
CS711008Z Algorithm Design and Analysis
Lecture 7. Basic algorithm design technique: Greedy

Dongbo Bu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

1 / 202

Outline

Greedy is usually used to maximize or minimize a set function
f(S), where S is a subset of a ground set.
Two examples to exhibit the connection with dynamic
programming: SingleSourceShortestPath problem and
IntervalScheduling problem.
Elements of greedy technique.
Other examples: Huffman Code, Spanning Tree.
Theoretical foundation of greedy technique: Matroid and
submodular set functions.
Important data structures: Binomial Heap, Fibonacci
Heap, Union-Find.

2 / 202

Greedy technique
Greedy technique typically applies to the optimization
problems if:

1 The original problem can be divided into smaller subproblems.
2 The recursion among sub-problems can be represented as

optimal-substructure property: the optimal solution to the
original problem can be calculated through combining the
optimal solutions to subproblems.

3 We can design a greedy-selection rule to select a certain
sub-problem at a stage.

In particular, greedy is usually used to solve an optimization
problem whose solving process can be described as a
multistage decision process, e.g., solution has the form
X = [x1, x2, ..., xn], xi = 0/1.
For this type of problems, we can construct a tree to
enumerate all possible decisions, and greedy technique can
be treated as finding a set of paths from root (null solution)
to a leaf node (complete solution). At each intermediate
node, greedy rule is applied to select one of its children nodes.

3 / 202

The first example: Two versions of IntervalScheduling
problem

4 / 202

IntervalScheduling problem

Practical problem:
A class room is requested by several courses;
The i-th course Ai starts from Si and ends at Fi.

Objective: to meet as many students as possible.

5 / 202

An instance

A2 A4 A7 A8

A1 A3 A5 A9

A6

W2 = 5 W4 = 2 W7 = 1 W8 = 3

W1 = 1 W3 = 4 W5 = 3 W9 = 5

W6 = 2

Time

Solutions: S1 = {A1,A3,A5,A8} | S2 = {A6,A9}
Benefits: B(S1) = 1 + 4 + 3 + 3 = 11 | B(S2) = 2 + 5 = 7

6 / 202

IntervalScheduling problem: version 1

INPUT:
n activities A = {A1,A2, ...,An} that wish to use a resource. Each
activity Ai uses the resource during interval [Si,Fi). The selection
of activity Ai yields a benefit of Wi.
OUTPUT:
To select a collection of compatible activities to maximize
benefits.

Here, Ai and Aj are compatible if there is no overlap between
the corresponding intervals [Si,Fi) and [Sj,Fj), i.e. the
resource cannot be used by more than one activities at a time.
It is assumed that the activities have been sorted according to
the finishing time, i.e. Fi ≤ Fj for any i < j.

7 / 202

Defining general form of subproblems I

It is not easy to solve a problem with n activities directly.
Let’s see whether it can be reduced into smaller sub-problems.
Solution: a subset of activities. Let’s describe the solving
process as a series of decisions: at each decision step, an
activity was chosen to use the resource.
Suppose we have already worked out the optimal solution.
Consider the first decision in the optimal solution, i.e.
whether An is selected or not. There are 2 options:

1 Select activity An: the selection leads to a smaller
subproblem, namely selecting from the activities ending
before Sn.

A2 A4 A7 A8

A1 A3 A5 A9

A6

W2 = 5 W4 = 2 W7 = 1 W8 = 3

W1 = 1 W3 = 4 W5 = 3 W9 = 5

W6 = 2

Time

8 / 202

Defining general form of subproblems II

2 Abandon activity An: then it suffices to solve another smaller
subproblem: to select activities from A1,A2, ...,An−1.

A2 A4 A7 A8

A1 A3 A5 A9

A6

W2 = 5 W4 = 2 W7 = 1 W8 = 3

W1 = 1 W3 = 4 W5 = 3 W9 = 5

W6 = 2

Time

9 / 202

Optimal sub-structure property

Summarizing the two cases, we can design the general form of
subproblems as: selecting a collection of activities from
A1,A2, ...,Ai to maximize benefits. Let’s denote the
optimal solution value as OPT(i).
Optimal substructure property: (“cut-and-paste” argument)

OPT(i) = max

{
OPT(pre(i)) + Wi

OPT(i − 1)

Here, pre(i) denotes the largest index of the activities ending
before Si.

10 / 202

Dynamic programming algorithm
Recursive_DP(i)
Require: All Ai have been sorted in the increasing order of Fi.
1: if i ≤ 0 then
2: return 0;
3: end if
4: if i == 1 then
5: return W1;
6: end if
7: Let pre(i) denotes the largest index of the activities ending before Si

8: m = max

{
Recursive_DP(pre(i)) + Wi

Recursive_DP(i − 1)
9: return m;

The original problem can be solved by calling
Recursive_DP(n).
It needs O(n log n) to sort the activities and determine pre(.),
and the dynamic programming needs O(n) time. Thus, the
total running time is O(n log n)

11 / 202

multistage decision process

P0 : X = [?, ?, ?, ?, ?, ?, ?, ?, ?]

P1 : X = [?, ?, ?, ?, ?, ?, ?, ?, 1] P2 : X = [?, ?, ?, ?, ?, ?, ?, ?, 0]

x9 = 1 x9 = 0

Here we represent a solution as X = [x1, x2, ..., x9], where
xi = 1 denotes the selection of activity Ai and abandon
otherwise.
At the first decision step, we have to enumerate both options
x9 = 0 and x9 = 1 as we have no idea which one is optimal.

12 / 202

A more cumbersome dynamic programming algorithm

It is not easy to solve a problem with n activities directly.
Let’s see whether it can be reduced into smaller sub-problems.
Solution: a subset of activities. Let’s describe the solving
process as a series of decisions: at each decision step, an
activity is chosen to use the resource.
Suppose we have already worked out the optimal solution.
Consider the first decision in the optimal solution, i.e. a
certain activity Ai is selected. There are at most n options:

Select an activity Ai: the selection leads to a smaller
subproblem, namely, selecting from the activity set with Ai
and the activities conflicting with Ai removed.

A2 A4 A7 A8

A1 A3 A5 A9

A6

W2 = 5 W4 = 2 W7 = 1 W8 = 3

W1 = 1 W3 = 4 W5 = 3 W9 = 5

W6 = 2

Time

13 / 202

Optimal sub-structure property

Summarizing these cases, we can design the general form of
subproblems as: selecting a collection of activities from a
subset S (S ⊆ {A1,A2, ...,An}) to maximize benefits.
Let’s denote the optimal solution value as OPT(S).
Optimal substructure property: (“cut-and-paste” argument)

OPT(S) = max
Ai∈S

{OPT(R(S,Ai)) + Wi}

Here, R(S,Ai) represents the subset with Ai and the activities
conflicting with Ai removed from S.

14 / 202

Dynamic programming algorithm

Recursive_DP(S)
1: if S is empty then
2: return 0;
3: end if
4: m = 0;
5: for all activity Ai ∈ S do
6: Set S′ as the subset with Ai and the activities conflicting with Ai

removed from S;
7: if m <Recursive_DP(S′) + Wi then
8: m = Recursive_DP(S′) + Wi;
9: end if

10: end for
11: return m;

The original problem can be solved by calling
Recursive_DP({A1,A2, ...,An}).
The total running time is O(2n) as the number of
subproblems is exponential.

15 / 202

Multistage decision process

x1 = A1/A2/.../A9

X = [??...?]
P0

X = [A1?...?]
P1

X = [A2?...?]
P2

......
X = [A9?...?]

P9

Here we represent the optimal solution as X = [x1, x2,],
where xi ∈ {A1,A2, ...,A9} denotes the activity selected at
the i-th decision step.
At the first decision step, we have to enumerate 9 options
x1 = A1, x1 = A2,, x1 = A9 as we have no idea which
one is optimal, i.e.,

OPT(S) = max
Ai∈S

{OPT(R(S,Ai)) + Wi}.

16 / 202

IntervalScheduling problem: version 2

17 / 202

Let’s investigate a special case

A2 A4 A7 A8

A1 A3 A5 A9

A6

W2 = 1 W4 = 1 W7 = 1 W8 = 1

W1 = 1 W3 = 1 W5 = 1 W9 = 1

W6 = 1

Time

A special case of IntervalScheduling problem with all
weights wi = 1.

18 / 202

IntervalScheduling problem: version 2

INPUT:
n activities A = {A1,A2, ...,An} that wish to use a resource. Each
activity Ai uses the resource during interval [Si,Fi).
OUTPUT:
To select as many compatible activities as possible.

19 / 202

Greedy-selection property

20 / 202

Another property: greedy-selection

Since this is just a special case, the optimal substructure
property still holds.
Besides the optimal substructure property, the special weight
setting leads to “greedy-selection” property, i.e., to select
as many courses as possible, we first select the course with
the earliest ending time.

Theorem
Suppose A1 is the activity with the earliest ending time. A1 is
used in an optimal solution.

21 / 202

Proof of the greedy-selection rule
Proof.

Suppose we have an optimal solution O = {Ai1,Ai2, ...,AiT}
but Ai1 ̸= A1.
A1 is compatible with Ai2, ...,AiT since A1 ends earlier than
Ai1.
Exchange argument: Construct a new subset
O′ = O − {Ai1} ∪ {A1}. It is clear that O′ is also an optimal
solution since |O′| = |O|.

O’
A2 A4 A7 A8

A1 A3 A5 A9

A6

Time

O
A2 A4 A7 A8

A1 A3 A5 A9

A6

22 / 202

Simplifying the DP algorithm into a greedy algorithm

Interval_Scheduling_Greedy(n)
Require: All Ai have been sorted in the increasing order of Fi.
1: previous_finish_time = −∞;
2: for i = 1 to n do
3: if Si ≥ previous_finish_time then
4: Select activity Ai;
5: previous_finish_time = Fi;
6: end if
7: end for

Time complexity: O(n log n) (sorting activities in the increasing
order of finish time).

23 / 202

An example: Step 1

2 4 7 8

1 3 5 9

6

24 / 202

Step 2

2 4 7 8

1 3 5 9

6

25 / 202

Step 3

2 4 7 8

1 3 5 9

6

26 / 202

Step 4

2 4 7 8

1 3 5 9

6

27 / 202

Greedy-selection rule in multistage decision process

x1 = A1/A2/.../A9

X = [??...?]
P0

X = [A1?...?]
P1

X = [A2?...?]
P2

...... X = [A9?...?]
P9

Here we represent the optimal solution as X = [x1, x2,],
where xi ∈ {A1,A2, ...,A9} denotes the activity selected at
the i-th decision step.
At the first decision step, the dynamic programming technique
has to enumerate 9 options x1 = A1, x1 = A2, ..., x1 = A9 as
it is unknown which one is optimal, i.e.,

OPT(S) = max
Ai∈S

{OPT(R(S,Ai)) + 1}

In contrast, the greedy algorithm selects A1 directly according
to the greedy-selection property, i.e.,

OPT(S) = OPT(R(S,A1)) + 1.
28 / 202

Elements of greedy algorithm

In general, greedy algorithms have five components:
1 A candidate set, from which a solution is created
2 A selection function, which chooses the best candidate to be

added to the solution
3 A feasibility function, that is used to determine if a candidate

can be used to contribute to a solution
4 An objective function, which assigns a value to a solution, or a

partial solution, and
5 A solution function, which will indicate when we have

discovered a complete solution

29 / 202

DP versus Greedy

Similarities:
1 Both dynamic programming and greedy techniques are

typically applied to optimization problems.
2 Optimal substructure: Both dynamic programming and

greedy techniques exploit the optimal substructure property.
3 Beneath every greedy algorithm, there is almost always

a more cumbersome dynamic programming solution —
CRLS

30 / 202

DP versus Greedy cont’d

Differences:
1 A dynamic programming method typically enumerate all

possible options at a decision step, and the decision cannot
be determined before subproblems were solved.

2 In contrast, greedy algorithm does not need to enumerate all
possible options—it simply make a locally optimal (greedy)
decision without considering results of subproblems.

Note:
Here, “local” means that we have already acquired part of an
optimal solution, and the partial knowledge of optimal
solution is sufficient to help us make a wise decision.
Sometimes a rigorous proof is unavailable, thus extensive
experimental results are needed to show the efficiency of the
greedy technique.

31 / 202

How to design greedy method?

Two strategies:
1 Simplifying a dynamic programming method through

greedy-selection;
2 Trial-and-error: Describing the solution-generating process as

making a sequence of choices, and trying different
greedy-selection rules.

32 / 202

Trying other greedy rules

33 / 202

Incorrect trial 1: earlist start rule

Intuition: the earlier start time, the better.
Incorrect. A negative example:

Greedy solution: blue one. Solution value: 1.
Optimal solution: red ones. Solution value: 2.

34 / 202

Incorrect trial 2: trying minimal duration rule

Intuition: the shorter duration, the better.
Incorrect. A negative example:

Greedy solution: blue one. Solution value: 1.
Optimal solution: red ones. Solution value: 2.

35 / 202

Incorrect trial 3: trying minimal conflicts rule

Intuition: the less conflict activities, the better.
Incorrect. A negative example:

Greedy solution: blue ones. Solution value: 3.
Optimal solution: red ones. Solution value: 4.

36 / 202

Revisiting ShortestPath problem

37 / 202

Revisiting Single Source Shortest Paths problem

INPUT:
A directed graph G =< V,E >. Each edge e =< i, j > has a
distance di,j. A single source node s, and a destination node t;
OUTPUT:
The shortest path from s to t (Or the shortest paths from s to each
node v ∈ V, or the shortest paths from each node v ∈ V to t).

Two versions of ShortestPath problem:
1 No negative cycle: Bellman-Ford dynamic programming

algorithm;
2 No negative edge: Dijkstra greedy algorithm.

38 / 202

Optimal sub-structure property in version 1

39 / 202

Optimal sub-structure property
Solution: a path from s to t with at most (n − 1) edges.
Describing the solving process as a multi-stage decision
process: at each decision step, we decide the subsequent node.
Consider the final decision (i.e. from which we reach node t).
There are several possibilities for the decision:

node v such that < v, t >∈ E: then it suffices to solve a
smaller subproblem, i.e. “starting from s to node v via at most
(n − 2) edges”.

Thus we can design the general form of sub-problems as
“starting from s to a node v via at most k edges”.
Denote the optimal solution value as OPT(v, k).
Optimal substructure:
OPT(v, k) = min

{
OPT(v, k − 1)
min<u,v>∈E{OPT(u, k − 1) + du,v}

Note: the first item OPT(v, k − 1) is introduced here to
describe “at most”.
Time complexity: O(mn)

40 / 202

Bellman_Ford algorithm [1956]

Bellman_Ford(G, s, t)
1: for i = 0 to n do
2: OPT[s, i] = 0;
3: end for
4: for all node v ∈ V do
5: OPT[v, 0] = ∞;
6: end for
7: for k = 1 to n − 1 do
8: for all node v (in an arbitrary order) do

9: OPT[v, k] = min

{
OPT[v, k − 1],
min<u,v>∈E{OPT[u, k − 1] + d(u, v)}

10: end for
11: end for
12: return OPT[t,n − 1];

41 / 202

An example: Step 1

s

u

v

x

t

y

1

2

4

3

1

1

2

3

2

k=0 1 2 3 4 5
s
u
v
x
y
t

0 0 0 0 0 0

− 1

− 2

− 4

− −

− −

42 / 202

Step 2

s

u

v

x

t

y

1

2

4

3

1

1

2

3

2

k=0 1 2 3 4 5
s
u
v
x
y
t

0 0 0 0 0 0

− 1 1

− 2 2

− 4 2

− − 4

− − 5

43 / 202

Final step

s

u

v

x

t

y

1

2

4

3

1

1

2

3

2

k=0 1 2 3 4 5
s
u
v
x
y
t

0 0 0 0 0 0

− 1 1 1 1 1

− 2 2 2 2 2

− 4 2 2 2 2

− − 4 3 3 3

− − 5 4 4 4

Recall that the collection of the shortest paths from s to all
nodes form a shortest path tree.

44 / 202

Greedy-selection property in version 2

45 / 202

Greedy-selection rule in multistage decision process

s

u

v

x

t

y

1

2

4

3

1

1

2

3

2

x1 = x/u/v

x2 = x/v/y/t

X =?????
P0

x????
P1

u????
P2

v????
P3

ux???
P4

uv???
P5

uy???
P6

ut???
P7

......

The construction of the shortest path tree rooted at s is a
multistage decision process: The tree is described as
X = [x1, x2, ..., x5], where xi ∈ V represents the node selected
at the i-th stage. The Dijkstra’s algorithm selects the nearest
node adjacent to “explored” nodes at each stage.

46 / 202

Strategy 1: design greedy rule through decomposing the original
objective

47 / 202

Let’s start from the simplest case

Stage 1

Stage 2

s

p q

t p t

s

p

q

t

1
1

1

11

Objective: finding the shortest path tree rooted at s, in which
the path from s to every node is the shortest path
Multi-stage decision process: we start from an empty tree
with only the root node s, and extend the tree step by step.
At each step, we select a node, and add it to the current tree.
Optimal decision: select the node such that the edge
connecting it to the current tree is the final step of the
shortest path from s to it.
Question: how to find such nodes? Let’s start from the
simplest case with all edge distances being 1

48 / 202

Intuition: wave propagation

r = 1 r = 2

s

p

q

t

1

1

1

11

Intuition: a wave starts from s and propagates to all nodes by
following the edges. The order that the wave reaches a node
is essentially the shortest distance from s to it

49 / 202

BFS algorithm

function BFS(G = ⟨V,E⟩, s)
1: Set v.visited =FALSE for each node v ∈ V, and set d(s) = 0,

s.visited =TRUE;
2: Create an empty queue Q and execute Q.Enqueue(s);
3: while Q.IsEmpty() ̸= TRUE do
4: u = Q.Dequeue();
5: for all u’s neighbor v do
6: if v.visited ̸= TRUE then
7: Set v.visited = TRUE;
8: Set d(v) = d(u) + 1;
9: Q.Enqueue(v);

10: end if
11: end for
12: end while

50 / 202

How to handle the case with various edge length?

S

s

p

q

x

z

y

1

3

1

2

3

24

1

2

(a)

S

s

p

q

x

z

y

1

3

1

2

3

24

1

2

(b)

Idea: transforming the graph into a new graph with all edge
lengths being 1 and then running BFS
Technique: adding a virtual node to the edges with length of
2, adding two virtual nodes to the edges with length of 3, and
so on

51 / 202

Weighted BFS

s u

x

q

v∗

2

1
1

3 1

2
1

S

Greedy selection rule: selecting the nearest neighbor to the
current tree (termed as “explored nodes”)

52 / 202

Dijkstra’s algorithm

function Dijkstra(G = ⟨V,E⟩, s)
1: Set d(s) = 0, and set d(v) = +∞ for each node v ̸= s;
2: Set S = {}; //Let S be the set of explored nodes;
3: while S ̸= V do
4: Select the unexplored node v∗ (v∗ /∈ S) that minimizes d(v);
5: S = S ∪ {v∗};
6: for each unexplored node v adjacent to an explored node do
7: d(v) = min{d(v),minu∈S{d(u) + d(u, v)}};
8: end for
9: end while

53 / 202

Strategy 2: finding greedy rules through analyzing DP behaviour

54 / 202

Redundant calculations in Bellman_Ford algorithm

At the k-th step, let’s consider a special node v∗, the nearest
node from s via at most k − 1 edges, i.e.

OPT(v∗, k − 1) = minvOPT(v, k − 1)

Consider the optimal substructure property for v∗, i.e.

OPT(v∗, k) = min

{
OPT(v∗, k − 1)
min<u,v∗>∈E{OPT(u, k − 1) + du,v∗}

The above equality can be further simplified as:

OPT(v∗, k) = OPT(v∗, k − 1)

(Why? OPT(u, k − 1) ≥ OPT(v∗, k − 1) and du,v∗ ≥ 0.)

55 / 202

The meaning of OPT(v∗, k) = OPT(v∗, k − 1) for k = 2

s

u

v

x

t

y

1

2

4

3

1

1

2

3

2

k=01 2 3 4 5
s
u
v
x
y
t

0 0 0 0 0 0

− 1 1 1 1 1

− 2

− 4

− −

− −

Intuitively v∗ (in red circles) can be treated as has already
been explored using at most (k − 1) edges, and the
distance will not change afterwards. Thus, the calculations of
OPT(v∗, k) (in green rectangles) are in fact redundant.
In other words, it suffices to calculate
OPT[v, k] = min

{
OPT[v, k − 1],
min<u,v>∈E{OPT[u, k − 1] + d(u, v)}

for

the unexplored nodes v ̸= v∗, including v, x, y, t.
56 / 202

The meaning of OPT(v∗, k) = OPT(v∗, k − 1) for k = 3

s

u

v

x

t

y

1

2

4

3

1

1

2

3

2

k=01 2 3 4 5
s
u
v
x
y
t

0 0 0 0 0 0

− 1 1 1 1 1

− 2 2 2 2 2

− 4 2 2 2 2

− − 4

− − 5

Intuitively v∗ (in red circles) can be treated as has already
been explored using at most (k − 1) edges, and the
distance will not change afterwards. Thus, the calculations of
OPT(v∗, k) (in green rectangles) are in fact redundant.
In other words, it suffices to calculate
OPT[v, k] = min

{
OPT[v, k − 1],
min<u,v>∈E{OPT[u, k − 1] + d(u, v)}

for

the unexplored nodes v ̸= v∗, including y, t.
57 / 202

The meaning of OPT(v∗, k) = OPT(v∗, k − 1)

s

u

v

x

t

y

1

2

4

3

1

1

2

3

2

k=01 2 3 4 5
s
u
v
x
y
t

0 0 0 0 0 0

− 1 1 1 1 1

− 2 2 2 2 2

− 4 2 2 2 2

− − 4 3 3 3

− − 5 4 4 4

Intuitively v∗ (in red circles) can be treated as has already
been explored using at most (k − 1) edges, and the
distance will not change afterwards. Thus, the calculations of
OPT(v∗, k) (in green rectangles) are in fact redundant.
In other words, it suffices to calculate
OPT[v, k] = min

{
OPT[v, k − 1],
min<u,v>∈E{OPT[u, k − 1] + d(u, v)}

for

the unexplored nodes v ̸= v∗ at each step.
58 / 202

A faster implementation of Bellman_Ford

Fast_Bellman_Ford(G, s, t)
1: S = {s}; //S denotes the set of explored nodes,
2: for i = 0 to n do
3: OPT[s, i] = 0;
4: end for
5: for all node v ∈ V do
6: OPT[v, 0] = ∞;
7: end for
8: for k = 1 to n − 1 do
9: for all node v /∈ S (in an arbitrary order) do

10: OPT[v, k] = min

{
OPT[v, k − 1],
min<u,v>∈E{OPT[u, k − 1] + d(u, v)}

11: end for
12: Add the nodes with minimum OPT(v, k) to S;
13: end for
14: return OPT[t,n − 1];

59 / 202

Greedy-selection rule: select the nearest neighbor of S
Now the question is how to efficiently calculate OPT(v, k) for
the unexplored nodes v /∈ S. Take the example shown below.
The unexplored nodes include v, x, y and t.

s

u

v

x

t

y

1

2

4

3

1

1

2

3

2

k=01 2 3 4 5
s
u
v
x
y
t

0 0 0 0 0 0

− 1 1 1 1 1

− 2

− 4

− −

− −

Note that it is unnecessary to consider all unexplored nodes;
instead, we can consider only the unexplored nodes
adjacent to an explored node, i.e., nodes v, x, y.
Furthermore, among these nodes, the nearest ones (v and
x) have their shortest distance determined. Thus we can
iteratively select such nodes until reaching node t.

60 / 202

Theorem
Let S denote the explored nodes, and for each explored node v, let d(v) denote
the shortest distance from s to v. Consider the nearest unexplored node u∗

adjacent to an explored node, i.e., u∗ is the node u (u /∈ S) that minimizes
d′(u) = minw∈S{d(w) + d(w, u)}. Then the path P = s → ... → w → u∗ is one
of the shortest paths from s to u∗ with distance d′(u∗).

Proof.

Consider another path P′ from s to u∗:
P′ = s → ... → x → y → ... → u∗. Let y denote the first node in P′

leaving out of S.
We decompose P′ into two parts: s → ... → x → y, and y → ... → u∗.
The first part should be longer. Thus, |P′| ≥ d(s, x) + d(x, y) ≥ d′(u∗).

s w

x y z

u∗

2

1 3 1 1

12 1

S : explored nodes
61 / 202

Bellman_Ford vs Dijkstra: two differences
1 Let v∗ denote the nearest node from s using at most k − 1 edges. The

shortest distance d(v∗) will not change afterwards.

s

u

v

x

t

y

1

2

4

3

1

1

2

3

2

k=01 2 3 4 5
s
u
v
x
y
t

0 0 0 0 0 0

− 1 1 1 1 1

− 2

− 4

− −

− −

2 Let’s u∗ denote the nearest unexplored node adjacent to an explored
node. The shortest path from s to u∗ is determined.

s w

x y z

u∗
2

1
3

1
1

12 1

S : explored nodes
62 / 202

Dijkstra’s algorithm [1959]
Dijkstra(G, s, t)
1: d(s) = 0; //d(u) stores upper bound of the shortest distance from s

to u;
2: for all node v ̸= s do
3: d(v) = +∞;
4: end for
5: S = {}; // Let S be the set of explored nodes;
6: while S ̸= V do
7: Select the unexplored node v∗ (v∗ /∈ S) that minimizes d(v);
8: S = S ∪ {v∗};
9: for all unexplored node v adjacent to an explored node do

10: d(v) = min{d(v),minu∈S{d(u) + d(u, v)}};
11: end for
12: end while

Lines (9 − 11) are called “relaxing”. That is, we test whether the
shortest-path to v found so far can be improved by going through u,
and if so, update d(v).
When du,v = 1 for any edge < u, v >, the Dijkstra’s algorithm
reduces to BFS, and thus can be treated as weighted BFS.

63 / 202

Implementing Dijkstra’s algorithm using priority queue
Dijkstra(G, s, t)
1: key(s) = 0; //key(u) stores an upper bound of the shortest distance

from s to u;
2: PQ. Insert (s);
3: for all node v ̸= s do
4: key(v) = +∞
5: PQ. Insert (v) //n times
6: end for
7: S = {}; // Let S be the set of explored nodes;
8: while S ̸= V do
9: v∗ = PQ. ExtractMin(); //n times

10: S = S ∪ {v∗};
11: for all v /∈ S and < v∗, v >∈ E do
12: if key(v∗) + d(v∗, v) < key(v) then
13: PQ.DecreaseKey(v, key(v∗) + d(v∗, v)); //m times
14: end if
15: end for
16: end while
Here PQ denotes a min-priority queue. (see a demo)

64 / 202

Dijkstra’s algorithm: a 20-minute invention without pencil
and paper

What is the shortest way to travel from Rotterdam to Groningen, in
general: from given city to given city? It is the algorithm for the shortest
path, which I designed in about twenty minutes. One morning I was
shopping in Amsterdam with my young fiancée, and tired, we sat down
on the café terrace to drink a cup of coffee and I was just thinking about
whether I could do this, and I then designed the algorithm for the
shortest path. As I said, it was a twenty-minute invention. In fact, it was
published in ’59, three years late. The publication is still readable, it is, in
fact, quite nice. One of the reasons that it is so nice was that I designed
it without pencil and paper. I learned later that one of the advantages of
designing without pencil and paper is that you are almost forced to avoid
all avoidable complexities. Eventually that algorithm became, to my
great amazement, one of the cornerstones of my fame.
All the programming I did was on paper. So I was quite used to
developing programs without testing them.
Thanks to my isolation, I would do things differently than people
subjected to the standard pressures of conformity. I was a free man.
— Edsger Dijkstra, in an interview with Philip L. Frana,
Communications of the ACM 53 (8), 2001. 65 / 202

Contributions by Edsger W. Dijkstra

The semaphore construct for coordinating multiple processors and
programs.
The concept of self-stabilization — an alternative way to ensure the
reliability of the system
”A Case against the GO TO Statement”, regarded as a major step
towards the widespread deprecation of the GOTO statement and its
effective replacement by structured control constructs, such as the
while loop.
...

66 / 202

ShortestPath: Bellman-Ford algorithm vs. Dijkstra
algorithm

A slight change of edge weights leads to a significant change
of algorithm design.

1 No negative cycle: an optimal path from s to v has at most
n − 1 edges; thus the optimal solution is OPT(v,n − 1). To
calculate OPT(v,n − 1), we appeal to the following recursion:

OPT[v, k] = min

{
OPT[v, k − 1],
min<u,v>∈E{OPT[u, k − 1] + d(u, v)}

2 No negative edge: This stronger constraint on edge weights
implies greedy-selection property. In particular, it is
unnecessary to calculate OPT(v, i) for any explored node
v ∈ S, and for the nearest unexplored node adjacent to an
explored node, its shortest distance is determined.

67 / 202

Time complexity analysis

68 / 202

Time complexity of the Dijkstra’s algorithm

Operation Linked Binary Binomial Fibonacci
list heap heap heap

MakeHeap 1 1 1 1
Insert 1 log n log n 1

ExtractMin n log n log n log n
DecreaseKey 1 log n log n 1

Delete n log n log n log n
Union 1 n log n 1

FindMin n 1 log n 1
Dijkstra O(n2) O(m log n) O(m log n) O(m + n log n)

The Dijkstra’s algorithm: n Insert, n ExtractMin, and m
DecreaseKey.

69 / 202

Extension: can we reweigh the edges to make all weight positive?

70 / 202

Trial 1: Increasing all edge weights by the same amount

s u

v w

t
1

−1

1

−1

1
s u

v w

t
6

4

6

4

6

Increasing all the weight by 5 changes the shortest path from
s to t.
Reason: Different paths might change by different amount
although all edges change by the same mount.

71 / 202

Trial 2: Increasing an edge weight according to its two ends

For different paths starting from u to v, one of the constraints
of reweighing is to maintain the order of these paths under
the original weighting function. In other words, the change of
distance following a path is independent of the intermediate
nodes of the path. Thus, for any path u⇝ v, we represent
the new distance as:

d′(u⇝ v) = d(u⇝ v) + c(u)− c(v)

where c(v) is a number associated with node v.
As a special case, each edge (u, v) is reweighed as follows.

d′(u, v) = d(u, v) + c(u)− c(v)

Note another constraint is d′(u, v) ≥ 0 for any edge (u, v).
How to achieve this objective?

72 / 202

Reweighing schema

Basic idea: We first add a new node s∗ and connect it to each
node v with an edge weight d(s∗, v) = 0, d(v, s∗) = ∞. Next
we set c(v) as dist(s∗, v), i.e., the shortest distance from s∗ to
v.
We can prove that for any node pair u and v,

d′(u, v) = d(u, v) + dist(u)− dist(v) ≥ 0

(Why? If d′(u, v) < 0, then d(u, v) + dist(u) < dist(v), which
is contradict to the fact that dist(v) is the shortest distance to
v.)

73 / 202

Johnson algorithm for all pairs shortest path [1977]

Johnson(G)

1: Create a new node s∗;
2: for all node v ̸= s∗ do
3: d(s∗, v) = 0
4: end for
5: Run Bellman_Ford algorithm to calculate the shortest distance

from s∗ to each node v (denoted as dist(s∗, v));
6: Reweighting: d′(u, v) = d(u, v) + dist(s∗, u)− dist(s∗, v)
7: for all node u ̸= s∗ do
8: Run Dijkstra’s algorithm with the new weight d′ to calculate the

shortest paths from u to each node v (denoted as d∗(u, v));
9: for all node v ̸= s∗ do

10: d∗(u, v) = d∗(u, v)− dist(s∗, u) + dist(s∗, v);
11: end for
12: end for
13: return d∗(u, v) for each node pair (u, v);
Time complexity: O(mn + n2 log n).

74 / 202

Extension: data structures designed to speed up the Dijkstra’s
algorithm

75 / 202

Binary heap, Binomial heap, and Fibonacci heap

Figure 1: Robert W. Floyd, Jean Vuillenmin, Robert Tarjan

(See extra slides for binary heap, binomial heap and Fibonacci
heap)

76 / 202

Huffman Code

77 / 202

Compressing files

Practical problem: how to compact a file when you have the
knowledge of frequency of letters?
Example:

SYMBOL A B C D E
Frequency 24 12 10 8 8
Fixed Length Code 000 001 010 011 100 E(L) = 186
Variable Length Code 00 01 10 110 111 E(L) = 140

78 / 202

Formulation

INPUT:
a set of symbols S = {s1, s2, ..., sn} with its appearance frequency
P = {p1, p2, ..., pn};
OUTPUT:
assign each symbol with a binary code Ci to minimize the length
expectation

∑
i pi|Ci|.

79 / 202

Requirement: prefix code I

To avoid the potential ambiguity in decoding, we require the
coding to be prefix code.

Definition (Prefix coding)
A prefix coding for a symbol set S is a coding such that for any
symbols x, y ∈ S, the code C(x) is not prefix of the code C(y).

Intuition: A prefix code can be represented as a binary tree,
where a leaf represents a symbol, and the path to a leaf
represents the code.
Our objective: to design an optimal tree T to minimize
expected length E(T) (the size of the compressed file).

80 / 202

Requirement: prefix code II

81 / 202

Full binary tree
Theorem
An optimal binary tree should be a full tree.

Proof.
Suppose T is an optimal tree but is not full;
There is a node u with only one child v;
Construct a new tree T′, where u is replaced with v;
E(T′) ≤ E(T) since any child of v has a shorter code.

82 / 202

But how to construct the optimal tree?
Let’s describe the solving process as a multistage decision process.

83 / 202

A top-down multiple-decision process

There a total of 2n options, which makes the dynamic
programming infeasible.

84 / 202

Shannon-Fano coding [1949]
Top-down method :

1: Sorting S in the decreasing order of frequency.
2: Splitting S into two sets S1 and S2 with almost equal

frequencies.
3: Recursively building trees for S1 and S2.

Figure 2: Claude Shannon and Robert Fano
85 / 202

An example: Step 1

86 / 202

An example: Step 2

87 / 202

An example: Step 3

88 / 202

A bottom-up multiple-decision process

There a total of
(n

2
)

options.

89 / 202

Huffman code: bottom-up manner [1952]
Bottom-up method:

1: repeat
2: Merging the two lowest-frequency letters y and z into a new

meta-letter yz,
3: Setting Pyz = Py + Pz.
4: until only one label is left

90 / 202

Huffman code: bottom-up manner [1952]

Key Observations:
1 In an optimal tree, depth(u) ≥ depth(v) iff Pu ≤ Pv.

(Exchange argument)
2 There is an optimal tree, where the lowest-frequency letters Y

and Z are siblings. (Why?)
Consider a deepest node v.
v’s parent, denoted as u, should has another child, say w.
w should also be a deepest node.
v and w have the lowest frequency.

91 / 202

Huffman code algorithm 1952

Huffman(S,P)
1: if |S| == 2 then
2: return a tree with a root and two leaves;
3: end if
4: Extract the two lowest-frequency letters Y and Z from S;
5: Set PYZ = PY + PZ;
6: S = S − {Y,Z} ∪ {YZ};
7: T′ =Huffman(S,P);
8: T = add two children Y and Z to node YZ in T′;
9: return T;

92 / 202

Example

93 / 202

Shannon-Fano vs. Huffman

94 / 202

Huffman algorithm: correctness

Lemma
E(T′) = E(T)− PYZ

Proof.

E(T) =
∑
x∈S

PxD(x,T)

= PYD(Y,T) + PZD(Z,T) +
∑

x̸=Y,x ̸=Z

PxD(x,T)

= PY(1 + D(YZ,T′)) + PZ(1 + D(YZ,T′)) +
∑

x ̸=Y,x ̸=Z

PxD(x,T)

= PYZ + PYD(YZ,T′) + PZD(YZ,T′) +
∑

x ̸=Y,x̸=Z

PxD(x,T′)

= PYZ + E(T′)

Note: D(x,T) denotes the depth of leaf x in tree T.
95 / 202

Huffman algorithm: correctness cont’d

Theorem
Huffman algorithm output an optimal code.

Proof.
(Induction)

Suppose there is another tree t with smaller expected length;
In the tree t, let’s merge the lowest frequency letters Y and Z
into a meta-letter YZ; converting t into a new tree t′ with of
size n − 1;
t′ is better than T′. Contradiction.

96 / 202

Analysis

Time complexity:
T(n) = T(n − 1) + O(n) = O(n2).
T(n) = T(n− 1)+O(log n) = O(n log n) if use priority queue.

Note: Huffman code is a bit different example of greedy
technique—the problem is shrinked at each step; in addition, the
problem is changed a little (the frequency of a new meta letter is
the sum frequency of its members).

97 / 202

Application

In practical operation Shannon-Fano coding is not of larger
importance. This is especially caused by the lower code
efficiency in comparison to Huffman coding.
Huffman codes are part of several data formats as ZIP, GZIP
and JPEG. Normally the coding is preceded by procedures
adapted to the particular contents. For example the
wide-spread DEFLATE algorithm as used in GZIP or ZIP
previously processes the dictionary based LZ77 compression.

See http://www.binaryessence.com/dct/en000003.htm for details.

98 / 202

Theoretical foundation of greedy strategy: Matroid and
submodular functions

99 / 202

Theoretical foundation of greedy strategy

Consider the following optimization problem: given a finite set
of objects N, the objective is to find a subset S ∈ F such that
a set function f(S) is maximized, i.e.,

max f(S)
s.t. S ∈ F

Here, F ⊆ 2N represents certain constraints over S.
In general cases, the problem is clearly intractable — you
would better check all possible subsets in F to avoid missing
the optimal solution. However, in certain special cases, greedy
strategy applies and generates optimal solution or good
approximation solutions.

100 / 202

When greedy strategy is perfect or good enough?

So what conditions on either F or f(S) or both does greedy
strategy needs?

Matroid: Greedy strategy generates optimal solution when f(S)
is a linear function, and F can be characterized as
independent subsets.
Submodular functions: Greedy strategy might generate
provably good approximation when f(S) is a submodular
function.

101 / 202

When greedy strategy is perfect: Maximizing/minimizing a linear
function under matroid constraint

102 / 202

Revisiting Maximal Linearly Independent Set
problem

Question: Given a set of vectors, to determine the maximal
linearly independent set.
Example:

V1 = [1 2 3 4 5]
V2 = [1 4 9 16 25]
V3 = [1 8 27 64 125]
V4 = [1 16 81 256 625]
V5 = [2 6 12 20 30]

Independent vector set: {V1,V2,V3,V4}

103 / 202

Calculating maximal number of independent vectors

IndependentSet(M)

1: S = {};
2: for all row vector v do
3: if S ∪ {v} is still independent then
4: S = S ∪ {v};
5: end if
6: end for
7: return S;

Here we adopt the independence oracle model for M:
given S ⊆ N, the oracle returns whether S is independent or
not.

104 / 202

Correctness: Properties of linear independence vector set
Let’s consider the linear independence for vectors.

1 Hereditary property: if B is an independent vector set and
A ⊂ B, then A is also an independent vector set.

2 Augmentation property: if both A and B are independent
vector sets, and |A| < |B|, then there is a vector v ∈ B − A
such that A ∪ {v} is still an independent vector set.

Example:

V1 = [1 2 3 4 5]
V2 = [1 4 9 16 25]
V3 = [1 8 27 64 125]
V4 = [1 16 81 256 625]
V5 = [2 6 12 20 30]

Independent vector sets: A = {V1,V3,V5},
B = {V1,V2,V3,V4}, and |A| < |B|.
Augmentation of A: A ∪ {V4} is also independent.

105 / 202

An extension to weighted vectors

Question: Given a matrix, where each row vector is
associated with a weight, to determine a set of linearly
independent vectors to maximize the sum of weight.
Example:

V1 = [1 2 3 4 5] W1 = 9
V2 = [1 4 9 16 25] W2 = 7
V3 = [1 8 27 64 125] W3 = 5
V4 = [1 16 81 256 625] W4 = 3
V5 = [2 6 12 20 30] W5 = 1

106 / 202

Greedy-selection property

Theorem
Let v be the vector with the largest weight and {v} is independent,
then there is an optimal vector set A of M and A contains v.

Proof.
Assume there is an optimal subset B but v /∈ B.
Then we can construct A from B as follows:

1 Initially: A = {v};
2 Until |A| = |B|, repeatedly find a new element of B that can

be added to A while preserving the independence of A (by
augmentation property);

Finally we have A = B − {v′} ∪ {v}.
We have W(A) ≥ W(B) since W(v) ≥ W(v′) for any v′ ∈ B.
A contradiction.

107 / 202

A general greedy algorithm (by Jack Edmonds [1971])

MatroidGreedy(M,W)

1: S = {};
2: Sort row vectors in the decreasing order of their weights;
3: for all row vector v do
4: if S ∪ {v} is still independent then
5: S = S ∪ {v};
6: end if
7: end for
8: return S;

Time complexity: O(n log n + nC(n)), where C(n) is the time
needed to query the independence oracle.

108 / 202

An extension of linear independence for vectors: matroid

109 / 202

Matroid [Haussler Whitney, 1935]

Matroid was proposed to capture the concept of linear
independence in matrix theory, and generalize the concept in
other field, say graph theory.
In fact, in the paper On the abstract properties of linear
independence, Haussler Whitney said:
This paper has a close connection with a paper by the author
on linear graphs; we say a subgraph of a graph is
independent if it contains no circuit.

110 / 202

Origin 1 of matroid: linear independence for vectors

Let’s consider the linear independence for vectors.
1 Hereditary property: if B is an independent vector set and

A ⊂ B, then A is also an independent vector set
2 Augmentation property: if both A and B are independent

vector sets, and |A| < |B|, then there is a vector v ∈ B − A
such that A ∪ {v} is still an independent vector set

Example:
V1 = [1 2 3 4 5]
V2 = [1 4 9 16 25]
V3 = [1 8 27 64 125]
V4 = [1 16 81 256 625]
V5 = [2 6 12 20 30]

We have two independent vector sets: A = {V1,V3,V5},
B = {V1,V2,V3,V4}, and |A| < |B|. The augmentation of
A, A ∪ {V4}, is also independent.

111 / 202

Origin 2 of matroid: acyclic subgraph [H. Whitney, 1932]

Given a graph G =< V,E >, let’s consider the acyclic
property.

Hereditary property: if an edge set B is an acyclic forest
and A ⊂ B, then A is also an acyclic forest

G
s u

v w t

B
s u

v w t

A
s u

v w t

112 / 202

Origin 2 of matroid: acyclic subgraph
Augmentation property: if both A and B are acyclic
forests, and |A| < |B|, then there is an edge e ∈ B − A such
that A ∪ {e} is still an acyclic forest

Suppose forest B has more edges than forest A;
A has more trees than B. (Why? #Tree = |V| − |E|)
B has a tree connecting two trees of A. Denote the connecting
edge as (u, v).
Adding (u, v) to A will not form a cycle. (Why? it connects
two different trees.)
This can also be proved through examining the incidence
matrix of G: a linear dependence among columns (edges)
corresponds to a cycle.

B
s u

v w t

A′

s u

v w t

A
s u

v w t

113 / 202

Abstraction: the formal definition of matroid

A matroid is a pair M = (N, I), where N is a finite nonempty
set (called ground set), and I ⊆ 2N is a family of
independent subsets of N satisfying the following conditions:

1 Hereditary property: if B ∈ I and A ⊂ B, then A ∈ I;
2 Augmentation property: if A ∈ I, B ∈ I, and |A| < |B|,

then there is some element x ∈ B − A such that A ∪ {x} ∈ I.

114 / 202

Properties of matroid

Bases and rank: Maximal independent sets of a matroid M
are called bases. The augmentation property is equivalent to
the fact that all bases have the same cardinality, which is
denoted as rank.
Circuit: The minimal dependent sets are denoted as circuits,
which are completely dual to the maximal independent sets.
In fact, matroids can also be characterized in terms of circuits.
Bijection basis exchange: If B1 and B2 are two bases of a
matroid M = (N, I), then there exists a bijection
ϕ : B1\B2 → B2\B1 such that:

∀x ∈ B1\B2, B1 − x + ϕ(x) ∈ I

115 / 202

Spanning Tree: an application of matroid

116 / 202

Minimum Spanning Tree problem

Practical problem:
In the design of electronic circuitry, it is often necessary to
make the pins of several components electrically equivalent by
wiring them together.
To interconnect a set of n pins, we can use n − 1 wires, each
connecting two pins;
Among all interconnecting arrangements, the one that uses the
least amount of wire is usually the most desirable.

a

b

h

i

c

g f

d

e

4

8

11

8

2

7
6

1 2

4

7

14

9

10

117 / 202

Minimum Spanning Tree problem

Input: A graph G, and each edge e =< u, v > is associated with
a weight W(u, v);
Output: a spanning tree with the minimum sum of weights.
Here, a spanning tree refers to a set of n − 1 edges connecting all
nodes.

a

b

h

i

c

g f

d

e

4

8

11

8

2

7
6

1 2

4

7

14

9

10

118 / 202

Independent Vector Set versus Acyclic Forest

Linearly
Independent Set Acyclic Forest

Maximal Linearly
Independent Set Spanning Tree

Weighted Maximal
Linearly

Independent Set

Minimum
Spanning Tree

119 / 202

Generic Spanning Tree algorithm

Objective: to find a spanning tree for graph G;
Basic idea: analogue to Maximal Linearly Independent
Set calculation;

GenericSpanningTree(G)

1: F = {};
2: while F does not form a spanning tree do
3: find an edge (u, v) that is safe for F;
4: F = F ∪ {(u, v)};
5: end while

Here F denotes an acyclic forest, and F is still acyclic if
added by a safe edge.

120 / 202

Examples of safe edge and unsafe edge

a

b

h

i

c

g f

d

e

4

8

11

8

2

7
6

1 2

4

7

14

9

10

Figure 3: Safe edge

a

b

h

i

c

g f

d

e

4

8

11

8

2

7
6

1 2

4

7

14

9

10

Figure 4: Unsafe edge

121 / 202

Minimum Spanning Tree algorithms

122 / 202

Kruskal’s algorithm [1956]

Basic idea: during the execution, F is always an acyclic
forest, and the safe edge added to F is always a least-weight
edge connecting two distinct components.

Figure 5: Joseph Kruskal

123 / 202

Kruskal’s algorithm [1956]
MST-Kruskal(G,W)

1: F = {};
2: for all vertex v ∈ V do
3: MakeSet(v);
4: end for
5: Sort the edges of E in an nondecreasing order by weight W;
6: for each edge (u, v) ∈ E in the order do
7: if FindSet(u) ̸= FindSet(v) then
8: F = F ∪ {(u, v)};
9: Union (u, v);

10: end if
11: end for
Here, Union-Find structure is used to detect whether a set of
edges form a cycle.
(See slides on Union-Find data structure, and a demo of Kruskal
algorithm)

124 / 202

Time complexity

Running time:
1 Sorting: O(m logm)
2 Initializing: n MakeSet operations;
3 Detecting cycle: 2m FindSet operations;
4 Adding edge: n − 1 Union operations.

Thus, the total time is O(m log ∗n) when using Union-Find
data structures.
Provided that the edges are already sorted or can be sorted in
O(n) time using radix sort or counting sort, the total time is
O((m+n)α(n)), where α(n) is a very slowly growing function.

125 / 202

Prim’s algorithm

126 / 202

Prim’s algorithm [1957]
Basic idea: the final minimum spanning tree is grown step by
step. Let’s describe the solving process as a multistage
decision process. At each step, the least-weight edge connect
the sub-tree to a node not in the tree is chosen.
Note: One advantage of Prim’s algorithm is that no special
check to make sure that a cycle is not formed is required.

Figure 6: Robert C. Prim

127 / 202

Greedy-selection property

Theorem
[Greedy-selection property] Suppose T is a sub-tree of the final
minimum spanning tree, and e = (u, v) is the least-weight edge
connect one node in T and another node not in T. Then e is in
the final minimum spanning tree.

root

a

b

h g

d

ei

c

f

4

8

11 2

1 2

4

9
8 7

7
6 14

10

128 / 202

Prim algorithm for Minimum Spanning Tree [1957]
MST-Prim(G,W, root)
1: for all node v ∈ V and v ≠ root do
2: key[v] = ∞;
3: Π[v] = Null; //Π(v) denotes the predecessor node of v
4: PQ.Insert(v); // n times
5: end for
6: key[root] = 0;
7: PQ.Insert(root);
8: while PQ ̸= Null do
9: u = PQ.ExtractMin(); // n times

10: for all v adjacent with u do
11: if W(u, v) < key(v) then
12: Π(v) = u;
13: PQ.DecreaseKey(W(u, v)); // m times
14: end if
15: end for
16: end while
Here, PQ denotes a min-priority queue. The chain of predecessor nodes
originating from v runs backwards along a shortest path from s to v.
(See a demo) 129 / 202

Time complexity of Prim algorithm

Operation Linked Binary Binomial Fibonacci
list heap heap heap

MakeHeap 1 1 1 1
Insert 1 log n log n 1

ExtractMin n log n log n log n
DecreaseKey 1 log n log n 1

Delete n log n log n log n
Union 1 n log n 1

FindMin n 1 log n 1
Prim O(n2) O(m log n) O(m log n) O(m + n log n)

Prim algorithm: n Insert, n ExtractMin, and m
DecreaseKey.

130 / 202

Why does the greedy algorithm fail for the weighted
IntervalScheduling problem?

131 / 202

Greedy algorithm fails for the weighted
IntervalScheduling problem

Matroid covers many cases of practical interests, and it is
useful when determining whether greedy technique yields
optimal solutions. However, greedy algorithm fails for the
weighted IntervalScheduling problem.

A1 : w1 = 2

A3 : w3 = 3
4 A5 : w3 = 3

4

A2 : w2 = 1 A4 : w4 = 0

Solutions: Greedy : {A1,A2,A4} | OPT : {A1,A3,A5}
Benefits: 2 + 1 + 0 = 3 | 2 + 3

4 + 3
4 = 3.5

132 / 202

Independence in IntervalScheduling problem

A1 : w1 = 2

A3 : w3 = 3
4 A5 : w3 = 3

4

A2 : w2 = 1 A4 : w4 = 0

Let’s thinks of a set of intervals as “independent” if they
don’t conflict each other. Let N denote the interval set, and I
represent the family of all independent interval sets.
Let’s examine the following properties:

Hereditary property: Any subset of an independent interval
set is still independent.
Augmentation property: Consider A = {A1,A3,A5} and
B = {A1,A2}. Although |A| > |B|, the augmentation B ∪ {x}
with any interval x ∈ A\B is not independent.

Thus M = (N, I) doesn’t form a matroid.
We claim that if M = (N, I) doesn’t form a matroid, there
definitely exists a weighting schema that causes the greedy
algorithm to fail.

133 / 202

Let’s examine whether the greedy algorithm works
perfectly all the time

Theorem
Suppose that M = (N, I) is an independence system, i.e., I has
the hereditary property. Then M is a matroid iff for any
nonnegative weighting schema over N, the greedy algorithm
returns a basis of the maximum weight.

Here each element x ∈ N is associated with a nonnegative
weight w(x), and the weight of a subset S ⊆ N is defined as
the total weights of the elements in S.
We consider the greedy algorithm that iteratively adds the
heaviest element that maintain independence.

134 / 202

Proof
Suppose we have an independent system M = (N, I) but it
doesn’t satisfy the augmentation property. We prove the
theorem by constructing a weighting schema that causes the
greedy algorithm to fail.
Let A, B be independent sets with |A| = |B|+ 1, but the
addition of any element x ∈ A\B to B never gives an
independent set, say A = {A1,A3,A5} and B = {A1,A2} in
the following example.

A1 : w1 = 2

A3 : w3 = 3
4 A5 : w3 = 3

4

A2 : w2 = 1 A4 : w4 = 0

We construct the following weighting schema:

w(x) =


w1 if x ∈ A ∩ B
w2 if x ∈ B\A
w3 if x ∈ A\B
w4 if x ∈ Ā ∩ B̄

135 / 202

Proof cont’d
The weights w1,w2,w3,w4 were designed as below:

w1 > w2 > w3 > w4 = 0: Thus the greedy algorithm will
choose elements in A ∩ B first, then B\A, and finally Ā ∩ B̄.
Note that the elements in A\B will not be selected since the
addition of such element to B never gives an independent
interval set.
w1|A ∩ B|+ w2|B\A| < w1|A ∩ B|+ w3|A\B|: The first term
represents the benefits returned by the greedy algorithm, while
the second one the benefits returned by augmenting based on
A. Thus the inequality implies the failure of the greedy
algorithm.

To achieve these two objectives simultaneously, we set
w1,w2,w3,w4 as:

w1 = 2
w2 = 1

|B\A|

w3 = 1+ϵ
|A\B|

w4 = 0

where 0 < ϵ < 1
|B\A| . We use ϵ = 1

2 in the above example.
136 / 202

Tight connection between matroid and greedy algorithm

On one side, if you can prove that the problem of interest is a
matroid, then you have powerful algorithm automatically.
On the other side, if the greedy algorithm works perfectly all
the time, then the problem might be a matroid.

137 / 202

When greedy strategy is good enough: Maximizing a submodular
function

138 / 202

Optimizing a set function

Most combinatorial optimization problems, e.g., MinCut,
MaxCut, VertexCover, SetCover, Minimum
Spanning Tree, MaxCoverage, aim to
maximize/minimize a set function.
These problems have the following form:

max /min f(S)
s.t. S ∈ F

Here, S ⊆ N represents a subset of a ground set N, F ⊆ 2N

represents certain constraints over these subsets, and f(S)
denotes a set function.

139 / 202

Let’s start from the MaxCoverage problem

Consider a set of n elements N = {1, 2, ..., n}, and m subsets
A1,A2, ...,Am ⊆ N. The goal of MaxCoverage problem is
to select k subsets such that the cardinality of their union is
maximized.

max |
∪

Ai∈S
Ai|

s.t. |S| = k

A1A2

A3

140 / 202

Set function
The objective function in the Max Coverage problem
f(S) = |

∪
Ai∈S

Ai| is a set function defined over subsets.

A1A2

A3

S f(S)
ϕ 0

{A3} 16
{A2} 12

{A2,A3} 24
{A1} 8

{A1,A3} 21
{A1,A2} 20

{A1,A2,A3} 28
141 / 202

Set function: another viewpoint from cube
A set function f : {0, 1}m → R defines value for nodes of the
cube.

A1A2

A3

f(ϕ) = 0 f({A1}) = 8

f({A2}) = 12

f({A3}) = 16

f({A2, A3}) = 24 f({A1, A2, A3}) = 28

f({A1, A3}) = 21

f({A1, A2}) = 20

S A1 A2 A3 f
ϕ 0 0 0 0

{A3} 0 0 1 16
{A2} 0 1 0 12

{A2,A3} 0 1 1 24
{A1} 1 0 0 8

{A1,A3} 1 0 1 21
{A1,A2} 1 1 0 20

{A1,A2,A3} 1 1 1 28
142 / 202

Revisiting the continuous optimization

But how to maximize a set function? Let’s revisit the
continuous maximization first.

y

o x

f(x) y

o x

f(x)

A continuous function f : R → R can be efficiently minimized
if it is convex, and can be efficiently maximized if it is
concave.

143 / 202

Question: are there discrete analogue to convexity or concavity
for set functions?

144 / 202

Submodularity: discrete analogue to concavity

Concavity: f(x) is concave if the derivative f′(x) is
non-increasing in x, i.e., when ∆x is sufficiently small,
f(x1 +∆x)− f(x1) ≥ f(x2 +∆x)− f(x2) if x1 ≤ x2.

y

o x

f(x)

x1 x2

S1

S2

e

Submodularity: f(S) is submodular if for any element e, the
marginal gain (discrete analogy to derivative) f(S + e)− f(S)
is non-increasing in S, i.e., if S1 ⊆ S2,
f(S1 + e)− f(S1) ≥ f(S2 + e)− f(S2). (For simplicity, we use
f(S + e) to represent f(S ∪ {e}) and use f(e) to represent
f({e}).)

145 / 202

Submodular functions: decreasing marginal gain

Let’s consider a set function f(S) defined over subsets S ⊆ N,
where N is a finite ground set.

Definition (Marginal gain to a subset S)
The marginal gain of a subset T to S is defined as
fS(T) = f(S ∪ T)− f(S).

Definition (Submodular function f(S))
A set function f : 2N → R is submodular iff ∀S1 ⊆ S2 ⊆ N,
∀e ∈ N\S2, fS2(e) ≤ fS1(e). f(S) is supermodular if −f(S) is
submodular, and modular if both sub- and supermodular.

Intuition: marginal gain is discrete analogy to derivative of a
continuous function, while “decreasing marginal gain” (or
“diminishing returns”) definition of f(S) is discrete analogy to
concave functions.

146 / 202

An equivalent definition: subadditive
Definition (Submodular function)
A function f : 2N → R is submodular iff ∀A,B ⊆ N,
f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B).

Taking the submodular function f(A) = |
∪

i∈A
Ti| as an

example. Let A = {1, 2}, B = {1, 3}, we have
f(A ∪ B) + f(A ∩ B) = |T1 ∪ T2 ∪ T3|+ |T1| (1)

≤ |T1 ∪ T2|+ |T1 ∪ T3| (2)
= f(A) + f(B) (3)

T1T2

T3

147 / 202

Equivalence of the two definitions

Subadditivity essentially implies “decreasing marginal gain”,
i.e., by setting S1 = A ∩ B, S2 = A, and T = B − A, the
inequality f(A ∪ B)− f(A) ≤ f(B)− f(A ∩ B) can be rewritten
as f(S2 ∪ T)− f(S2) ≤ f(S1 ∪ T)− f(S1).

148 / 202

Examples of submodular functions

149 / 202

Example 1: Linear function and budget-additive functions

A set function f : 2N → R is linear (also known as additive,
modular if f(S) =

∑
i∈S wi, where wi denotes weight of

element i ∈ N.
Posing an upper-bound limitation on a modular function, we
will have a monotone submodular function,
f(S) = min{

∑
i∈S wi,B} for any wi > 0, B > 0.

150 / 202

Example 2: Set systems and coverage
Given a ground set N and several subset A1,A2, ...,An ⊂ N,
the coverage function f(S) = |

∪
i∈S Ai| is submodular. This

naturally extends to the weighted version: f(S) = w(
∪

i∈S Ai),
where w : N → R+.

A1A2

A3

f(ϕ) = 0 f({A1}) = 8

f({A2}) = 12

f({A3}) = 16

f({A2, A3}) = 24 f({A1, A2, A3}) = 28

f({A1, A3}) = 21

f({A1, A2}) = 20

S A1 A2 A3 f
ϕ 0 0 0 0

{A3} 0 0 1 16
{A2} 0 1 0 12

{A2,A3} 0 1 1 24
{A1} 1 0 0 8

{A1,A3} 1 0 1 21
{A1,A2} 1 1 0 20

{A1,A2,A3} 1 1 1 28
151 / 202

Example 3: Cut of graph

Given a graph G =< V,E >. Let f(S) be the number of
edges e = (u, v) such that u ∈ S and v ∈ V − S.

S1
S2

u v

f(S) is submodular. For example, in the above figure,
f(S1 + u)− f(S1) = 8 − 4 = 4, while
f(S2 + u)− f(S2) = 4 − 6 = −2.

152 / 202

Example 4: Rank functions of matroid

Given a matroid M = (N, I), the rank function
r(S) = max{|A| : A ⊆ S,A ∈ I} is monotone submodular.
This function can also extend to the weighted version, i.e.,
r(S) = max{w(A) : A ⊆ S,A ∈ I}, where w : N → R+

represents a non-negative weighting function.
For example, r({V1,V2,V3,V4,V5}) = 4.

V1 = [1 2 3 4 5] W1 = 9
V2 = [1 4 9 16 25] W2 = 7
V3 = [1 8 27 64 125] W3 = 5
V4 = [1 16 81 256 625] W4 = 3
V5 = [2 6 12 20 30] W5 = 1

153 / 202

Example 5: Valuation functions and welfare functions

Sometimes we assume a function is submodular just because
in some settings, it is natural expect a decreasing marginal
benefits.
An example is the welfare function f : 2N → R+ on subsets of
items. This might have a specific form
f(S) = min{

∑
i∈S wi,B}.

154 / 202

Example 6: Entropy of joint probability distributution

Given a joint probability distribution P(X) over
discrete-valued random variables X = [x1, x2, ..., xn], the
function f(S) = H(XS) is monotone submodular, where H is
the Shannon entropy, i.e.,

H(XS) = −
∑
i∈S

P(xi) logP(xi)

If the random variables are real-valued, then H(XS) is also
submodular but not generally monotone.

155 / 202

Example 7: Facility location

Given a set of locations N = {1, 2, ..., n} and m customers. If
we open up a facility at location j, then it serves customer i
with value Vi,j ≥ 0. Each customer chooses the facility with
the highest value. Thus, suppose we select a set of locations
S ⊆ N to open up facilities, the total value provided for these
customers is:

f(S) =
m∑

i=1
max
j∈S

Vi,j

f(S) is monotone submodular.

156 / 202

Other examples of submodular functions

Influence of advertisement over social networks: Assume you
have a product and you want to advertise it in a social
network. The problem is how to select nodes in the social
network to maximize the influence.
Word alignment: Consider a sentence in Chinese and its
translation in English. We want to know the correspondence
of words in the two sentences. The correspondence can be
described using a bi-partite graph and measured using a
submodular function.
Documents summarization: Consider a set of related
documents and we want to summarize them. The
summarization can be measured using a submodular function.

157 / 202

Properties of submodular functions

158 / 202

Several properties of submodular functions

1 Non-negative linear combinations of submodular functions are
still submodular, i.e., if f1, f2, ..., fn are submodular on the
same ground set N, and w1,w2, ...,wn are non-negative reals,
then w1f1 + w2f2 + ...+ wnfn is also submodular. This is
important as when we are designing objective functions to
maximize, we can first design some simple submodular pieces,
and then combine them.

2 Truncation of monotone submodular functions are still
submodular, i.e, min{f(S),C} is submodular when f(S) is
monotone submodular and C is a constant.

3 If f : 2N → R+ is submodular, then the function g defined as
g(S) = ϕ(f(S)), where ϕ is concave, is also submodular.

4 f is submodular iff for any S ⊂ N, fS is submodular.

159 / 202

A useful property of submodular functions: upper bound

Lemma
If f is submodular, then f(T) ≤ f(S) +

∑
e∈T\S fS(e) for

∀S ⊆ T ⊆ N. Furthermore, if f is monotone submodular, S need
not be a subset of T: ∀S ⊆ N, T ⊆ N,
f(T) ≤ f(T ∪ S) ≤ f(S) +

∑
e∈T\S fS(e).

T S T S
f(x)

o xS S1 S2 S3 T ∪ S

This lemma can be easily proved by integrating marginal
gains. Note that this is a discrete analogy to the property for
a concave continuous function f(x): f(b) ≤ f(a) + (b − a)f′(a)
for a < b.

160 / 202

MaxCoverage problem with cardinality constraint

Now let’s consider the MaxCoverage problem with
cardinality constraint first, i.e., select k subsets such that
the cardinality of their union is maximized, e.g., select 3
subsets in the following example.

A1A2

A3

A4

Here we adopt the value query model, i.e., an algorithm can
query a black-box oracle for the value f(S). An algorithm
making polynomial queries is considered to have polynomial
running time.
We also assume that f is normalized, i.e., f(ϕ) = 0.

161 / 202

Greedy algorithm (cardinality constraint)

Basic idea: We describe the solving process as a multi-stage
decision process. At each step, we select the item with the
largest marginal gain.

GreedyCardinalityConstraint(k,N)

1: S = ϕ;
2: while |S| < k do
3: x̂ = argmaxx∈NfS(x);
4: S = S ∪ {x̂};
5: N = N − {x̂};
6: end while
7: return S;

162 / 202

An example: Step 1

A1A2

A3

A4

Let Si = {x̂1, x̂2, ..., x̂i} be the value of S after the i-th
execution of the while loop. Initially A3 was selected as
fϕ(A3) = 12.

A3

S1 = {A3}f(S)

o
SS0 S1

12

163 / 202

Step 2

A1A2

A3

A4

A1 was selected with fS1(A1) = 10, which is larger than
fS1(A2) = 8, and fS1(A4) = 6.

A1

A3

S2 = {A3,A1}f(S)

o
SS0 S1

12

S2

22

164 / 202

Step 3

A1A2

A3

A4

A2 was selected as fS2(A2) = 7 > fS2(A4) = 6. Done.

A1A2

A3

S3 = {A3,A1,A2}f(S)

o
SS0 S1

12

S2

22

S3

29

165 / 202

Analysis

Theorem
Let Sk = {x̂1, x̂2, ..., x̂k} be the set returned by
GreedyCardinalityConstraint, then f(Sk) ≥ (1 − 1

e)f(S
∗).

A1A2

A3

S3 = {A3,A1,A2}f(S)

o
SS0 S1

12

S2

22

S3

29

Intuition: At each iteration, the gap f(S∗)− f(Si) was
narrowed down. Let’s consider the boundary case, i.e., after
selecting k elements. In this case, the gap was reduced to be
at most 1

k f(S∗).

166 / 202

The gap shrinks exponentially: an example

1 g0 : 30
2 g1 : 30-12=18, 18 ≤ (1 − 1

3)× 30
3 g2 : 30-22=8, 8 ≤ (1 − 1

3)× 18
4 g3 : 30-29=1, 1 ≤ (1 − 1

3)× 8
Thus we have g3 ≤ (1 − 1

3)
3 × 30 ≤ (1 − 1

e)× 30.

167 / 202

Proof.
Let’s consider the gap gi−1 = f(Si−1)− f(S∗).

f(S∗) ≤ f(Si−1) +
∑

e∈S∗\Si−1

fSi−1(e) (4)

≤ f(Si−1) +
∑

e∈S∗\Si−1

fSi−1(x̂i) (5)

= f(Si−1) +
∑

e∈S∗\Si−1

(
f(Si)− f(Si−1)

)
(6)

≤ f(Si−1) + k
(
f(Si)− f(Si−1)

)
(7)

By subtracting kf(S∗) on both sides, we can obtain the induction
relationship between gi−1 and gi as follows:

f(Si)− f(S∗) ≥ (1 − 1
k)
(
f(Si−1)− f(S∗)

)
.

By induction we further have f(Si) ≥
(
1 − (1 − 1

k)
i)f(S∗), and thus

after k iterations, f(Sk) ≥
(
1 − (1 − 1

k)
k)f(S∗) ≥ (1 − 1

e)f(S
∗).

168 / 202

Inapproximation results

In 1998, U. Feige proved the lower bound of (1 − 1
e) for the

approximation ratio of a polynomial time algorithm.
But note that if it is allowed to sacrifice the cardinality
constraints, the greedy algorithm can give much stronger
guarantee. For example, running the greedy algorithm to
select 2k elements gives an approximation 1− (1− 1

k)
2k ≈ 0.86

approximation ratio. This is important because that in most
practical cases, the constraints are rarely in stone.

169 / 202

MaxCoverage problem under knapsack constraint

170 / 202

MaxCoverage problem under knapsack constraint

Now let’s further consider the MaxCoverage problem
under knapsack constraint, i.e., each element i ∈ N is
associated with a cost C(Ai), and we have a budget B. We
aim to select subsets such that the total cost is no more than
B and the cardinality of their union is maximized.

max |
∪

Ai∈S
Ai|

s.t.
∑

Ai∈S C(Ai) ≤ B

A1 : C(A1) = 46A2 : C(A2) = 41

A3 : C(A3) = 40
A4 : C(A4) = 2

B = 88

171 / 202

Greedy algorithm (knapsack constraint)

Basic idea: We describe the solving process as a multi-stage
decision process. At each step, we select the item with the
highest benefit-cost ratio rather than the item with the
largest marginal gain.

GreedyKnapsackConstraint(N,C,B)

1: S = ϕ;
2: while N ̸= NULL do
3: x̂ = argmaxx∈N

fS(x)
C(x) ;

4: if
∑

e∈S C(e) + C(x̂) ≤ B then
5: S = S ∪ {x̂};
6: end if
7: N = N − {x̂};
8: end while
9: return S;

172 / 202

An example: Step 1

A1 : C(A1) = 46A2 : C(A2) = 41

A3 : C(A3) = 40
A4 : C(A4) = 2

B = 88

Let Si = {x̂1, x̂2, ..., x̂i} be the value of S after the i-th
execution of the while loop. Initially A4 was selected with
fϕ(A4)
C(A4)

= 8
2 , which is larger than A1(

12
46), A2(

12
41) and A3(

12
40).

A4

S1 = {A4}f(S)

o
SS0 S1

8

173 / 202

Step 2

A1 : C(A1) = 46A2 : C(A2) = 41

A3 : C(A3) = 40
A4 : C(A4) = 2

B = 88

A2 was selected with fS1 (A2)

C(A2)
= 12

41 as it is larger than
fS1 (A1)

C(A1)
= 12

46 and fS1 (A3)

C(A3)
= 10

40 .

A2

A4

S2 = {A4,A2}f(S)

o
SS0 S1

8

S2

20

174 / 202

Step 3

A1 : C(A1) = 46A2 : C(A2) = 41

A3 : C(A3) = 40
A4 : C(A4) = 2

B = 88

A1 was selected with fS2 (A1)

C(A1)
= 10

46 as it is larger than
fS2 (A3)

C(A3)
= 6

40 . However we cannot add A1 to S2 as
C(A1) + C(A2) + C(A4) = 89 > 88.

A1 XA2

A4

S2 = {A4,A2}f(S)

o
SS0 S1

8

S2

20

175 / 202

Step 4

A1 : C(A1) = 46A2 : C(A2) = 41

A3 : C(A3) = 40
A4 : C(A4) = 2

B = 88

A3 was selected. The process ended as no subset can be
added without incurrence of violation of knapsack constraint.

A2

A3

A4

S3 = {A4,A2,A3}f(S)

o
SS0 S1

8

S2

20

S3

26

176 / 202

Analysis
Unfortunately, the GreedyKanpsackConstraint
algorithm has an unbounded approximation ratio.
Consider the following instance: N = {e1, e2}, and C(e1) = 1,
C(e2) =

ϵ
2 (1 > ϵ > 0), and B = 1. The set function is

f({e1}) = 1, and f({e2}) = ϵ.

A1

f({A1}) = 1
C(A1) = 1

A2

f({A2}) = ϵ
C(A2) =

ϵ
2

B = 1

The optimal solution is S∗ = {e1} with f(S∗) = 1. In contrast,
the GreedyKanpsackConstraint algorithm returns
S∗ = {e2} with f(S∗) = ϵ. As ϵ approaches to 0, the
approximation ratio becomes arbitrarily large.
Reason: the algorithm selects elements according to
benefit-cost ratio but totally ignores the value of elements.

177 / 202

Let consider the boundary case of knapsack constraint
Theorem
Let Si be the value of S at the i-th iteration. Suppose the addition
of x̂ to Si incurs the violation of the knapsack constraint, i.e.,
C(Si) + C(x̂) > B, then f(Si + x̂) ≥ (1 − 1

e)f(S
∗).

...

...

...

...

x1

x2

x3

x∗1

x∗2

x∗3 x′

S∗
1

S∗
2

S∗

Si

Si + x′

Intuition: at each iteration, the gap f(S∗)− f(Si) was
narrowed down. The occurrence of the violation of knapsack
constraint implies that the algorithm reaches a “boundary”. In
this case, if adding one more element is permitted, we will
obtain an upper bound for f(S∗).

178 / 202

An example

X A1 : C(A1) = 46A2 : C(A2) = 41

A4 : C(A4) = 2

B = 88 S2 = {A4,A2}

In the above example, A1 was selected as it has the highest
benefit-cost ratio fS2 ({A1})

C(A1)
= 10

46 . We cannot add A1 to
S2 = {A4,A2} as C(S2) + C(A1) = 89 > 88; however, the
addition of A1 provides an upper bound for f(S∗), i.e.,
f({A4,A2,A1}) = 30 ≥ (1 − 1

e)f(S
∗).

179 / 202

Proof

Let’s denote Si = {x̂1, x̂2, ..., x̂i} and examine the gap
f(Si−1)− f(S∗).

f(S∗) ≤ f(Si−1) +
∑

x∈S∗\Si−1
fSi−1(x) (8)

= f(Si−1) +
∑

x∈S∗\Si−1
fSi−1(x)

C(x)
C(x) (9)

≤ f(Si−1) +
∑

x∈S∗\S−1
C(x)

fSi−1(x̂i)

C(x̂i)
(10)

≤ f(Si−1) + B
fSi−1(x̂i)

C(x̂i)
(11)

= f(Si−1) + Bf(Si)− f(Si−1)

C(x̂i)
(12)

Next we can obtain the following recursion of gaps:
f(Si)− f(S∗) ≥ (1 − C(x̂i)

B)
(
f(Si−1)− f(S∗)

)
.

180 / 202

Proof (continued)

Solving the recursion, we obtain the following bound:

f(Si) ≥ (1 −
i∏

k=1

(
1 − C(x̂k)

B)
)
f(S∗) (13)

≥ (1 − e−
C(Si)

B)f(S∗) (14)

Now consider the boundary case of the increase in f(Si), i.e.,
C(Si) + C(x̂) > B, then if adding one more element was
permitted:

f(Si ∪ {x̂}) ≥ (1 − e−
C(Si)+C(x̂)

B)f(S∗) (15)

≥ (1 − t1
e)f(S

∗) (16)

181 / 202

Improvement of GreedyKanpsackConstraint:
considering the value of elements [Leskovec, 2007]

Basic idea: By considering the value of elements, the
algorithm partly circumvents the shortcoming of
GreedyKnapsackConstraint. In the above example, the
algorithm returns {A1} rather than {A2}.

GreedyKnapsackConstraint2(N,C,B)

1: e∗ = argmaxe∈N,C(e)≤Bf({e});
2: SG1 =GreedyKnapsackConstraint(N,C,B);
3: return max{f(SG1), f({e∗})};

A1

f({A1}) = 1
C(A1) = 1

A2

f({A2}) = ϵ
C(A2) =

ϵ
2

B = 1

182 / 202

Analysis
Theorem
f(SG2) ≥ 1

2(1 − 1
e)f(S

∗), where SG2 denotes the set returned by
GreedyKnapsackConstraint2.

Proof.
After the last element of SG1 was added, the while loop in
GreedyKnapsackConstraint1 should be executed at
least once (an auxiliary element can be added to guarantee
this).
At these iterations, line 5 was evaluated to FALSE, i.e.,
C(SG1) + C(x̂) > B. We consider the first iteration:

2f(SG2) ≥ f(SG1) + f(e∗) (17)
≥ f(SG1) + f(x̂) (18)
≥ f(SG1 + x̂) (19)
≥ (1 − 1

e)f(S
∗) (20)

183 / 202

Improvement of GreedyKnapsackConstraint:
Starting from a good initial set

S∗
d S∗SG

Basic idea: The algorithm circumvents the shortcoming of
GreedyKnapsackConstraint by considering value of
items. Specifically, we divide S∗ into two parts, namely, S∗

d
and S∗ − S∗

d, where S∗
d contains the top d items with large

contribution to f(S∗). Thus, if we run greedy algorithm
starting from the good initial set S∗

d, the marginal gain of
any element will not be higher than the average of f(S∗

d).
Question: How to obtain a good initial set?

184 / 202

Finding a good initial set using partial enumeration

...

...

...

...

x1

x2

x3

x4

x∗1

x∗2

x∗3

x∗4

x′

S∗
1

S∗
2

S∗
3

S∗SG

SG + x′

Set d = 3

Suppose S∗ has been sorted in an order of decreasing
contribution. By enumerating all S of size |S| = d, we
definitely know the first d items in S∗, denoted as S∗

d, in their
correct order. These d items are important since if running
greedy starting from S∗

d, the marginal gain at any step, say
fSG(x′), will not be larger than the average of the first d items.

185 / 202

Greedy with partial enumeration [Khuller 1999, Sviridenko
2004]

GreedyKnapsackConstraint3(N,C,B)

1: S′ = argmaxC(S)≤B,|S|<df(S);
2: for all S such that C(S) ≤ B, |S| = d do
3: N′ = N − S;
4: SG1 = Running GreedyKnapsackConstraint on N′ with S

as initial set;
5: if f(SG1) > f(S′) then
6: S′ = SG1 ;
7: end if
8: end for
9: return S′;

186 / 202

Analysis

Theorem
Let S∗ denote the optimal solution, and SG denote the set
returned by GreedyKnapsackConstraint3. By setting d = 3,
f(SG) ≥ (1 − 1

e)f(S
∗).

S∗
d S∗SG

187 / 202

Proof.
Let’s write S∗ as S∗ = {x∗1, x∗2, ..., x∗k}, and denote the first i
items as S∗

i = {x∗1, x∗2, ..., x∗i }. Here these items are sorted in a
decreasing order of marginal gain, i.e.,
x∗i = argmaxx∈S∗\Si−1fS∗

i−1
(x).

First, we claim that after d iterations, the marginal gain of
any element is upper-bounded. In particular, 1

d f(S∗
d) ≥ fSG(x′),

where S∗
d ⊆ SG, and adding x′ to SG leads to the violation of

knapsack constraint.
Second, running GreedyKnapsackConstraint using
S = S∗

d as initial set is equivalent to running with initial set
S = ϕ, N′ = N\S∗

d, and set function fS∗
d
. As fS∗

d
is also

sub-modular, f(SG + x′)− f(S∗
d) ≥

(
1 − 1

e)(f(S
∗)− f(S∗

d)
)
.

f(SG) = f(SG + x′)− fSG(x
′) (21)

≥ f(SG + x′)− 1
d f(S∗

d) (22)
≥ (1 − 1

e)f(S
∗) + (1

e − 1
d)f(S

∗
d) (23)

≥ (1 − 1
e)f(S

∗) (24)188 / 202

S∗
d provides upper bound for marginal gain in further steps

Lemma
After d iterations, the marginal gain of any element is
upper-bounded. In particular, 1

d f(S∗
d) ≥ fSG(x′), where S∗

d ⊆ SG,
and adding x′ to SG leads to the violation of knapsack constraint.

Proof.
Note that the items in S∗ are sorted in a decreasing order of
marginal gain, i.e., x∗i = argmaxx∈S∗\Si−1fS∗

i−1
(x).

Thus for 1 ≤ k ≤ d,

fSG(x
′) ≤ fS∗

k−1
(x′) (25)

≤ f(S∗
k−1 + x∗k)− f(S∗

k−1) (26)
≤ f(S∗

k)− f(S∗
k−1) (27)

Summing for 1 ≤ k ≤ d, we have: fSG(x′) ≤ 1
d f(S∗

d).

189 / 202

MaxCoverage problem under matroid constraint

190 / 202

MaxCoverage problem under matroid constraint

Now let’s further consider the MaxCoverage problem with
matroid constraint, i.e., given a matroid M = (N, I), where
I represents independent subsets of N.
We aim to select an independent subset S from I such that
f(S) is maximized.

max f(S)
s.t. S ∈ I

191 / 202

An example: Welfare maximization

Welfare maximization problem: Consider m items
I = {I1, I2, ..., Im} and n people. Each people i is associated
with a submodular valuation function fi : 2M → R+. The
objective is to partition M into M = S1 ∪ S2 ∪ ... ∪ Sn such
that the total valuation

∑n
i=1 fi(Si) is maximized.

Construct a partition matroid: We first create n clones of each
items, denoted as N = {I11, I12, ..., Imn}, where item Iij has
the color j. Then we think of a set of items as independent if
no pair of items have identical color. Thus we construct a
partition matroid M = (N, I), where I = {S : |S ∩ Ii| ≤ 1}.
Thus, the welfare maximization problem is equivalent to
max f(S)s.t.S ∈ I.

192 / 202

GreedyMatroidConstraint algorithm [Nemhauser,
1978]

Basic idea: at each iteration, the element x′ with the largest
marginal gain was added to S if S ∪ {x′} is independent. Note
that the set returned is a base of M.

GreedyMatroidConstraint(N, I)
1: S = ϕ;
2: while N ̸= {} do
3: x′ = argmaxx∈NfS(x);
4: if S ∪ {x′} ∈ I then
5: S = S ∪ {x′};
6: end if
7: N = N − x′;
8: end while
9: return S;

193 / 202

Analysis
Theorem
Let S be the set returned by GreedyMatroidConstraint,
then f(S) ≥ 1

2 f(S∗).

Let’s write S∗ = {x∗1, ..., x∗r}, where r denotes the rank of M.
We order S as S = {x′1, ..., x′r}, where x′i = ϕ(x∗i), and ϕ()
represents the bijective basis exchange function between S∗

and S. Then,
f(S∗) ≤ f(S) +

∑
x∗i ∈S∗\S

fS(x∗i) (28)

≤ f(S) +
∑

x∗i ∈S∗
fS(x∗i) (29)

≤ f(S) +
∑r

i=1
fSi−1(x∗i) (30)

≤ f(S) +
∑r

i=1
fSi−1(x′i) (31)

≤ f(S) +
∑r

i=1
(f(Si)− f(Si−1)) (32)

≤ 2f(S) (33)
194 / 202

Speeding up greedy algorithm through avoiding redundant
evaluations of f(S)

195 / 202

Reducing the number of evaluations
Motivation: In some applications, the evaluation of the set
function f(S) might be expensive. For example, evaluating the
influence of advertisement in social networks requires
computationally expensive simulations.
The standard greedy algorithm commonly requires a large
number of evaluations of f(S) due to the argmax operation
at each iteration. For example, there are O(kn) evaluations
in GreedyCardinalityConstraint algorithm.
GreedyCardinalityConstraint(k,N)

1: S = ϕ;
2: while |S| < k do
3: x̂ = argmaxx∈NfS(x);
4: S = S ∪ {x̂};
5: N = N − {x̂};
6: end while
7: return S;

Question: could we identify redundant evaluations and thus
reduce the number of the evaluation of f(S)?

196 / 202

Identifying redundant evaluations of f(S)

...

...

...

...

x1

x2

x3

x′1

x′2e

x′′3e

S1

S2S1 + e

S2 + e S′′
3

Basic idea: Take the iteration at S2 as an example. The
marginal gain of all elements except x′1 and x′2 will be
evaluated in the argmaxfS2(x) operation. Note that we have
already obtained the upper bound of the marginal gain of
these elements, say fS2(e) ≤ fS1(e). If an element e has its
upper bound smaller than the calculated marginal gain of
another element, then e could be neglected at this iteration
safely.

197 / 202

AcceleratedGreedy algorithm [Minoux, 1978]
AcceleratedGreedy(k,N)

1: S = ϕ;
2: Set U(x) = f(x) for all x ∈ N;
3: while |S| < k do
4: while TRUE do
5: x̂ = argmaxx∈NU(x);
6: if x̂ has already been selected once then
7: break;
8: end if
9: Calculate fS(x̂) and update U(x̂) = fS(x̂);

10: if fS(x̂) > maxx∈N,x̸=x̂ U(x) then
11: break;
12: end if
13: end while
14: S = S ∪ {x̂};
15: N = N − {x̂};
16: end while
17: return S;

198 / 202

Performance analysis by M. Minoux

When function f is submodular, the accelerated greedy
algorithm produces a greedy solution; furthermore, it produces
identical solution to the corresponding standard greedy
algorithm if the greedy solution is unique.
When applied to the optimal network problem, the accelerated
greedy algorithm requires on average only 2-3 calculations of f
at each iteration, leading to a significant speed-up of nearly n

6 .
For example, on graphs with about 180 nodes and 500 edges,
the accelerated greedy algorithm is 50-100 times faster than
the standard greedy algorithm.

199 / 202

A tightly-related problem: MinCost Coverage

200 / 202

MinCost Coverage problem

In contrast to maximizing a monotone submodular function
under cardinality constraint, the MinCost Coverage
problem aims to find the minimum sets that achieves a given
amount of objective function value.

min |S|
s.t. f(S) ≥ C

For example, the SetCover probem aims to find the
minimum number of sets that covers the ground set.

201 / 202

Greedy algorithm for MinCost Coverage [Wolsey,
1982]

Theorem
Consider a monotone, submodular, and integer-valued set function
f : 2N → N. Let S0,S1, ... be the sets returned by the
GreedyCardinalityConstraint algorithm, and let l be the
smallest index such that f(Sl) ≥ C. Then
l ≤ (1 + lnmaxx∈N f(x))OPT
where OPT denotes the optimum.

202 / 202

