incressing functions of & single real varieble x, continuous
for x 20 and haviﬁg continucus first and second derivatives for x >‘O.
If in addition f'(x) > O for &l1 x > Q, then by a theorem of M. M. Peixoto

[, f and g satisfy 3° if end only if

J
g"(x) 2 %T%i% £"(x) for all x > O.

Using this theorem, the following examples were easily constructed:

(1) £ convex, g convex

f(x) = x2 + x-2 g{x) = -1 u = %
(2) f concave, g concave
£(x) = /X -1 g(x) = Jx +x-2 us=3

(3} Neither f nor g convex or concave
£(x) = 2x - cos x - (27 + 1),
g(x) = x +8in x -~ x cos x - (ﬂa + )
u =T
The main tool in the proof of theorem 1 is the generalized minimax
theorem of von Neumann [1] and Kakuteni (1], which we shall take as

lemms 1.
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lemma 1: Let $({,n) be a continuocus real valued function defined for
tE e K and N € I where K' and L a8are arbitrary bounded closed convex
sets of ]Euclidean spaces Rp and Rq respectively. If for every §° € K
and every real @, the set of all 1 € L such that ‘F(go, n) sa@ is con-
vex, and. if for every r]b € L and every real PB, the set of all ¢ ¢ K
such that ¥(&, n°) 2 B is convex, then 3(&0, n°)  such that

Mex Y(&, n°) = min P(¢°, 1)
Eek nekL

Throughout section 2, the functions fi and Ej will be the functions
given in the hypotheses of theorem 1.
Lemma 2: Let L = {x ; for all 1 f‘i(x) z 0}.

Assertion: HV 20, Z v, =1 such that

J
EGJ & (x) 30 for all x € L
Proof: Since the f‘i(x) are quasi concave, L is closed and
convex.
let X={v:vz0, Zv, =1},

J
LN={x:xeL, insN},

and P(v, x) =Z vy gy (x)
By hypothesis 3° of theorem 1 we may apply lemma 1 to
P(v, x) for veK end xc¢ L. Hence H(VO, x°) such that
Max P(v, x°) = min ‘P{°, x)
vek er.N .
Using the left hand side of the equality, we see that to prove
‘P(vo, x) g0 for all x ¢ LN we need only show that for eny x ¢ LN
Jvek such that $(v, x) 2 0. By hypothesis 1° of theorem 1 this is

clearly the case. Hence kP(vo, x) 20 for all x € LN
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The vo thus obtained depends on N. Choose NnTw with n and
an associated sequence [vo.(n)} such that P(+v° (n), x) 20 for all
X € Ly . Since K is compact, some subsequence {v° (ni)} converges
to V,n sey. Since Iy TL with i and ¥ is a continuous function

By
of v we have

PV, x) 20 forell xelL g.e.d.

Notetion: The function $(v, x) = £ '\FJ g(x) defined in lemma 2 will be

denoted by 'g(x)" for the remainder of section 2.

Lerma 3: Let fi(x°)>0 for i=1, ..., k and g(xl)<0.

Assertion: 31 = io such that f (xl) < 0 and

i
¢
!
£, (g b -r () e zo
e} o
Proof: We restrict our sttention to the line segment joining

xo to xl; a fortiori lo and 3o are satisfied on the segment. We suppose

(for definiteness) that it is oriented thus:

|

| i
Q

X

By 1°, g(x°) 2 0. let x be the right-most zero of glx).
(x° $x< xl). By 1° and the continuity of the fi(x), 31 =i such

thet £, (x) 50.
.0 =
We show first that fi (xl) < 0. Suppose false; then 3 x such that

— = o =
x<x §xl, 0 sf, (x) < £, (x°), and g(x) < 0. Hence JA >0 and
) o

B < 0 sueh that



g(x°)

=
]

—
w

o

+
t
t

Afi (;) + B = g(;)

so that by 3°, ar, (x) +Bzalx) for x° gx gk,

I

—
tall
p
+
[o4]

L%

In perticular Afi 2z 0, so that

\a}
~—~
=
v
1
>t

> 0, a contradiction.

)
1
Hence f, (x*} < 0, and for
]
o} 1 o] 1
T, -
20 - oY) CIECOREC e
C= ) 1.~ O D= ) T
£, (x”) - £ (x7) £ (x°) = £, (x™)
) o ) o
we have C fi (xo) + D = g(xo)
Q
cf, (x)+D=glx)
o
sc thet C £, (x) + Dz glx) for x° g x s xt.
Q
In particular
cf, (x) +Dz0O
o
so that D=-Cf, (x}) 2 0, and since
o
fi (x°) - fi (xl) > 0, we have
o o
1
£y (x*)a(x) - s(xo)fi (x*) 20 q.e.d.

) o
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Lemma b: Let “P(x, u) = uy fl(x) et fk(x) - glx)
Assertion: 3 g finite positive constant M such that for
811 x20 Jue Ly = fu:uwugzo, ¢ ug s M}
such that ¥(x, u) =< 0.
Proof: If glx')z0, P, 0) so0
If g(xl) < 0, rproceed as follows: let x° be the point

of the hypothesis 2° at which all fi(x) > 0. Apply lemma 3 to

1

select 1 such that £, (x') <0 and

o]

£, (®)g(x) - £, (x")e(x%) >0
[s] [#]

Let u, =0 when 1 # i

u, =8

io £, (xo)
o

men  W(x, w = EEL £ () - gl
(o}

£, (xolg(xl) - g(x°)fi (xl)
[»] Q

o
£, (x7)
o
g!xoz o
Thus if we take M = ®3 where A = glb fi(x ) the lemma is proved.
The next lemma will not be needed for the proof of theorem 1, but it is
convenient to prcve it now.
. 1, _ _ 1, _ 1 1
Lemma 5; Let fl(x ) = vee = fu(x } =0, fu+l(x Y, eee s fk(x ) >0 and
1
g{x™) = 0.
2 2 2
Assertion: If fl(x ) fu(x ) 20, then g(x)=z0

Proof: As in lemma 3 we consider the functions on the segment

Joining xl to xe:
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I

1l : 2
X x

If g(xE) < 0, it must have a rightmost zero X < x°. We will show
that this is impossible.

First of all, by quasi-concavity, fi(x) 20 for all x in the seg-
ment and i gu. If any fi(xe) 2 0 for i >y, then again by quasi-con-
cavity fi(x) 2 O on the whole segment. Finally, suppose some f‘p(xe) <0

for p>pu. Then A >0 such that

g(x?)

1
Af (x)+B
p(x7)

H

A fp(xQ) +B = glx®) so that by 3°

A fp(x) + B 2 g(x) for. xl £ x Sxe.

In particuler A fp(?c') +B g0 so that fp('i) > 0.
Hence by continuity, fp(x) 2 0 in some right neighborhood of ¥X.
Combining all this informetion we see that 3 X > ¥ such that all
£ (x) 2 O.- But by 1°, this implies g(x) 2 0, & contradiction. g.e.d.
Corollary: If all fi(xl) >0 and g(xl) =0, then g(x) 20 for all x.
The proof of theorem 1 is now easy.
Proof; Choose M as in lemme 4 and N > O arbitrerily. Consider

the functicn

Y(x, u) = u fl(x) et u fk(x) - g(x)

- over xe KN={x:x;0 and lesN}

ue IM=[u:ug0 and ZulsM}

By lemma 1 and lemma k4 gxo € KN:uoe I’M such that

Max “P(x, u°) = min P&° w) 50

xeK.N uEI‘M
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Thus P(x, v°) €0 for all x ¢ Ky

The same kind of COmpa;tness argument as in lemma 2 is now used to
complete the proof:

Choose N T= and en associated seguence [uo(n)} < Ly (it is

essential to observe that M is independent of N) such that
P (x, w(n)) s0 for all x € Ky
n

By the compactness of L, d & subsequence (°(n )} converging

to §°, say. Since P(x, u) is a continuous function of u and

K, T P=1{x:x2z0)} wehave P(x, u°) €0 for all x 2 0 q.e.d.
n
LBy :

3. Applications

Definition: Let gl(x), cees gh(x) be any set of functions defined

on a set K. A point xo € K will be celled a minimal point of gl, ees &
over K if for all x € K it is false that for all gj(x) < gd(xo).

A point xO will be called an essential minimal point of 8y ++es 8, OVer
K if it is minimal and if the deletion of any gj(x) will ceuse it to fail
to be minimal. A point x° will be called a strictly minimal point of

8)s +++s &, over K if for ell x, if all gJ(x) s gJ(xo) then all

g (x) = g,(x°).

Theorem 2. Let fl(x), cen, fk(x) and gl(x), vees gh(x) be real
valued bontinuéus functions which satisfy conditions 2° and 30 of theorem 1.
let K be the set ([x : fi(x) 20 4=1, ..., k}. Let x° be en essential
minimal point of gl(x), cens gh(x) over K.

Assertion: x° is a strictly minimel point of gl(x), cees gh(x)

over K.,
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Proof: The functions ,fi(x), i=1, +o., k &nd gj(x) - g (x°)
J =1, vees h satisfy all the hypotheses of theorem 1. Hence by lemma 2

gv, ey vhgo, Evi=l such that
vy x) 2L v.g. xo for all x € K.
3 sj( ) 2 JgJ( )

If for some Jj, v, =0, then that gj(x) may be deleted and x° will,

J

by the ebove inequaelity, remain minimal. Hence &ll vJ > 0. But then,
again by the sbove inequality, if for any x € K all gd(x) s gj(xo),
then &1l gj(x) = gj(xo). q.e.d.

We now proceed to the last theorem, the equivalence of & constrained
minimum problem and a certein saddle value problem.

Theorem 3: Iet fl(x), cees fk(x) and gl(x), ceey gh(x) be con-
tinuous real valued functions of x which satisfy conditiong 2° and 3O
of theorem 1. Let K = {x: fi(x) 20 1=1, ..., k} .

Assertion:; x° is a minimel point for gl(x), cees gh(x) over K
if end only 1if avg, sy vﬁ z 0, Evg =1, and u;, sy u; 2 0 such
that the function

Plx, u) = nggj(x) . Eugfi(x) satisfies

(1) W(x°, u) (=%, u ) sf(x, w°)

for 811 x 2 0. end u 2 0. In other words, P(x, u) has a saddle

point at {x°, u°)

Proof: Suppose Xx° is a minimal point for the gj(x) over K. Then

the functions fi(x) i=1, ..., X and gj(x) - gj(xo) j=1, «v., h

VO ' D)
17 e Vi

n

%]
satisfy 10, 20, 3° of theorem 1. By lemma 2 we choose Vv
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so that Evg(gj(x) - gj(xo)) 20 for all x € K. Write g(x) =

o )
v x).

JEJ( )

oy _ _ oy _ o )
Now suppose fl(x Y= oo = fp(x ) =0 and fu+l(x Y, vees fk(x )y > 0.

By lemma 5 g(x) z g(x°) for ell x such that fl(x), vee, fu(x) z 0. (In
particular, if all fi(xo) > 0, then g(x) z g(x®) for all x). Hence by

theorem 1 auo, veey uﬁ 2 O such that
0 o o
ulfl(x) + .. t upfp(x) s g(x) - g(x") for all x z 0.
Since fi(xo) =0 for i=1, ..., 0 this may be rewritten as

o} o]
g(x") - Z“uifi(xo) seg(x) - E;‘uci)fi(x ) s

1 s g(x) - Z“ugfi(x)

1

. o] o]
for ell x 2 O and all ui 20, i=1, +vs, . Now take uu+l = .., = uk = Q,

Then
g(x°) - Z?uifi(xo) s g(x°) - Ziugfi(xo) s g(x) - Ziuifi(x)

for all x20 and ell us=(u, ..., u)z0 g.e.d.

Conversely, suppose (1) is satisfied for some v° and u°. From

the first and last members of the inequality, we find, setting u =0

Z? vdo(gj(x) - gj(xo)) 2 Zi uiofi(x) for 81} xz O

Hence if x € X, gj(x) < gj(xo) for all J is impossible. This completes

the proof,
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