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@ Some practical problems: DIET, MaXxiMUM FLOW,
MinmmMuM CosT Frow, MuLTicoMmMoDITYFLOW, and
SAT problems

Linear programming forms: general form, standard form, and
slack form

Intuitions of linear program

Algorithms: SIMPLEX algorithm, INTERIOR POINT algorithm

Smoothed complexity: why simplex algorithm usually takes
polynomial time?
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Practical problem 1: DIET problem
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@ In 1945, G. Stigler described the diet problem in the paper
The cost of subsistence.

@ Here we use a simplified version.
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DIET problem

A housewife wonders how much money she must spend on foods in
order to get all the energy (2000 kcal), protein (55 g), and calcium
(800 mg) that she needs every day.

Food Energy Protein Calcium | Price
Oatmeal 110 4 2 3
Whole milk 160 8 285 9
Cherry pie 420 4 22 20
Pork with beans 260 14 80 19

Two solutions:
@ 10 servings of pork with beans: 190 Cents
@ 8 servings of milk + 2 servings of pie: 112 Cents.
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Linear programming formulation

A housewife wonders how much money she must spend on foods in
order to get all the energy (2000 kcal), protein (55 g), and calcium

(800 mg) that she needs every day.

Food Energy Protein Calcium | Price | Quantity
Oatmeal 110 4 2 3 il
Whole milk 160 8 285 9 T2
Cherry pie 420 4 22 20 T3
Pork beans 260 14 80 19 x4
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Linear programming formulation

A housewife wonders how much money she must spend on foods in
order to get all the energy (2000 kcal), protein (55 g), and calcium
(800 mg) that she needs every day.

Food Energy Protein Calcium | Price | Quantity
Oatmeal 110 4 2 3 il
Whole milk 160 8 285 9 T2
Cherry pie 420 4 22 20 T3
Pork beans 260 14 80 19 x4

Formalization:

min 3r; + 9y + 2023 + 1914 money
s.t. 110x; + 16022 + 42023 + 260x4 > 2000 energy
4r; + 81y + 43 + 1dxy > 55 protein
2r7 4+ 2851 + 2223 + 80x4y > 800 calcium

rn o, T, T3, gy >0
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Practical problem 2: MAxiMuM FLow
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MaxiMUuM FLOW problem

INPUT:

A directed graph G =< V, E >. Each edge e = (u, v) is associated
with a capacity C(u,v). Two special points: source s and sink t
OUTPUT:

For each edge e = (u, v), to assign a flow 0 < f(u, v) < C(u, v)
such that }°, e pf(u, v) is maximized.

’

FLOW CONSERVATION restrictions: at each node (except for s and
t), the sum of input equals the sum of output.
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Linear programming formulation

z1 5 x4 6
s z3 1 13
zo 8 x5 2
v
LP Formulation:

max z -+ I output from s
s.t. m — I3 — 14 =0 node u
T + 23 — x5 =0 node v

5 > >0 edge (s, u)
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Practical problem 3: MiINiMUM CoOST FLOW problem
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MiNiMUM COST FLOW problem

INPUT:

A directed graph G =< V, E >. Each edge e = (u, v) is associated with
a capacity C(u,v), and a cost a(u, v). If we send f(u, v) units of flow via
edge (u, v), we incur a cost of a(u, v)f(u, v). We are also given a flow
target d. Two special points: source s and sink t;

OUTPUT:

For each edge e = (u, v), to assign a flow 0 < flu, v) < C(u, v) such that:

@ We wish to send d units of flow from s to ¢

© The total cost 3, e p a(u, v)f(u, v) is minimized.

11/152



Linear programming formulation

CQ?Q
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C(u,v) for each (u,v) € I

0 for each (u,v) € !

Zw,(v,w)eE (v,w) foreachwve V—-
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Zu,(u,v)GEf(u’ v

&
<
=D D D
(IIRAVARVAN

12/152



Practical problem 4: MuLTICOMMODITYFLOW problem
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MuLTICOMMODITYFLOW problem

INPUT:

A directed graph G =< V, E >. Each edge e has a capacity C.. A
total of k¥ commodities, and for commodity 7, s;, ¢;, and d; denote
the source, sink, and demand, respectively.

OUTPUT:

A feasible flow for commodity i (denoted as f;) satisfying the
FLOW-CONSERVATION, and CAPACITY CONSTRAINTS, i.e. the
aggregate flow on edge e cannot exceed its capacity C..
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Linear programming formulation

LP Formulation:

max
s.1. Z§:1 i(u,v) < c(u,v) for each (u,v)
fu,v) = 0 for each i, (u, v)
> (u,0) eEfZ(Ua v) = Zm(uw)eEfz(v, w) for each i,ve V—{
Zv (siyv eEfZ(SZa v) = d; for each ¢
Notes:

@ The unusual objective function “max 0" is used to express
the idea that it suffices to calculate a feasible solution.
@ Linear programming is the only known polynomial-time

algorithm for this problem.
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Practical problem 5: SAT problem
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SAT problem

INPUT:
A set of m conjunction normal formula (CNF) clauses over n

Boolean variables z;, 7o, ..., T,

OUTPUT:
Whether all clauses can be satisfied by an TRUE/FALSE assignment

of the n variables.

e A SAT instance:
o = (xl\/ﬁxQng) VAN
(mx Vap V—oxs) A
(21 V 22 V —a13)
@ An assignment to make all clauses TRUE:

21 = TRUE, 2p = TRUE, 23 = TRUE
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Linear programming formulation

A SAT instance:
o = <$1V—|£C2\/$3) A
(—|.T1 V ay V —|l“3) VAN
(.%1 V 1o V —|$3)

LP Formulation:

max c1+ co+ c3
s.1. T+ (1 — $2)+ T3 > C1
(1 — 5111)+ To+ (1 — 173) > co
1+ nt+ (1-13) >3
X1, €, r3 = 0/1
C1, C2, cg3 = 0/1
Intuitive idea:

@ Constraints: The left-hand side of a constraint represents the number of
satisfied literals; thus, a constraint allows ¢; to be 1 if there are at least
one satisfied liters.

@ Objective function: The objective function denotes the number of

satisfied clauses. Thus, ® is satisfiable iff ¢; + co + ¢3 = 3.
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Genome rearrangement distance problem [M. Shao, 2014]

J
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Background: Evolution of Genomes

ancestor D N D

B e = — <
segmental inversion
duplication

— - << — <
chromosome tandem
fission duplication
- D B B B =
human - mouse

© Rearrangements: inversion, translocation, transposition,
chromosome fission and fusion, etc.

@ Content-modifying events: segmental duplication, tandem
duplication, lateral gene transfer, etc.
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Model of a Genome

@ Genome: a set of chromosomes
e Chromosome: a linear/circular list of genes (synteny blocks)

bpar)
_a) (; (bic} \ {ar,dn}
0%} (@b} {brc} {e,0} \))
c d
{chvdt}

o Extremities: two ends (head and tail) of a gene
@ Adjacency: two consecutive extremities

@ Null extremity: special extremity 0 added to each end of
the linear chromosomes
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Double-Cut-and-Join (DCJ) Operation

@ Input: two adjacencies

@ Output: two new adjacencies created by recombining the four
involved extremities

@ DCJ operation can model most of the genome rearrangement
events (but not content-modifying events).

a b c d

> > > >
{Oaat} {ahvbt} {bh’ct} {chndt} {dh’o}

lDCJ

{0 at} {ah,ch} {bh,c,} {bt,dt} {dh,O}
> € € >

a —C —b d
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DCJ Distance

@ The minimum number of DCJ operations to transform Gj
into Gy

a b C d
DCJ] =7

b —a c —d
Gy ) C———ly < —

@ For two genomes without duplicate genes, the DCJ distance
can be computed in linear time (Yancopoulos et al., 2005,
Bergeron et al., 2006).
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Adjacency Graph

{O,a,} {ah,b,} {bh,ct} {L‘h,dx} {dh,O}

a b ¢ d
G e o o - -

b —a ¢ —d - -
G (b} bia) {ma) {wd) {d0}

@ The adjacency graph consists of vertex-disjoint cycles, when
the given two genomes don’t contain duplicated genes.

e DCJ distance = (#adjacencies) — (#cycles). (Proof can be
found at: A., Bergeron, J. Mixtacki, and J. Stoye. "A unifying view
of genome rearrangements.”, 2006)

@ In this example, DCJ distance = 5 - 2 = 3.
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DCJ Distance for Genomes with Duplicate Genes

@ Real genomes usually contain many genes with multiple
copies (i.e., homologous genes).

@ Different one-to-one correspondence between homologous
genes lead to different DCJ distance (see next slide).

@ We assume the gene copy number for each gene is the same,
as DCJ operation does not modify gene-content.

@ Problem: find a one-to-one correspondence between
duplicate genes, such that the number of cycles induced by
this one-to-one correspondence is maximized

@ This problem is NP-hard.

@ Previous work:

o Heuristics: (Chen et al., 2005, Suksawatchon et al., 2007)
o Approximations: (Marron et al., 2003, Shao et al., 2012)

@ An ILP formulation for this problem (Shao et al., 2014).
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Genomes with Duplicate Genes

{0,a!} {aj,bi} {b,c} {enaf} {a;,0}

al b ¢ a
G| =p=p ==y -
‘ / \ #cycles =1

DCJ distance = 4

—al —c & » {O,a,l,} {a,l,c;,} {c,,a,z} {a%:bz} {bs,0}

a b ¢ @ {04} {aib} {bya} {onat} {450}
G ===
#cycles = 3
DCJ distance = 2
—a'—c & b {O:ail.} {a,l,c;,} {c,,a,z} {aj;;bi} {bn, 0}
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ILP Formulation

Lo 2 0,a!} {ab,b} {bpc cp,a?} {a2,0}
G Syl {04} Aapbi} {bna} {cwa’} {4

—a' —c & b

G €<=€=>> 04} {da} {ad} {ab} {0}

T, +Ta=1

e Variables: z. € {0,1}, indicating choosing e or not

o Constraints: ensure a one-to-one correspondence
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ILP Formulation

vi vy V3 V4 Vs V6 V7 Vs Vo V1o

yi=y2 r- -

y2<yi3+2-(1—x1)
Y13 <y2+13-(1—x1)

Vi1 V12 Vi3 V14 V15 V16 V17 V18 V19 V20

e Variables: y; € [1,1], representing the label of v;
e Constraints:

o Two vertices inside one adjacency always have the same label.
e Vertices connected by chosen edges have the same label.

@ — For any feasible solution, all vertices in the same cycle
(induced by the solution) must have the same label.

@ — At most one vertex in each cycle can reach the upper
bound.
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ILP Formulation

e Variables: z; € {0, 1}, indicating whether y; = i
o Constraints: ensure that z; =1 only if y; = ¢
irn <y, 1<i<|V]

@ Objective: maximize the number of cycles

e O(|E]) variables and O(|E]) constraints
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A brief history of linear programming
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Concept, algorithms and analysis

e In 1939, L. Kantorovich proposed the concept of linear
programming (called extremal problem) as mathematical
formulation of practical problems in planned economy. He also
proposed the resolving multiplier approach.

@ In 1941, Hitchcock proposed the ASSIGNMENT problem.

o In 1949, G. B. Dantzig advanced this concept and proposed
the simplex algorithm.

@ In 1971, Klee and Minty gave a counter-example to show that
simplex is not a polynomial-time algorithm.

@ In 1975, L. V. Kantorovich, Nobel prize, application of linear
programming in resource distribution;

@ In 1979, L. G. Khanchian proposed a polynomial-time ellipsoid
method;

@ In 1984, N. Karmarkar proposed another polynomial-time
interior-point method;

@ In 2001, D. Spielman and S. Teng proposed smoothed

complexity to prove the efficiency of simplex algorithm.
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Figure: Leonid Kantorovich

L. Kantorovich was known for his theory and development of
techniques for the optimal allocation of resources. He is regarded
as the founder of linear programming. He was the winner of the
Stalin Prize in 1949 and the Nobel Memorial Prize in Economics in
1975.
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George B. Dantzig proposed LP model in 1947

@ In 1946, as mathematical adviser to the U.S. Air Force Comptroller, he
was challenged by his Pentagon colleagues to see what he could do to
mechanize the planning process, "to more rapidly compute a time-staged
deployment, training and logistical supply program.”

@ In those pre-electronic computer days, mechanization meant using analog
devices or punched-card machines. "Program” was a military term
referring not to the instruction used by a computer to solve problems
(called "codes”), but rather to plans or proposed schedules for training,
logistical supply, or deployment of combat units.
33/152



LPisin P I

Figure: Leonid G. Khanchian
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Karmarkar at Bell Labs: an equation to find a new way through the meze

Folding the Perfect Corner

A young Bell scientist makes a major math breakthrough

very day 1,200 American Airlines jets
crisseross the U.S., Mexico, Canada and
the Caribbean, stopping in 110 cities and bear-
ng over 80000 passengers. More than 4,000
pilots, copilots, flight personnel, maintznance
workers and baggage carriers are shuffled
among the flights; a wotal of 3.6 million gal.
of high-octzne fuel is bumed. Nuts, bolts,
altimerers, landing gears and the like must be
checked at each destination. And while per-
forming these scheduling gymnastics, the
company must keep a close eye on costs, pro-
jected revenue and profits.
Like American Airlines, thousands of com-
panies must routinely untangle the myriad
T T

Indign-born mathematician ar  Bell
Laboratories in Murray Hill, N.1., after only
a years' work has cracked the puzzle of linear
programming by devising a new zlgorithm, a

4:5¢‘~Sl.e|:l mathematical formula. He has

1 P into a program that
should allm COMPUIETS to track & grwer com-
bination of tasks than ever before and in & frac-
tion of the time.

Unlike most advances in theoretical
mathematics, Karmarkar's work will have an
immediate and major impact on the real world,
“Breakthrough is one of the mos: abused
words in science,” says Ronald Graham, direc-
tor of mathematical sciences at Bell Labs

LPisin PII
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NLP, Convex Programming, LP, Network flow, and ILP.

convex programming

linear programminyg

Non-linear programm¥\ug

Integer programming
(NPC)

and matching

Notes:

@ In convex programming, local optimum is also global
optimum.

@ NETWORK FLOW and MATCHING are special ILP problems:
the special problem structure determines that an LP model

can automatically generate integral solutions.
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GLPK: an efficient LP solver

@ The GLPK (GNU Linear Programming Kit,
http://www.gnu.org/software/glpk/) package is intended for
solving large-scale linear programming (LP), mixed integer
programming (MIP), and other related problems. It is a set of
routines written in ANSI C and organized in the form of a
callable library.

@ GLPK supports the GNU MathProg modeling language, which
is a subset of the AMPL language.
@ The GLPK package includes the following main components:

@ primal and dual simplex methods
@ primal-dual interior-point method
© branch-and-cut method

@ translator for GNU MathProg

© application program interface (API)
Q stand-alone LP/MIP solver

(See extra slides)
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Gurobi: Outstanding solver

@ The Gurobi Optimizer (http://gurobi.com) is a
state-of-the-art solver for mathematical programming. It
includes the following solvers: linear programming solver (LP
solver), quadratic programming solver (QP solver),
quadratically constrained programming solver (QCP solver),
mixed-integer linear programming solver (MILP solver),
mixed-integer quadratic programming solver (MIQP solver),
and mixed-integer quadratically constrained programming
solver (MIQCP solver)

@ The solvers in the Gurobi Optimizer were designed from the
ground up to exploit modern architectures and multi-core
processors, using the most advanced implementations of the
latest algorithms.
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slack form.

Various linear program forms: general form, standard form, and

J
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Form 1. General form of linear programming

@ General form: mixture of linear inequalities and equalities

min cr; + cr + ... +  cpxp
s.t. apri + apme + ... + apxp, > by i€ M
apm + apr + ... + apr, = b jeM
z > 0 ieN
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Form 2: Standard form of linear programming

@ Standard form: linear inequalities;

min T + coTy + ... + CnTn
st anm +  aem A+ ...+ apT, < by
a1 +  are + ...+ agpxn < by
1T+ G2t + .+ Gy < by
z > 0 forVi

@ Standard form in matrix language:

T

min c'z
s.t. Az < b
x > 0

@ Here we assume the matrix A has a full row rank. Otherwise
a preprocessing step can be executed to guarantee this.
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Standard form

@ Standard form in matrix language:

min L'z
s.t. Az < b
x > 0
C1 X1
c2 %)
@ Here c = ) , T = . ,
Cn Tn
air a2 - Gip b1
a1 a2 -+ Az ba
A — , b =
aml Gm2 - Q(mnp bm
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Transformation from general form to standard form

@ Transformations:

@ Variables: a free variable = two non-negativeive variables;
x; may or may not be positive = replacing z; with 2, — 2
and adding constraints: z; > 0; 27/ > 0

@ Constraints: an equality = two inequalities;
Q171 + QT2 + ...+ ajnxn:bj =
a1 + A2 T2 + ...+ ajnx,Lij
aj T + ap® + ... + ajpTy<b;
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Form 3: Slack form of linear programming

@ Slack form: linear equality;

min car + cor + ... + CnTn
st. anm +  aem A+ ...+ apT, = b
a1+ axprs + ...+ apx, = bo
ATt + ameTz + ...+ amnZn = bm
z > 0 forVi

@ Slack form in matrix language:

min Tx
s.t. Ar =10
x >0
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Transformation from standard form to slack form

@ Transformations:
© Variables: changing “inequality on partial solution
(21, ...,2,)" to “equality on full solution (s, z1, ..., z,)" by
introducing a slack variable s.
Q171 + QT2 + ..+ ajnxngbj =
a1 + A2 T2 + ...+ ajn:cn+s :bj

@ Constraint: s> 0. (sis called a slack variable)
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Example: standard form vs. slack form

e Standard form:

- a3 + 2z < 2
3.773 — 2:114 S 6
o, m >0
@ Slack form:
il — T3 + 2x;y = 2
» + 313 — 214 = 6
mo, m» , @3 , x > 0
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Intuition of linear programming

Dae
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Two differences from linear equation formula

e Consider a LP (in slack form):

min Lz
s.t. Ax = b
xr > 0

@ We have already known how to solve Ax = b.

@ What is the difference between LP and linear equation
formula?

@ Constraints: z > 0;
@ Objective function: min ¢’ z;

48/152



The effect of constraints z > 0

Dae
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Revisiting Ax = b

@ An example of Az =10

I — r3 + 214 = 2
o + 33 — 214 = 6
21 + m + r3 + 2z = 10
o By applying Gaussian elimination, we have:
] — x3 + 234 = 2
T + 333 — 234 = 6

e Intuitively, any point in the (z3,24) plane corresponds to a
full solution (1, x2, 23, 74).
2

. LY
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The effect of x > 0

@ An example of Az =b,z >0

1 — 13 + 234 = 2
T + 313 — 214 = 6
2v; + m» 4+ 3 + 24 = 10
rn o, » , 13 , 1 = 0
@ By applying Gaussian elimination, we have:
1 - @3 4+ 2 = 2
T + 313 — 214 = 6
rn o, v , 1 , 14 = 0

@ This is essentially a linear inequality formula:

- 13 + 2z < 2
3373 — 233'4 < 6
3, m = 0
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The effect of x >0 cont’d

@ Linear inequality formua:

@ Any point in the

— 13 + 2xs < 2
3$3 — 2.%4 S 6
g, m =0

polytope rather than the whole plane

corresponds to a feasible solution, e.g. (23, z4) = (1,1)
corresponds to (1, x, 23, 24) = (1,5,1,1).

7

=oN W R o O

T4
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Polytope < feasible region

Any polytope P C R™ ™ corresponds to the feasible region of a
linear program Ax = b,x > 0 (denoted as
F={z| Az = b,z > 0}), and vice versa.

@ Basic idea: What is the effect of constraint x > 0?7 It implies
the interchangeability between equalities on all variables (
e.g. oy + 3x3 — 224=6) and inequalities on partial variables
(e.g. 3133 - 2$4§6).
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Proof: feasible region = polytope

@ Basic idea: changing equality to inequality through Gaussian
row operations followed by removing some variables.
@ Consider a feasible full solution = of the following LP:

aj1ry + ajoT2 + ... + ATy = b1
211 +  Goomy + ...+ aGonT, = by
1Tl + Gm2T2 + ...+ QpnTn = b
T , To S e , Ty > 0

@ Applying Gaussian row operations, we have:

/ / _ /

71 + @1 Tmrr + dpz, = Y
! / _ /

T2 t a1 Zmyr o aguTn by

/ / /

Tm  + Gpmp1Tmtl ot A Tn = b,

T o, T2 o, Tm Tm+1 S e , Ty, > 0
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Proof: feasible region = polytope cont'd

e By removing positive variables z;, 1o, ..., z,,,, we have the
following linear inequalities:

/ / /
@ i1 Tmtl + e QT < b
/ / /
9 1 Tmt-1 + o+ ay,r, < o
/ / /
Gpm1Tmtl + o+ G < b,

Tm+1 5 e ’ Tp 2 0

@ Define a polytope P C R™™ "™ as the intersection of m
half-spaces:
HS; : ]m+1xm+1~|— +a :vn<b 1<j<m. (by z; >0)
@ Thus, any feasible full solution = = (11,29, ...,2,) =
partial solution =y = (Zmt1,...,2n) € P.
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Proof: polytope = feasible region

@ Basic idea: changing inequality to equality through
introducing slack variables.
o Suppose P is the intersection of m half-spaces (inequalities),
say:
HSj L 4T + A2 X2 + ...+ ajnInSbj (1 S j S m)
e Introducing a non-negative slack variable s; to each inequality,
we have:

G171 + GpT2 + ... + Gjp%n + S; :bj (Sj > 0)
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Proof: polytope = feasible region cont'd

@ Thus we change

anry + a2 + ...+ apr, < b
a1+ apr + ..+ apm, < by
a1+ ap2r2 + .+ Gty < by
x1 , ) y e , Ty > 0
into
81 + aam + ..+ apm, = b
) + a1 + ...+ AT, = by
Sm + amiTi A+ .+ GnZn = by
S1 , S92, Sm TL oy e Ty > 0

@ Thus, a partial solution (z1, 22, ..., z,) € P = a feasible full
solution (1, 82, ..., Sm, T1, T2, .., Tp) > 0.
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Z4
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e Hyper plane: {z | ajz1 + agao + ... + apz, = b} (linear
equality constraint)

e Half space: {x | a1z + agxe + ... + apzy, < b} (linear
inequality constraint)

@ Polyhedron: the intersection of several half spaces;

@ Polytope: a bounded, non-empty polyhedron
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The effect of objective function minc* z
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The effect of min ¢! z

max 3+ T4
s.t. —x3 4+ 21y < 2
3$3 - 2134 S 6
g, m > 0
7 4
6 3233—2$4:6
5
4
3
—z3+2z4 =2
2
1
x3
-1 1N2 3 4 5 6 T
—1 T3+ 24 =1
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The effect of min ¢l z cont'd
max 3 + 1
s.t. —x3 + 214 < 2
3r3 — 2x¢ < 6
3z, w1 = 0
7 T4
6 333 — 214 =6
5
4
3
—x3+ 2z4 = 2
2
1
T3+ x4 =2 3
-1 1 223 4 5 6 7

-1
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The effect of min ¢l z cont'd
max 3 + 1
s.t. —r3 + 23 < 2
31‘3 — 2134 S 6
g, mm > 0
Tt
6 3z3—2x4:6
5
4
3
—x3+2x4 =2
2
1
T3
-1 1 2 3 4 5 6 7

-1

@ Observation: the optimal solution can be reached at a vertex

of the polytope (if the optimal objective value is finite).
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Key observations of linear program

7 24

6 31‘3—2I4=6

5

4

3

—r3+2x4 =2
2
1
Zz3

-1 1 2 3 4 5 6 7

@ What is a feasible solution? Any point within the polytope.

@ Where is the optimal solution? A vertex of the polytope (if
the optimal objective value is finite). Consequently, it is not
necessary to consider the inner points. In fact, the existence
of a vertex solution makes the simplex algorithm distinctive
from ellipsoid method and interior point method.
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Applying the general IMPROVEMENT strategy to LP
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The general IMPROVEMENT strategy for optimization
problems

IMPROVEMENT(f)
1. x = xp; //set initial solution;
2: while TRUE do
3:  x =IMPROVE(z, f); //move towards optimum;
4: if STOPPING(z, f) then
5: break;
6: end if
7: end while
8: return z;
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Applying the general IMPROVEMENT strategy to LP

5 T T T T

4

3 3+ 214 = 2
g

2

1

0 ¥

sty 12 3 4 5

73

IMPROVEMENT()

1. ¢ = xg; //starting from a vertex;
2: while TRUE do
3:  x =IMPROVE(z); //move to another vertex via an edge;
if STOPPING(z) then
break; //stop when z is optimal
end if

end while 66 /152
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Some questions to answer

@ Why does it suffice to consider vertices of the polytope only?

@ How to obtain a vertex?

© How to implement “moving to another vertex via an edge”?

@ When should we stop?
5 T

41 31’3—21’426

3+ 214 = 2

T4
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Question 1: Why does it suffice to consider vertices of the

polytope only?

=N W ks ot O 3

T4
3:1}3 — 214 =6

—xr3+2x4 =2
Z3 Ty =
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Optimal solution can be reached at a vertex

There exists a vertex in P that takes the optimal value (if the
optimal objective value is finite).

@ Since P is a bounded close set, cT:c reaches its optimum in P.

@ Denote the optimal solution as z(®). We will show there is a vertex at
least as good as z(®). Why?

o 29 can be represented as the convex combination of vertices of P,
ie. 29 =z £ 2@ 1+ 4+ Xz™® . where
Ai > 0,A\1 + ... + A, = 1. (See Appendix for details.)

@ Thus ch(O) = /\1ch(1) + )\gch(Q) + ...+ /\ch:r(k)

o Let 2 be the vertex with the minimal objective value ¢’z

och() )\T()Jr/\T( “.+)\CT()>T(Z)

T, (9,

i) - . . . 0
@ Thus, vertex 2 is also an optimal solution since Lz @ <ec T ©

Ol
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Intuitive idea

e

0) is an optimal solution.

e Suppose z(
o Connecting z(©) and () with a line. Suppose the line
intersects line segment (z(?), (%)) at point 2.
o We have z(0 = Xz + (1 — A\))a/, where \; = quq.
@ We also have 2/ = )\233(2) +(1—- )\2)3:(3), where Ay =
@ Thus, we have
.1‘(0) = )\1.23(1) + (1 — )\1))\2$(2) + (1 — )\1)(1 — )\2).7}(‘5)
Tx(l) Tx(l) (2),0Tx(3).

_S
r+s°

@ Suppose ¢ is the minimum of ¢ cclx
o Notice that A\; + (1 — A)A2+ (1 — A)(1 — A2) = 1.

@ We have: ch(l) < ch(O). Thus, a vertex 21 is found not

worse than z(9).
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Question 2: How to obtain a vertex of the polytope?

(0,2,0)
2

(2,2,0)

) Q G
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Vertex < basic feasible solution

A vertex of P corresponds to a basis of matrix A. \

An example (standard form):

min —x3 — 1ldaxs — 6a3
s.t. 1+ 2 + T3
1

z3
3r2  + 3
z1 5 T2 ) z3

IVANINININA
oo WA
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Part 1: Vertex = basic feasible solution

@ We will first show that any vertex of the polytope

corresponds to a basis of the matrix A.
@ An example (slack form):

min —x; — 14z — 6x3
s.t. r  + T2  + 3 + 14 = 4
1 + x5 = 2
3 + 6 = 3
3o+ 3 + =z = 6
T, © , ® , T4 , TB , T , 2z = 0

(0,20) (2,2,0)

T2
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Intuitive idea |

corr O
wo o= N
== OR QO
coor W
coro N
o~oo W
—ooo @

,42 (2,2,0)

@ Take the vertex (1,22, z3) = (0,2,0) as an example. The corresponding full
solution is (z1, z2, 23, 74, 25, 76, 27) = (0,2,0,2,2,3,0).
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Intuitive idea |l

@ We will show that the column vectors corresponding to non-zero z;, i.e.
{az,a,,a5,a6}, are linearly independent, and thus form a basis (sometimes an
extension is needed). (Here a; denotes the &-th column vector of A)

@ Suppose (A2, A4, A5, Ag) # 0 such that Apas + Agay + Asas + Aeag =0, i.e.
AX =0, where A = [0, A2,0, A4, A5, X6, 0].

@ Then we can construct

(0,0,3)

(0,1,3)

z=[0 2 o 2 2 3 o]7
11 1 1 0 0 0
| 1 0 0 0 1 0 0
o o 1 0 0o 1 o0
0 3 1 0 0 0 1

(2,0,0) I
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Intuitive idea Il

@ It is easy to deduce that both x’ and z”’ lie inside P since:
o Az’ = Az+0=0b and Az” = Az—0=10
@ In addition, we can guarantee ' > 0 and z’ > 0 via setting 0 to be
sufficiently small since z >0, and A\; = A3 = A7 = 0.

@ Contradiction: it is impossible for a vertex to be middle point of two inner
points of P.
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@ Suppose 2 =< 41, ..., Tn, > is a vertex of P C R"™™, i.e. we have
@1 Tl + oo+ a7 S B forall 1 <4 <m.

@ Expanding partial solution £ to a feasible full solution
T =< 1, .y Tm, Tm41, ---, Tn >, Where z1, ..., T,y are calculated according to the
equality constraints of the LP model.

© Considering the non-zero items z; in . Note that the corresponding columns
B = {ay|z; # 0} form a basis. Why?

o
2]

o

Suppose there exist d; such that ZajeB dja; =0 ( < dj >#0).
Since ZajeB zjaj =b (x) = 0 for all a, ¢ B ), we can construct two full

feasible solutions < z; + 6d; > and < z; — 6d; > since:
Za]_EB(xj =+ 0d;)a; = b. (We can guarantee z; £ 6d; > 0 through setting

0 sufficiently small.)

Thus the corresponding two partial solutions are in P:

T =< 1/m+1, ey Ty >, where :13’] = zj+ 0d; for a; € B, and 0 otherwise;
' =< $/7;L+17 <oy Ty >, where xé’ = z; — 0d; for a; € B, and 0 otherwise;
Thus & = %z’ + %:E//. A contradiction. (A vertex in P cannot be

represented as the convex combination of two points in P. See Appendix.)

@ Thus, z is a basic feasible solution corresponding to basis B since: 1) x can be

represented as ¢ = [ B }, and 2) any item z; > 0. [

0
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Vertex = basic feasible solution: some notations

@ For a vertex = of the polytope, a basis B can be derived via
extracting the column vectors corresponding to non-zero ;.
The non-basis column vectors are denoted as V.

@ Then the original LP can be represented as:

T T
min chxN

s.t.

B N =|b

@ Here, = is decomposed as = = [ ;B ] Then we have
N

xy =0, and zgp = B7*b (Reason: Az =, i.e.
Bxp+ Nxy =1b)
@ The corresponding objective value is
Ty = ngB + c%xN = ch_lb.
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An example

T
@ For a vertex z = [O 2 0 2 2 3 0] , the columns
corresponding to non-zero z; are extracted to form a basis

11 00
0010
B= 00 01
3000

@ Let's decompose = = [O 2 02 2 30 }Taccordingly

intoxg =12223]Tand xx =[000]T.

@ It is easy to verify that xp = B~ "b. In this example,
4

2
b_3
6
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Part 2: Basic feasible solution = vertex

B™'b

0 ] a basic

@ Given a basis B of matrix A, we call z = [

solution respect to B.

@ If we further have g = B7*b > 0, x is called a basic
feasible solution respect to B.

@ We will show that a basic feasible solution x respect to B
is a vertex of the polytope P.

@ It suffices to show that = cannot be represented as a convex
combination of any two points in P.

@ By contradiction, suppose there are two different points z(!) and
2@ in P such that z = A\;z™ + Moz, where 0 < A1, A2 < 1.

@ Note that Alx%) + )\233%) =xy =0.
@ So xg\}) = xs\?) =0 (by A1, A2 > 0 and x%),x%) > 0).

@ Then we have xg) = a:g) = B~ 'b=xp (by Az'") = b and
Az® = b). A contradiction.
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An example

1 111000 4
. 1000100 2
@ For matrix A = 0010010 , and b= 3 |
03 10001 6
1100
. . 0 010
we first calculate a basis of A as B = 000 1
3000
@ The basic feasible solution x respect to B is
B™'b T
x—[ 0 }_[0202230].
@ It is easy to verify that (z1, 22, 73) = (0,2,0) is a vertex of the

polytope P.
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Question 3: How to implement “moving from a vertex to another
vertex via an edge”?

(2,0,2)

-Lambda=[0,0,1,-1,0,-1,-1]
theta=2

£(0.2,0)

X:
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Edge < non-basis column vector of A: an example

OO R =N
w o o~ @
cooc o~ N
cor~r o ©
(= N
—o oo <

£(0,2,0) (2,2,0)

@ Take the vertex (1,22, 23) = (2,0,0) as an example. The corresponding full
solution is (xl, X2, T3, T4, T5, Tg, 337) = (27 0,0,2,0,3, 6).

@ Basis (in blue): B = {a.,ay4,a6,a;}.

@ Let's consider a .

@ Since a3 can be decomposed as @, = 1a4 + 0a: + 1a6 + 1a;, we have
0a; + 0ax — 1a3 + 1ay + 0ag + 1a6 + 1a; =0

@ We will show that the coefficients

specifies the
direction of

@ More specifically, we can move via the edge to another vertex
' =x—0X=1[2,0,2,0,0,1,4]T (by setting § = 2).

@ The new vertex corresponds to the basis
B’ =B —{a,} U{ay} ={a.,a4,a6,a7}.
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Edge < non-basis column vector of A

Theorem

Let x = 11,22, ..., 7, be a vertex corresponding to basis

B ={ai,ay,...,an}. Consider a non-basis vector a. ¢ B. Suppose
ae can be decomposed as a, = Aja1 + Aeao + ... + Apan,. Let

0 = ming,cp x>0 % = % Then ' = x — O\ is also a vertex
corresponding to basis B' = B — {a;} U {a.}. Here

A=A, A2, 0, A, 0,0, —1, .., 0).

X3
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Part 1: 2/ = x — )\ is a feasible solution

e We have z1a1 + mas + ... + zpmam, = b (Reason: z is a
feasible solution).

@ We also have \ja; + Asas + ... + A — ae = 0.

@ Thus we have
(z1 — ON)ag + ... + (2 — OAp) G + ... + Oae = b.
@ To show that 2’ = x — O\ is also feasible, it suffices to prove
2’ > 0. There are two cases:
© Vi, \; < 0: for any positive 8 we still have
@ i, \; > 0: we cannot set 6 too large. In fact, by setting
0 = mingep ;>0 f— = f\”—ll we can guarantee z; — O\; > 0;
however, a larger 6 will cause (z; — O)\;) < 0. For example,
r=1[2,0,0,2,0,3,6]7

We set 6 = ming,ep >0 3 = f—i =2and [ = 4.

@ Thus 2’ is a new feasible solution.
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How to set 87 Trying a larger step: 6 = 3

X3
10,0,3X1,0,3)
,

(2,0.2) X = [

2
@30 A=

OO == N
wo o9
co o~ N
oo ~O @
o oo W
—_—o oo @

¥(0,2,0) (2,2,0)
@ Vertex (1, 72,23) = (2,0,0) = (21, 22, 23, 74, T5, 76, T7) = (2,0,0,2,0, 3, 6).
@ Basis (in blue): B = {a.,ay4,a6,a;}.
@ Let's consider a .
@ Since a3 can be decomposed as = lay + Oa, + lag + lay, i.e.,
Oa, + Oa, — + lay +0ay + lag + la,; = 0.
@ The coefficients \ = [0,0, —1,1,0,1,1]7 corresponds to
o

o =x—0X=2,0,3,-1,0,0,3]7 (by setting = 3) is NOT a feasible
solution.
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How to set 87 Trying a smaller step:

OO == N
w oo
coc o~ N
co=o @
o~ oo W
—_—oc oo &

@ Vertex (z1,22,23) = (2,0,0) = (21, 22, 23, 24, =5, T6, T7) = (2,0,0,2,0, 3, 6).
@ Basis (in blue): B = {a.,ay,a6,a-}.
@ Let's consider a .
@ Since a3 can be decomposed as = lay 4+ Oa, + lag + la,, ie.,
Oa; + Oas — + lay + Oay + lag + la, = 0.

@ The coefficients \ = [0,0, —1,1,0,1,1]7 corresponds to

@ ' =x—0\=[2,0,1,1,0,2,5]T (by setting 6 = 1) is NOT a vertex.
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Part 2: B' = B — {a;} U{a.} is a basis.

O == N
wo o
cocoo~ N
co o @

2,2,0
£(0,2.0 (2.:2.0)

To show that 2/ =z — O\ = [2,0,2,0,0,1,4] 7 is also a vertex, it
suffices to show that the column vectors corresponding to non-zero
z; form a basis, i.e. B'= B — {a,} U {a,} = {a,

, UG, G} is a
basis.

Suppose B’ is linear dependent, i.e. there exists (dy, ds, dg, d7) # 0
such that dyaq + dsas + dgag + drar = 0.

Recall that a5 can be decomposed as a3 = lag + 0ay + lag + lax.
We have dia; + dsaq + (dﬁ + dg)a(j + (d7 + d3)a7 =0.
Thus d3 = 0. (Reason: B = {a,,a,,as,a,} is a basis.)

Therefore d; = dg = d7 = 0. Contradiction.
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Part 2: B' = B — {a;} U{a.} is a basis.

@ Suppose B’ is linear dependent;

@ Thus, there exists < di, ..., di_1, dit1, ..., dm, dj >7 0 such
that dia; + ...dj_1a;-1 + dip1agq + .o + dpam + deae = 0.
We also have a, = \ia1 + ... + \ja;+ ... + Aam.
Substituting a. into the above equation, we have:

(di + ded)ag + o + (dedpag+ ... + (dp + dedm)am =0
Thus deA; = 0. (Reason: B = {a,,...,an} is a basis.)
Therefore d. = 0 (Reason: \; > 0).

Therefore we have d; = 0 for all i (Reason:
d; = d; + d.\; = 0). A contradiction.
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Pivoting operation

@ The process to change B into B’ is called “pivoting” with a,
“entering” basis, and a; “leaving” basis.

@ The “pivoting” operation can be accomplished by Gaussian
row operation.

— Ome — Le \
0 0 by ar
_ @ ay
by 0 by are b a.
_ a2e a2e
b2 0 b are b ae
1 1
by 1 QAle an b an 1
b _ Qme _ Gme
m 0 b . by ... s ,

@ The details will be described after introducing simplex tabular.
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a vertex?

An additional question: which edge is preferred when moving from

J

Qe
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Which edge is preferred?

@ Generally speaking, a vertex of P has at most n — m adjacent
edges (Why?)

OO = = N
w ook 9
coc o~ N
cor~r o @
o~ oo W
— o oo S

Lambda=[0,1,0,-1,0,0,-3]
theta=2

¥ (0,2,0) x"=(2,2,0)

@ Here two edges adjacent to the vertex (z1, 22, 23) = (2,0,0)
are shown as example:

@ the edge in green (corresponding to «.) to vertex z/;
@ the edge in red (corresponding to a.) to vertex x'/;
@ Which edge is preferred when moving from the vertex
(..'El, X2, ..'E3) == (27 07 0)?

@ An equivalent question: which non-baisis vector should be
selected to enter the basis?
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Trial 1: pivoting in a,

]T

Lambda=[0,1,0,-1,0,0,-3]
theta=2

o O = N
wooRr o
cooRr N
cor~ro @
o~ oo W
—o oo S

£ (0.2,0) x"=(2,2,0)

@ We decompose a. as a, = 1a, + oa, + oag + 3a-, i.e.
0a, — G, + 0as + 1a, + oas + oag + 3a, = 0.

@ The coefficient is: A = (0,—1,0,1,0,0,3).

@ By setting an appropriate 0, we get to vertex ' = z — 6.

@ The objective value can be improved by

'z’ —cTw = (cg — (Lea 4+ 0cr + 0cs + 3¢r))0 = —140
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Trial 2: pivoting in a,

Lambda=[0,1,0,-1,0,0,-3]
theta=2

CoO =M= N
wooRr o
cooRr N
co~o @
o~ oo W
—o oo @

K020 x"'=(2,2,0)

e We decompose «, as o, = 1a, + oa, + 1a¢ + 1a-, i.e.,
oa, + oa, — + 1a, +0ag + 1a6 + 1a, = 0.

@ The coefficient is: A = (0,0, —1,1,0,1,1).

@ By setting an appropriate 6, we get to vertex 2"/ = x — O\,

@ The objective value can be improved by

cl'z" —clow = (c5— (lea+0cp + 1eg+ 1e7)) = —60

Largest number rule (maximal gradient heuristic): To make as
fast improvement as possible, we select the non-basis vector a.

with the smallest ¢, — ZaiGB \;c; to enter the basis.
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How to choose a non-basis vector a, to enter B?

o Consider a vertex « = (11, 22, ..., T,) corresponding to basis
B ={a,az,...,am}.
@ Suppose we choose a non-basis vector a. ¢ B to enter basis
@ Since a, is not in basis, it can be decomposed as
Qe = Aa1 + Aoas + ... + A
@ Let = ming,ep ;>0 f\”— = .
@ Then 2" = z—0)\ is also a vertex, where
A=[A, A2, s A, 0, ., —1,...0] 7.
@ Recall that the objective is to minimize ¢”z. Let's see whether we
can improve the objective function by moving from vertex x to z’.
o Notice ¢"a’ — T = 0c" X = (co — Y., cp Mici)0.
@ Pivoting in rule:
To make as large improvement as possible, we select the non-basis
vector a, to enter the basis. Here, ¢ is the index with the smallest

Ce — Z(L{EB )\zcz
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Question 4: When should we stop?

Dae
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Stopping criterion

Lambda=[0,1,0,-1,0,0,-3]
theta=2

co R~ N
w o o
co o~
cor~ro @
o~ oo @
—o oo

5 (0,2,0) x'"=(2,2,0)

o Notice: suppose we move from vertex = to ' = x—0\, the

improvement of objective value is

e’ — e = —0c"\ = (c. — > aen Nici)b.

@ We will benefit from pivoting in a. if Ty <clx, e
Ce — ZaZEB Aic; < 0.

@ Thus the following stopping criteria is reasonable:
Ce — ZaieB Aic; > 0 for all e.

e We denote G, £ ¢, — ZaieB Aic; as “checking number”.
o In fact, ¢, is the e-th entry of ¢/ = ¢! — ch_lA.
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Stopping criteria

Theorem
Consider a LP (in slack form):

min Ty
s.t. Az =0b
x>0

Let x be a vertex corresponding to the basis B. If
T =cl — chﬂA > 0, then x is an optimal solution.

| \

Proof.
@ Let 2/ denote any feasible solution, i.e. Az’ = b and 2’ > o.
o Then Tz’ > LB Az’ = cEB~'b = cLap = Tz
@ In other words, any feasible solution 2’ is not better than z.
L]
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Simplex algorithm

Q>
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Key observations

(2.0.2) X = [

[=IN=Rra
w o o9
co o= N
co RO 9
o~ OO W
—o oo

£1(0,2,0)

@ What is a feasible solution? Any point in a polytope.

@ Where is the optimal solution? A vertex of the polytope. In other
words, it is not necessary to care about the inner points.

© How to obtains a vertex? Vertex corresponds to a basis of the
matrix A, which can be easily calculated via Gaussian elimination.

© If a vertex is not good, how to improve? Move to another vertex
following an edge. The "moving" action can be accomplished via
"pivoting” operation.

@ When shall we stop? ¢, > 0 for all index e means that we have
obtained an optimal z.
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SIMPLEX(A, b, ¢)

1:
2:

3:
4
b:
6
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:

(Br, A, b, ¢, z2) = INITIALIZESIMPLEX (A, b, ¢);
//If the LP is feasible, a vertex x is returned with By storing the indices of
vectors in the corresponding basis B; otherwise, “infeasible” is reported.
while TRUE do
if there is no index e (1 < e < n) having ¢ <0 then
2 =CALCULATEX (B, A, b, ¢);
return (z, 2);
end if;
Choose an index e having c. < 0 according to a certain rule;
for each index i (1 < i< m) do
if a;e > 0 then

02' = abT:;
else
0; = oo;
end if
end for

Choose the index [ that minimizes 6;;
if 6, = o then
return “Unbounded”;
end if
(Br, A, b, c, z) = PvoT(Br, A, b, ¢, 2, ¢, 1);

end while
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CALCULATEX(Bp, A, b, ¢)

1: //assign non-basic variables with 0, and assign basic variables with
corresponding b;;

2: forj=1ton do

3:  if j¢ Bjthen

4 z = 0;

5: else

6: for i=1tom do
T: if Q5 = 1 then
8: z; = by

9: end if
10: end for
11: end if
12: end for

13: return z;
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An example

Standard form:

min —x; — 141 — 6ag
s.t. 1+ T + 13 < 4
Il < 2
T3 S 3
3ty + 23 < 6
I s T2 y T3 Z 0

(0,0.3)(1,0,3)

(2,0,2)

(0,2,0)
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Standard form:

Slack form:

min —1z; —

s.t. T+
ol
z1

min

s.t.

14.’1,‘2
T2

3 T2
T2

-1
21
L1

Tl

6 X3
3

3
3
3

14.’L‘2
L2

3 T2
T2

Ty

Ty

6 X3
3

I3
I3
T3

Ts

s

IV AN ININIA

OO WN

T

T

+ 7

OO WN

Vvl
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SIMPLEX algorithm maintains a simplex tabular

1 T 3 T4 5 T 7 RHS

Basis | ci=-1 ©¢3=-14 ©¢3=-6 <=0 <=0 <=0 ;=0 —2z=0
T4 1 1 1 1 0 0 0| zp, =bj=4
z5 1 0 0 0 1 0 0| zp, = bh=2
6 0 0 1 0 0 1 0| zpy = b4=3
7 0 3 1 0 0 0 1| zpy = b,=6

@ Coefficient matrix: B~*A. The basis forms a unit matrix,
while the other part is B™' N

@ The first row contains “checking number”
¢l =T — cLB7* A (initial value: ¢)

@ The last column contains solution g = b = B~*b (initial
value: b)

@ The up-left item: objective value —z= cLzp = cLB~1b
(initial value: 0)
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Why simplex tabular takes this form?

T T cT
Cg CN Row T
(0] e - emll )\ cEB b0 0 .- 0]lck —cEBIN
bif[air a1z - awml[- am 10 0
baflagr age -+ G2m| - agn || BT'X B-1p |0 1 0 B-IN
bm Aml Am2 - Amm| -+ Gmp o0 -.- 1
b B N BB

@ Coefficient matrix: B~*A. The basis always forms a unit matrix.
Why?
o This way, for any non-basis column vector a., the e-th column
stores the coefficients [A1, Az, ..., Am] 7, i.e. ac is decomposed as
Qe = A1a1 F ... + A
@ The "pivoting” operation is accomplished by Gaussian row operations on
all rows, including the first row 07 and the column . Why?
@ The row operation make the entries in ¢5 be 0, thus the first row
contains “checking number” &7 = ¢ — ¢EB~* A (initial value: ¢)
@ The up-left item shows the objective value
—2=0—c5B b = —c5B™"b (initial value: 0)
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0 v 0 - —emeh | L. &

Qle Qle
_ Qe Qe
bl 0 LR e b1 an bl an
_ Q2e _G2¢
ba o --- ce b al:bl al:
by .. 1 Qe azebl o 1
b — e —a
o m 0 b — el .. e

PivoT(Br, A, b, ¢, 2 e, 1)
1: //Scaling the [th line

by .
: bl:a—lﬂ,
: for j=1to ndo
—
a'lJ_ ap’

2

3

4:

5: end for
6: //All other lines minus the th line
7: for i=1to m but ¢ # [ do

8 bi = b; — aze X by;

9 for j=1ton do
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Pivotting Il

10: (g = Agj — Qie X Ay
11: end for
12: end for

13: //The first line minuses the -th line
14: z=2z— b X ¢g;

15: for j=1ton do

16: Cj = Cj — Ce X g

17: end for

18: //Calculating x

19: By= B;—{l} U{e};

20: return (B, A,b,c, 2);

108 /152



T2 T3 T4 5 Te 7 RHS
Basis | = H—14 =6 =0 &=0 &w=0 =0 —2=
T4 1 1 1 0 0 0 4
5 1 0 0 0 1 0 0 2
T 0 1 0 0 1 0 3
7 3 1 0 0 0 1 6
@ Basis (in blue): B = {ay,a5,a6,a7}
—1
@ Solution: = = |: BO b =(0,0,0,4,2,3,6). (Hint: basis variables
T4, T5, Te, T7 take value of by, bly, b, b)), respectively. )
Pivoting: choose to enter basis since ¢y = —1 < 0; choose a; to exit since
. [ !
0 = ming,e,x,>0 )\—’I = i =2.

Here, the corresponding X is stored in the 1-st column (Why? the basis B forms
an identity matrix.)
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sl T2 T4 5 g T7 RHS

Basis | c;=0 T<©cp=-14 3= cs=0 <=1 <=0 <=0 | —2=2

T4 0 1 1 1 -1 0 0 2

71 1 0 0 1 0 0 2

T6 0 0 0 0 1 0 3

x7 0 3 0 0 0 1 6
@ Basis (in blue): B ={a.,a4,a6,a;}

—1

@ Solution: = = [ BO b ] =(2,0,0,2,0,3,6). (Hint: basis variables

1, T4, Te, T7 take value of b), b), b, b)), respectively. )

Pivoting: choose to enter basis since t3 = —6 < 0; choose a, to exit since

[

9 = minaquB,M>0 T; = K = 2
Here, the corresponding A is stored in the 3-rd column (Why? the basis B forms
an identity matrix.)

110/152



1 x3 T4 x5 6 fird RHS
Basis | c1=0 &= c3=0 ©¢4=6 T<¢5=-5 <=0 T;=0| —2=14
3 0 1 1 1 -1 0 0 2
T 1 0 0 1 0 0 2
T 0 0 -1 1 1 0 1
7 0 0 -1 1 0 1 4
@ Basis (in blue): B = {a.,a3,a6,a;}
—1
@ Solution: = = |: BO b =(2,0,2,0,0,1,4). (Hint: basis variables
3, ™1, 6, T7 take value of by, bfy, b, b)), respectively. )
@ Pivoting: choose to enter basis since ¢ = —8 < 0; choose a5 to exit since

’ /
bl

. b)
0 = ming,e B, x;>0 )\—t =5 = 2.

@ Here, the corresponding A is stored in the 2-nd column (Why? the basis B
forms an identity matrix.)

111/152



¥(0,2,0) 220
4l 2 3 T4 6 T7 RHS
Basis | 1= 0 <=0 ©¢3=8 T<¢;=14 ©¢5=-13 <=0 1©¢7=0 | —2=30
T2 0 1 1 1 0 0 2
1 1 0 0 0 0 0 2
T6 0 0 1 0 1 0 3
7 0 0 -2 -3 3 0 1 0
@ Basis (in blue): B ={a:,a2,a6,a7}
—1
@ Solution: = = [ BO b ] =(2,2,0,0,0,3,0). (Hint: basis variables
xo,x1, 26, L7 take value of b], bly, b, b)), respectively. )
Pivoting: choose to enter basis since c5 = —13 < 0; choose a to exit since

. bl b}
0 = ming e x>0 3- = ﬁ = 0. Note: 0 = 0 = same vertex (called
v v 7

“degeneracy”).

Here, the corresponding X is stored in the 5-th column (Why? the basis B forms
an identity matrix.) 112/152



Degeneracy might lead to cycle

@ Generally speaking, two different basis correspond to different
vertices.

@ However, redundant constraints can lead to degeneracy, i.e.
the simplex algorithm is stuck at a vertex even after a
“pivoting” operation.

@ Basic feasible solutions where at least one of the basic
variables is zero are called degenerate and may result in
pivots for which there is no improvement in the objective
value. In this case there is no actual change in the solution
but only a change in the set of basic variables.

@ Sometimes degeneracy can lead to “cycling”: If a sequence of
pivots starting from a vertex ends up at the exact same
vertex, then we refer to this as “cycling”. If the simplex
method cycles, it can cycle forever.
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How to escape from a cycle?

o Cycling is theoretically possible, but extremely rare. It is
avoidable through the following three ways:
© Perturbation: Perturb the input A, b, ¢ slightly to make any
two solutions differ in objective values;
@ Breaking ties lexicographically;
© Breaking ties by choosing variables with smallest index, called
Bland's indexing rule:
@ choose a. to enter: e=min{j:¢ < 0,1 <j< n}.
@ choose a; to exit: choose the smallest [ to break ties.
(a demo)
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1 T T4 5 T 7 RHS
Basis [ c1=0 =0 3= =1 =0 =0 =21 -2=30
2 0 1 1 0 0 % 2
z 1 0 < 0 0 0 -3 2
Z6 0 0 0 0 1 0 3
a5 0 0 -1 1 0 1 0
@ Basis (in blue): B ={a.,a2,a5,a6}
—1
@ Solution: = = |: BO b =(2,2,0,0,0,3,0). (Hint: basis variables
T2, T1, T6, T5 take value of by, bly, b, b)), respectively. )
Pivoting: choose to enter basis since ¢3 = —2/3 < 0; choose a, to exit since

. [ b

0 =mingepa;>0 5t = 32 =

Here, the corresponding A is stored in the 3-rd column-(Why? the basis B forms

an identity matrix.) 115 /152



1 T T3 T4 5 g 7 RHS

Basis | c;=1 <=0 =©¢e=0 7©¢=2 ©¢=0 7©c=0 ©c=4 | —2=232
T é 1 0 é 0 0 % 1
T3 g 0 1 g 0 0 —? 3
T -5 0 0 -5 0 1 5 0
5 1 0 0 0 1 0 0 2

@ Basis (in blue): B = {az,a3,a5,a6}
B™'b
0
2, x3, 6, T5 take value of b], bly, by, b}, respectively. )

@ Solution: = = [ =(0,1,3,0,2,0,0). (Hint: basis variables

@ Pivoting: all ¢j > 0, thus optimal solution found.
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An example with unbounded objective value

E DA
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An example with unbounded objective value

Standard form:

min — rn — X2
s.t. T — 1 < 1
—I + T2 S 1
n o, » 2 0

Z2

3 1—z2=1

2 $17$2:76

z1
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An example with unbounded objective value

Standard form:

min —x; — I

s.t. T — 1 < 1

- + x < 1

o, 1 =2 0

Slack form:
min — rn  — X2

s.t. T — Ty + I3 =1
—I1 + X + x4 = 1
I y 22 y 13 y T4 > 0
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Step 1

.
’ *1‘1+1‘2:1/

3 1—z2=1

2 3 T4 RHS

Basis | 1= =1 <©e3=0 7©¢=0| —2=0
7 1 1 1 0 1
T4 1 0 1 1

@ Basis (in blue): B ={aj,a,}
—1
@ Solution: = = [ BO b ] =(0,0,1,1).

@ Pivoting: choose to enter basis since ¢; = —1 < 0; choose a5 to exit since
— mi b _ b1 _
0 =mingep x>0 5 = 50 = 1.
@ Here, the corresponding ) is stored in the 1-st column (Why? the basis B forms
an identity matrix.)
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Step 2

i

3 p— T =1

1 3 T4 RHS

Basis | ¢1=0 &= c3=1 ©¢=0 | —z=
T 1 1 0 1
T4 0 1 1 2

@ Basis (in blue): B ={a:,a,}
@ Solution: =z = [ B;) b ] =(1,0,0,2).

@ Pivoting: choose to enter basis since cog = —2 < 0; while Ag; < 0 for all 4,
then 6 can take a value as large as possible. That is, the optimal solution of this
problem is unbounded.
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The last question: how to get an initial feasible solution?
or how to solve Ax = b, ©z >07
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Initial feasible solution: solving an auxiliary linear program

Suppose we attempt to find an initial solution to linear program L:

min 1771
S.t. a1
a21 T

Am1T1
ol

Let’s construct an auxiliary linear program L, as follows:

min
s.t. a1m  +
a1+
Gm1T1  +
x1 )

+
+
+

+

]

C212

a12T2
2222

Am2 T2

a1272
2213

Am2 T2

T2

T2

_l’_
+
_|_

+

)

=+ CnTn
+ A1nTn
+ agnTp,
+ Gy

) Tn

+ a1nTn
+ a2nTp,
+  Amnln

) T,

b

IAIA

IV IA

o
o
To

o
To

b
bo

bm
0

IAIN

IV IA

Then L is feasible i.f.f. the optimal objective value of Ly is 0.
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Proof

@ Suppose that L has a feasible solution
(21,22, ..., Tp) = (T2, T2, ..., Tn);

@ Then expand this solution by combining with 79 = 0, i.e.
(20, 1, X2, .y Tp) = (0,71, T2, ..y Tn);

@ The expanded solution is a feasible solution to Lgyy;

@ And the objective value is 0; in other words, the solution is an
optimal solution.

@ Conversely, Ly, has an optimal objective value of 0 means L
has a feasible solution.

Ol

Intuition: suppose L is infeasible, i.e. for any assignment
(21,12, ..., 2,), at least one constraint is not satisfied, say
an T + apr + ... + a;xy, > b Then we have

To > apx + apxe + ... + apx, — b > 0.
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How to solve L,,,?

@ Let consider the slack form of L,y

min 0
s.t. a1 +... Faprn, —10 +951 =b
a1 Ty +... +apnTn, —Io +S9 =by
1Tl +eoo FOmpTn —1Ip +8m =bm
L1 ey Tn, T, 81, 82, -Sm >0

@ Ly has an advantage that initial feasible solution can be
easily acquired.
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Case 1: b; > 0 for all ¢

@ Consider the slack form of Lgy,:

min 0
s.t. a1y ... +a1nx, —x9 +S1 :bl
a1ry  +... +aepnT, —Io +589 =by
Am1®1  +... FQpaTn —T0 +8m =bm
Tl ey ZTn, To, S1, 82, ...8m >0

o If b; > 0 for all %
(131, veey Ty 815 82, +eny Sm) = (0, ey 0,01, b2, ..., bm) is an initial
feasible solution.
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Case 2: there exist some negative b;

o Consider the slack form of Ly,

min To
s.t. anm 4. ‘aiprn —20 +81 =b
a1 F... FaT, —1p +52 =by
1Tl tee. FOmnTn —20 +8m =bm
Ty ey Tn, X0, S1, S2, ---Sm >0

@ If there are some negative b;, then
(15 eovy Ty 81582, wovy Sm) = (0, ..., 0, b1, ba, ..., byy) is not a
feasible solution.

@ But a feasible solution can be easily obtained by performing
only one step of pivoting operation: let [ be the index of
the minimum b;. All other constraints minus the [-th
constraint, and multiply the Fth row by -1. Then all new ¥/
are now positive.
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INITIALIZESIMPLEX (A, b, ¢)

1:

13:
14:

15:

SR N

@Y ®

let | be the index of the minimum b;;
set By to include the indices of slack variables;

if b, >0 then
return (B, A,b,¢c,0) ;
end if

construct Lg., by adding —xp to each constraint, and using zp as the
objective function;

let (A, b, c) be the resulting slack form for Layq;

//perform one step of pivot to make all b; positive; ;

(Br, A, b, ¢, z2) =P1vOT(Br, A, b, ¢, 2,1,0);

iterate the WHILE loop of SIMPLEX algorithm until an optimal solution to
Ly is found;

. if the optimal objective value to Ly, is O then
12:

return the final slack form with 2y removed, and the original objective
function of L restored;

else
return "infeasible”;

end if
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INITIALIZESIMPLEX: an example with no feasible solution

E DA
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An example with no feasible solution

LP L:
min ;1 + 22
st. T + 12 = 2
1 + m < -1
zn o, m = 0
x2
2
1+ a9 =2
1
-1 1 2 7
_1\<1+£E2=—1
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Constructing L.

o LP L:
min oz + 22
s.t. —x — z < -2
7+ m < -1
rn o, T = 0
@ LP Ly
min Zp
st. —m — x —xpy < =2
T+ 12 1 < -1
1 , Ty ,my 2 0
@ LP L,y (slack form):
min 20
st —1m — T —Ip +13 = 2
. + x —a toy o= 1
x1 y T2 » 20 ) 43 R 0
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Al To Ty T3 T4 RHS

Basis | c1=0 =0 <¢=1 7©e3=0 ©¢;3=0 —2=0
z3 -1 -1 -1 1 0 -2
T4 1 1 -1 0 1 -1

@ Basis (in blue): B = {ag3,a,}

B™'b

@ Solution: x = |: 0 ] =(0,0,0,—2,—1) is infeasible.

@ Pivoting: all rows minus the [-th row, and the ith row multiply —1. This way,
all new b; will be positive.
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I o x3 g RHS

Basis | c1=-1 T<¢3= =0 T©e3=1 7©¢u=0 —z= -2
70 1 1 1 0 2
T4 2 2 0 -1 1 1

Basis (in blue): B = {ao,a,}

. B~ . .
Solution: x = 0 =(0,0,2,0,1) is feasible now. Thus, we can start
from this initial solution to improve step by step.

Pivoting: choose to enter basis since ¢ = —1 < 0; choose a, to exit since
b} bl 1

0= minaieBy)\£>0 )\—IZ =3 = 5-

Here, the corresponding A is stored in the 2-nd column (Why? the basis B
forms an identity matrix.)
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1 2 0 3 T4 RHS

Basis [ c1=0 =0 =0 e=3: c=1 —z=-3
0 0 0 1 —% —% %
T2 1 1 0 -3 5 3

@ Basis (in blue): B = {a>, a0}

@ Solution: z = | Z % | =(0,1,3,0,0) is feasibl
olution: = = 0 = (0,3, 5,0,0) is feasible.

@ Optimal solution found since ¢; > 0 for all j.
3

@ The objective value of Lgygz is 5 indicating that the original linear program L is

infeasible.
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INITIALIZESIMPLEX: an example with a feasible solution

E DA
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An example with a feasible solution

LP L:
min z; + 2
st. 1 + T2 < 2
rn + 1 > 1
o, 1 =2 0
414,
3
2
1
Ti+zp=2
T
1 2 3 4
T1+x0=1
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Constructing L.

o LP L:
min oz + 22
s.t. —x — < -1
7 o+ o <2
rn o, T = 0
@ LP Ly
min Zp
st. —m — z —x < -1
r + @ —19 < 2
1 , Ty ,my 2 0
@ LP L,y (slack form):
min 20
st —1m — T —Ip +13 = -1
. + x —a tz = 2
x1 y T2 » 20 ) 43 R 0
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1 ) 0 T3 T4 RHS
Basis | c1=0 =0 <¢=1 7©e3=0 ©¢;3=0 —2z=0
x3 -1 -1 -1 1 0 -1
x4 1 1 -1 0 1 2

@ Basis (in blue): B = {ag3,a,}

B™'b

@ Solution: x = |: 0 ] = (0,0,0,—1,2) is infeasible.

@ Pivoting: all rows minus the [-th row, and the ith row multiply —1. This way,
all new b; will be positive.
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1 0 T3 T4 RHS

Basis | c1=-1 T<¢3= =0 T©<e3=1 7©¢=0 —z=-1
0 1 1 1 1 0 1
T4 2 0 -1 1 3

@ Basis (in blue): B = {ao,a,}
B™'b
0

@ Pivoting: choose to enter basis since ¢ = —1 < 0; choose a, to exit since
’ ’

@ Solution: = = [ ] =(0,0,1,0,3) is feasible.

. b,
0 = ming,ep,x;>0 = ﬁ =1.

@ Here, the corresponding A is stored in the 1-st column (Why? the basis B forms
an identity matrix.)
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1 T2 Zo 3 g RHS

Basis | c1=0 ©¢3=0 0=0 ©e3=1 7©¢;=0 —2=0
b 1 1 1 -1 0 1
T4 0 0 -2 1 1 1

@ Basis (in blue): B = {az,a,}
B~
0

@ Optimal solution found since ¢; > 0 for all j.

@ Solution: x = [ ] =(0,1,0,0,1) is feasible.

@ The optimal objective value of Ly is 0, meaning that the original linear
program L has a feasible solution.
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Returning an initial feasible solution to L by removing x

LP L (slack form):

min 1+ 2x

st —m —  x» ag = -1

T + x +rs = 2

T, T2 I3 T4 2 0
1 T T3 T4 RHS
Basis | c1=1 =2 ©¢3=0 ¢4=0 —z=0
To 1 1 -1 0 1
T4 0 0 1 1 1

Remove zy and perform Gaussian row operation on the first row, we obtain the initial
SIMPLEX table for L:

1 T T3 T4 RHS

Basis | ¢1=- =0 T¢3=3 ©¢3=0 —z=-2
o 1 1 -1 0 1
4 0 0 1 1 1

@ Basis (in blue): B = {az,a,}
—1
@ Solution: x = [ BO b ] = (0,1,0,1) is an initial feasible solution to the
original linear program L.
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How fast is the SIMPLEX method?

Dae
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Performance of SIMPLEX algorithm

@ In practice, the typical number of pivoting operation is
proportional to m (with the proportionality constant in the
range suggested by Dantzig) and only increases very slowly
with 7 (it is sometimes said that, for a fixed m, the number of
iterations is proportional to log n).

@ The complexity of simplex algorithm is expected as: O(m?n)
due to O(m) pivoting operations.

© For sparse matrix: O(Km®nd’-33), where K is a constant,
1.25 < o < 2.5, d is the ratio of non-zero entries of matrix A.
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How does the iteration number change with n?

100

m=10 —=—

90

80

70

60

50

40

Average Number of Iterations

30

20
e

‘///AG*/
10lQ — 15 20 25 fl_q 35 40 45 50
min chx
s.t. Az <b

x >0

Here, m denotes the number of constraints, and n denotes the

number of variables.
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How does the iteration number change with m?

100

n=50 —s—

90

80 o

70

60

. e

40

Average Number of Iterations

30

20

10 15 20 25 35 40 45 50
min cinom
s.t. Az <b
x >0
Here, m denotes the number of constraints, and n denotes the

number of variables.
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Unfortunately, SIMPLEX is not a polynomial-time algorithm

E DA
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A counter-example given by V. Klee and G. L. Minty [1972]

max Tp,
s.t. 60 < 1z < 1 fori=1..n
(Sl‘z;l < T; < 1-— 5£E1;1 for i=2..n
T, > 0 fori=1..n

Simplex algorithm might visit all the 2™ vertices.
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Klee-Minty cube:

min 3

st. 1 < @ < 1
i < o < 1—gm
i < o3 < 1-gm

There is a path visiting 2" vertices and each edge makes 3
decrease.

e!
\ pi2:3}

o2

Reference: A simpler and tighter redundant Klee-Minty construction (by E.
Nematollahi and T. Terlaky)
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8 Vertices of Klee-Minty cube

© [ 15l
@ (1. 1561l
Q (1. 13- 61l
Q [ 1 &l
@ [} 1)
o [} i)
Q 1%
o 1%
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Smoothed Analysis of Algorithms: Why the Simplex Algorithm
Usually Takes Polynomial Time? J
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Smoothed analysis of algorithms [Daniel A. Spielman,
Shang-Hua Teng, 2001]

@ Despite its favorable complexity, the performance of the
ellipsoid method in practice was extremely slower than the
simplex method, leading to a puzzling and deeply unsatisfying
anomaly in which an exponential-time algorithm was
substantially and consistently faster than a polynomial-time
algorithm.

@ Spielman and Teng showed that the simplex algorithm has

polynomial smoothed complexity.
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Smoothed analysis of algorithms

@ Average-case analysis was first introduced to overcome the
limitations of worst-case analysis, however the difficulty is
saying what an average case is. The actual inputs and
distribution of inputs may be different in practice from the
assumptions made during the analysis.

@ Smoothed analysis is a hybrid of worst-case and average-case
analyses that inherits advantages of both, by measuring the
expected performance of algorithms under slight random
perturbations of worst-case inputs.

@ The performance of an algorithm is measured in terms of both
the input size, and the magnitude of the perturbations.

@ If the smoothed complexity of an algorithm is low, then it is
unlikely that the algorithm will take long time to solve
practical instances whose data are subject to slight noises and
imprecisions.
(a demo)
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