CS711008Z Algorithm Design and Analysis

Lecture 7. UNION-FIND data structure 1

Dongbo Bu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

¹The slides were made based on Chapter 5 of Algorithms by S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani, Data Structure by Ellis Horowitz, Hopcroft and Ullman 1973, and Tarjan 1975, et al.

Outline

- Introduction to UNION-FIND data structure
- Various implementations of Union-Find data structure:
 - Array: store "set name" for each element separately. Easy to FIND set of any element, but hard to UNION two sets.
 - Tree: each set is organized as a tree with root as "set name".
 It is easy to UNION two sets, but hard to FIND set for an element.
 - Link-by-rank: maintain a balanced-tree to limit tree depth to $O(\log n)$, making FIND operations efficient.
 - \bullet Link-by-rank and path compression: compress path when performing ${\rm FIND},$ making subsequent ${\rm FIND}$ operations much quicker.

$U{\scriptsize \mbox{NION-FIND}}$ data structure

UNION-FIND: motivation

- Motivation: Suppose we have a collection of disjoint sets.
 The objective of Union-Find is to keep track of elements by using the following operations:
 - MakeSet(x): to create a new set $\{x\}$.
 - FIND(x): to find the set that contains the element x;
 - UNION(x, y): to union the two sets that contain elements x and y, respectively.
- Analysis: total running time of a sequence of $m \ {\rm FIND}$ and $n \ {\rm UNION}.$

UNION-FIND is very useful

- Union-Find has extensive applications, such as:
 - Network connectivity
 - Kruskal's MST algorithm
 - Least common ancestor
 - Games (Go)
 -

An example: Kruskal's MST algorithm

Kruskal's algorithm [1956]

 Basic idea: during the execution, F is always an acyclic forest, and the safe edge added to F is always a least-weight edge connecting two distinct components.

Figure 1: Joseph Kruskal

Kruskal's algorithm [1956]

```
MST-Kruskal(G, W)
 1: F = \{\};
 2: for all vertex v \in V do
 3: MAKESET(v);
 4: end for
 5: sort the edges of E into nondecreasing order by weight W;
 6: for each edge (u, v) \in E in the order do
     if FINDSet(u) \neq FINDSet(v) then
        F = F \cup \{(u, v)\};
 8:
        Union (u, v);
10: end if
11: end for
```

- Here, Union-Find structure is used to detect whether a set of edges form a cycle.
- Specifically, each set represents a connected component; thus, an edge connecting two nodes in the same set is "unsafe", as adding this edge will form a cycle. ◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

Step 1

Step 1

Step 1

Step 1

Step 2

Step 2

Step 2

Step 2

Step 3

Step 3

Step 3

Step 3

Step 4

Step 4

Step 4

Step 4

Step 5

Step 5 Edge weight: 2,6,9,11,14,15,16,18,19,20,24,30,44 Disjoint sets: $\{a,s\},\{b\},\{c\},\{d,e,f,t\}$

Step 5 Edge weight: 2,6,9,11,14,15,16,18,19,20,24,30,44 Disjoint sets: $\{a,s\},\{b\},\{c\},\{d,e,f,t\}$

Step 5

Step 6

 $\begin{array}{c} {\bf Step~6}\\ {\bf Edge~weight:}~~2,6,9,11,14,15,16,18,19,20,24,30,44\\ {\bf Disjoint~sets:}~~\{a,s,b\},\{c\},\{d,e,f,t\} \end{array}$

 $\begin{array}{c} {\sf Step~6}\\ {\sf Edge~weight:}~2,6,9,11,14,15,16,18,19,20,24,30,44\\ {\sf Disjoint~sets:}~\{a,s,b\},\{c\},\{d,e,f,t\} \end{array}$

Step 6

Step 7
Edge weight: 2, 6, 9, 11, 14, 15, 16, 18, 19, 20, 24, 30, 44

Disjoint sets: $\{a, s, b, c\}, \{d, e, f, t\}$

 $\begin{array}{c} {\sf Step \ 7} \\ {\sf Edge \ weight:} \ \ 2,6,9,11,14,15,16,18,19,20,24,30,44} \\ {\sf Disjoint \ sets:} \ \ \{a,s,b,c\}, \{d,e,f,t\} \end{array}$

Step 8

Kruskal's MST algorithm: an example

 $\begin{array}{c} {\bf Step~8}\\ {\bf Edge~weight:}~~2,6,9,11,14,15,16,18,19,20,24,30,44\\ {\bf Disjoint~sets:}~~\{a,s,b,c\},\{d,e,f,t\} \end{array}$

Kruskal's MST algorithm: an example

 $\begin{array}{c} {\bf Step~8}\\ {\bf Edge~weight:}~~2,6,9,11,14,15,16,18,19,20,24,30,44\\ {\bf Disjoint~sets:}~~\{a,s,b,c\},\{d,e,f,t\} \end{array}$

Kruskal's MST algorithm: an example

Step 8

Edge weight: 2,6,9,11,14,15,16,18,19,20,24,30,44 Disjoint sets: $\{a,s,b,c,d,e,f,t\}$

Time complexity of KRUSKAL's MST algorithm

Operation	Array	Tree	Link-by-rank	Link-by-rank +
				path compression
MakeSet	1	1	1	1
FIND	1	n	$\log n$	$\log^* n$
Union	n	n	$\log n$	$\log^* n$
MST-KRUSKAL	$O(n^2)$	O(mn)	$O(m \log n)$	$O(m\log^* n)$

Kruskal's MST algorithm: n MakeSet, n-1 Union, and m Find operations.

Implementing $\operatorname{Union-Find}:$ array or linked list

Implementing Union-Find: array

 Basic idea: for each element, we record its "set name" individually.

• Operation: FIND(x)

1: **return** SetName[x];

• Complexity: O(1)

Implementing Union-Find: array

Operation:

```
Union(x, y)
 1: s_x = \text{FIND}(x);
 2: s_y = \text{FIND}(y);
 3: for all element i do
      if SetName[i] == s_y then
        SetName[i] = s_x
     end if
 6:
 7: end for
                   s a b c d e f t
       Set name: 0 1 2 3 4 5 6
```

Set name: 0 1 2 3 5 5 6 7

Set name: $\boxed{0\ 1\ 2\ 3\ 6\ 6\ 6\ 7}$

• Complexity: O(n)

Union(d, e)

Union(f, e)

Tree implementation: organizing a set into a tree with its root as representative of the set

Tree implementation: FIND

 Basic idea: We use a tree to store elements of a set, and use root as "set name". Thus, only one representative should be maintained.

- Operation:
 - FIND(x)
 - 1: r = x;
 - 2: while r! = parent(r) do
 - 3: r = parent(r);
 - 4: end while
 - 5: **return** r;

Tree implementation: UNION

• Operation:

Union(x, y)

- 1: $r_x = \text{FIND}(x)$;
- 2: $r_y = \text{FIND}(y)$;
- 3: $parent(r_x) = r_y$;
- Example: UNION(c, a)

Tree implementation: worst case

• Worst case: the tree degenerates into a linked list. For example, UNION(c, b), UNION(b, a), UNION(a, s).

- Complexity: FIND takes O(n) time, and UNION takes O(n) time.
- Question: how to keep a "good" tree shape to limit path length?

Link-by-rank: shorten the path by maintaining a balanced tree

Tree implementation with link-by-size

- Basic idea: We shorten the path by maintaining a balanced-tree. In fact, this will limit path length to $O(\log n)$.
- How to maintain a balanced tree? Each node is associated with a rank, denoting its height. The tree has a balanced shape via linking smaller tree to larger tree; if tie, increase the rank of new root by 1.

Figure 2: Three sets: $\{s\}$, $\{a\}$, $\{b, c\}$

Tree implementation with link-by-size: Union operation

```
UNION(x, y)

1: r_x = \text{FIND}(x);

2: r_y = \text{FIND}(y);

3: if rank(r_x) > rank(r_y) then

4: parent(r_y) = r_x;

5: else

6: parent(r_x) = r_y;

7: if rank(r_x) == rank(r_y) then

8: rank(r_y) = rank(r_y) + 1;

9: end if

10: end if
```


20/37

Note: a node's rank will not change after it becomes an internal and

Properties of rank I

- For any node x, rank(x) < rank(parent(x)).
- ② Any tree with root rank of k contains at least 2^k nodes. (Hint: by induction on k.)
- \odot Once a root node was changed into internal node during a UNION operation, its rank will not change afterwards.

• Suppose we have n elements. The number of rank k nodes is at most $\frac{n}{2^k}$. (Hint: Different nodes of rank k share no common descendants.)

Properties of rank II

• Thus, all of the trees have height less than $\log n$, which means both FIND and UNION take $O(\log n)$ time.

Path compression: compress paths to make further $\ensuremath{\mathrm{FIND}}$ efficient

Path compression

• Basic idea: After finding the root r of the tree containing x, we change the parent of the nodes along the path to point directly to r. Thus, the subsequent $\operatorname{FIND}(x)$ operations will be efficient.

• Note: Path compression changes height of nodes but does not change rank of nodes. We always have $height(x) \leq rank(x)$; thus, the three properties still hold.

Path compression: FIND operation

FIND(x)

- 1: **if** x! = parent(x) **then**
- 2: parent(x) = FIND(parent(x));
- 3: **else**
- 4: **return** x;
- 5: end if

Some properties of FIND and UNION

- FIND operations change internal nodes only while UNION operations change root node only.
- Path compression changes parent node of certain internal nodes. However, it will not change the root nodes, rank of any node, and thus will not affect UNION operations.

Path compression: complexity

• Example: FIND(c)

• A $\operatorname{FIND}(c)$ operation might takes long time; however, the path compression makes subsequent $\operatorname{FIND}(c)$ (and other middle nodes in the path) efficient.

Theorem

Starting from each item forming an individual set, any sequence of m operations (including FIND and UNION) over n elements takes $O(m\log^* n)$ time.

Analysis of path compression: a brief history

- In 1972, Fischer proved a bound of $O(m \log \log n)$.
- In 1973, Hopcroft and Ullman proved a bound of $O(m \log^* n)$.
- In 1975, R. Tarjan et al. proved a bound using "inverse Ackerman function".
- Later, R. Tarjan, et. al. and Harfst and Reingold proved the bound using the potential function technique.

Here, we present the proof in *Algorithms* by S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani.

$\log^* n$: Iterated logarithm function

• Intuition: the number of logarithm operations to make n to be 1.

•
$$\log^* n = \begin{cases} 0 & \text{if } n = 1 \\ 1 + \log^*(\log n) & \text{otherwise} \end{cases}$$

\overline{n}	$\log^* n$
1	0
2	1
$[3, 2^2]$	2
$[5, 2^4]$	3
$[17, 2^{16}]$	4
$[65537, 2^{65536}]$	5

• Note: $\log^* n$ increases very slowly, and we have $\log^* n < 5$ unless n exceeds the number of atoms in the universe.

Analysis of rank

Let's divide the nonzero ranks into groups as below.

Group	Rank	Upper bound of #elements
0	1	$\frac{n}{2}$
1	2	
2	$[3, 2^2]$	$\frac{2}{n}$
3	$[5, 2^4]$	$ \frac{\frac{n}{2^2}}{\frac{n}{2^2}} $ $ \frac{\frac{n}{2^2}}{\frac{n}{2^4}} $ $ \frac{n}{2^{16}} $
4	$[17, 2^{16}]$	$\frac{n}{2^{16}}$
5	$[65537, 2^{65536}]$	$\frac{2n}{265536}$

Note:

- Group number is $\log^* rank$ and the number of groups is at most $\log^* n$.
- The number of elements in the rank group G_k $(k \ge 2)$ is at most $\frac{n}{2^{2 \dots 2}}$ as the number of nodes with rank r is at most $\frac{n}{2^r}$.

We will see why the group was set to take the form

$$[2^{2\cdots 2}_{k-1}+1,2^{2\cdots 2}_{k}]$$
 soon.

Amortized analysis: total time of m FIND operations

- Basic idea: a FIND operation might take long time; however, path compression makes subsequent FIND operations efficient.
- ullet Let's consider a sequence of $m\ {
 m FIND}$ operations, and divide the traversed links into the following three types:
 - Type 1: links to root
 - Type 2: links traversed between different rank groups
 - Type 3: links traversed within the same rank groups
- ullet For example, the links that $\operatorname{FIND}(a)$ travels:

- The total time is $T = T_1 + T_2 + T_3$, where T_i denotes the number of links of type i. We have:
 - $T_1 = O(m)$.
 - $T_2 = O(m \log^* n)$. (Hint: there are at most $\log^* n$ groups.)
 - $T_3 = O(n \log^* n)$. (To be shown later.)
- Thus, $T = O(m \log^* n)$.

Amortized analysis: why $T_3 = O(n \log^* n)$?

• Note that **the link** $f \to parent(f)$ **of type 3** in FIND(f) will change parent(f): the rank of parent(f) increases by at least 1. In the example shown below, parent(f) changes from g^6 to h^7 .

- Let's consider the next FIND(f) operation. There are two cases:
 - If no UNION was executed before the next FIND(f) operation, parent(f) is itself a root, and the link $f \to parent(f)$ will be accounted into T_1 .
 - ② If a UNION operation linked h^7 to another root node, say i^8 , before the next $\operatorname{FIND}(f)$ operation, then the next $\operatorname{FIND}(f)$ operation will again lead to the increase of the rank of $\operatorname{parent}(f)$.

32 / 37

Case 1 of the next FIND(f): no UNION was executed before

 If no UNION was executed before the next FIND(f) operation, parent(f) is itself a root, and the link from f to parent(f)
 will be accounted into T₁.

Next FIND(f)

Case 2 of next FIND(f): an UNION was executed before

• If an UNION was executed before, the next FIND(f) will again lead to the increase of the rank of parent(f), in which the **link** $f \rightarrow parent(f)$ might still be of type 3; however, we claim that the link cannot be of type 3 over 2^4 times.

The link $f \rightarrow parent(f)$ cannot be of type 3 over 2^4 times

- The link $f \to parent(f)$ cannot be of **type 3** over 2^4 times since after performing at most 2^4 FIND(f),
 - parent(f) is itself a root; thus, the link $f \to parent(f)$ in subsequent FIND(f) are of type 1 and will be accounted into T_1 .

• or the rank of parent(f) increase to make it lie in another group different from f; thus, the link $f \to parent(f)$ in subsequent FIND(f) operations are of **type 2** and will be accounted into T_2 .

Why $T_3 = O(n \log^* n)$? continued

FIND(
$$f$$
) G_3 G_3 G_3 G_3 G_4 G_5 G_5 G_7 G_7 G_7 G_7 G_8 G_8

Formally we have

$$\begin{array}{ll} \mathbf{T_3} & \leq & \displaystyle\sum_{k=2}^{\log^* n} \displaystyle\sum_{f \in G_k} \underbrace{2^{2^{\ldots 2}}}_{\mathbf{k}} & \text{ (the largest rank in group } G_k \text{ is } \underbrace{2^{2^{\ldots 2}}}_{\mathbf{k}}) \\ & \leq & \displaystyle\sum_{k=2}^{\log^* n} \frac{n}{2^{2^{\ldots 2}}} \underbrace{2^{2^{\ldots 2}}}_{\mathbf{k}} & \text{ (\#nodes in group } G_k \leq \frac{n}{2^{2^{\ldots 2}}}) \\ & = & O(n \log^* n) \end{array}$$

$T_3 = O(n \log^* n)$: another explanation using "credit"

- Let's give each node credits as soon as it ceases to be a root. If its rank is in the group $[k+1, 2^k]$, we give it 2^k credits.
- The total credits given to all nodes is $n\log^* n$. (Hint: each group of nodes receive n credits.)
- If rank(f) and rank(parent(f)) are in the same group, we will charge f 1 credit.
- In this case, rank(parent(f)) increases by at least 1.
- Thus, after at most 2^k FIND operations, rank(parent(f)) will be in a higher group.
- ullet Thus, f has enough credits until rank(f) and rank(parent(f)) are in different group, which will be accounted into T_2 .