CS711008Z Algorithm Design and Analysis

Lecture 7. UNION-FIND data structure !

Dongbo Bu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

!The slides were made based on Chapter 5 of Algorithms by S. Dasgupta,
C. H. Papadimitriou, and U. V. Vazirani, Data Structure by Ellis Horowitz,

Hopcroft and Ullman 1973, and Tarjan 1975, et al.
1/37

@ Introduction to UNION-FIND data structure

@ Various implementations of UNION-FIND data structure:

o Array: store “set name” for each element separately. Easy to
FIND set of any element, but hard to UNION two sets.

o Tree: each set is organized as a tree with root as “set name”.
It is easy to UNION two sets, but hard to FIND set for an
element.

o Link-by-rank: maintain a balanced-tree to limit tree depth to
O(log n), making FIND operations efficient.

e Link-by-rank and path compression: compress path when
performing FIND, making subsequent FIND operations much
quicker.

2/37

UNION-FIND data structure

Dae
3/37

UNION-FIND: motivation

@ Motivation: Suppose we have a collection of disjoint sets.
The objective of UNION-FIND is to keep track of elements by
using the following operations:

o MAKESET(z): to create a new set {z}.

o FIND(z): to find the set that contains the element z;

o UNION(z, y): to union the two sets that contain elements z
and y, respectively.

@ Analysis: total running time of a sequence of m FIND and n
UNION.

4/37

UNION-FIND is very useful

@ UNION-FIND has extensive applications, such as:
Network connectivity

Kruskal's MST algorithm

Least common ancestor

Games (Go)

5/37

An example: Kruskal's MST algorithm

DA
6/37

Kruskal's algorithm [1956]

@ Basic idea: during the execution, F'is always an acyclic
forest, and the safe edge added to F'is always a least-weight
edge connecting two distinct components.

. N il i

Figure 1. Joseph Kruskal

7/37

Kruskal's algorithm [1956]

MST-KRUSKAL(G, W)
F={}
for all vertex ve V do
MAKESET(v);
end for
sort the edges of E into nondecreasing order by weight W,
for each edge (u,v) € E in the order do
if FINDSET(u) # FINDSET(v) then
F=FU{(u0)};
UNION (u, v);
end if
. end for

© e Na R W

e
= O

@ Here, UNION-FIND structure is used to detect whether a set
of edges form a cycle.

@ Specifically, each set represents a connected component; thus,
an edge connecting two nodes in the same set is “unsafe”, as

adding this edge will form a cycle. e

Kruskal's MST algorithm: an example

Kruskal's MST algorithm: an example

Step 1
Edge weight: 2,6,9,11,14, 15, 16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a}, {b},{c}, {d},{e}, {/}, {s}, {t}

Kruskal's MST algorithm: an example

Step 1
Edge weight: 2,6,9,11,14, 15, 16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a}, {b},{c}, {d},{e}, {/}, {s}, {t}

Kruskal's MST algorithm: an example

Step 1
Edge weight: 2,6,9,11,14, 15, 16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a}, {b},{c}, {d},{e}, {/}, {s}, {t}

Kruskal's MST algorithm: an example

Step 1
Edge weight: 2,6,9,11,14, 15, 16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a}, {b},{c},{d, e}, {f}, {s}, {t}

Kruskal's MST algorithm: an example

Step 2
Edge weight: 2,6,9,11,14, 15,16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a}, {b},{c},{d, e}, {f}, {s}, {t}

Kruskal's MST algorithm: an example

Step 2
Edge weight: 2,6,9,11,14, 15,16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a}, {b},{c},{d, e}, {f}, {s}, {t}

Kruskal's MST algorithm: an example

Step 2
Edge weight: 2,6,9,11,14, 15,16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a}, {b},{c},{d, e}, {f}, {s}, {t}

Kruskal's MST algorithm: an example

Step 2
Edge weight: 2,6,9,11,14, 15,16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a}, {b}, {c},{d, e}, {1, t}, {s}

Kruskal's MST algorithm: an example

Step 3
Edge weight: 2,6,9,11,14, 15, 16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a}, {b}, {c},{d, e}, {. t}, {s}

Kruskal's MST algorithm: an example

Step 3
Edge weight: 2,6,9,11,14, 15, 16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a}, {b}, {c},{d, e}, {. t}, {s}

Kruskal's MST algorithm: an example

Step 3
Edge weight: 2,6,9,11,14, 15, 16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a}, {b}, {c},{d, e}, {. t}, {s}

Kruskal's MST algorithm: an example

Step 3
Edge weight: 2,6,9,11,14, 15, 16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a, s}, {b},{c},{d, e}, {f, t}

Kruskal's MST algorithm: an example

Step 4
Edge weight: 2,6,9, 11,14, 15,16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a, s}, {b},{c},{d, e}, {f, t}

Kruskal's MST algorithm: an example

Step 4
Edge weight: 2,6,9, 11,14, 15,16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a, s}, {b},{c},{d, e}, {f, t}

Kruskal's MST algorithm: an example

Step 4
Edge weight: 2,6,9, 11,14, 15,16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a, s}, {b},{c},{d, e}, {f, t}

Kruskal's MST algorithm: an example

Step 4
Edge weight: 2,6,9, 11,14, 15,16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a, s}, {b},{c},{d, e f t}

Kruskal's MST algorithm: an example

Step 5
Edge weight: 2,6,9,11, 11,15, 16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a, s}, {b},{c},{d, e f t}

Kruskal's MST algorithm: an example

Step 5
Edge weight: 2,6,9,11, 11,15, 16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a, s}, {b},{c},{d, e f t}

Kruskal's MST algorithm: an example

Step 5
Edge weight: 2,6,9,11, 11,15, 16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a, s}, {b},{c},{d, e f t}

Kruskal's MST algorithm: an example

Step 5
Edge weight: 2,6,9,11, 11,15, 16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a, s, b}, {c},{d, e, f, t}

Kruskal's MST algorithm: an example

Step 6
Edge weight: 2,6,9,11,14, 15,16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a, s, b}, {c},{d, e, f, t}

Kruskal's MST algorithm: an example

Step 6
Edge weight: 2,6,9,11,14, 15,16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a, s, b}, {c},{d, e, f, t}

Kruskal's MST algorithm: an example

Step 6
Edge weight: 2,6,9,11,14, 15,16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a, s, b}, {c},{d, e, f, t}

Kruskal's MST algorithm: an example

Step 6
Edge weight: 2,6,9,11,14, 15,16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a, s, b, c},{d, e, f, t}

Kruskal's MST algorithm: an example

Step 7
Edge weight: 2,6,9,11,14, 15, 16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a, s, b, c},{d, e, f, t}

Kruskal's MST algorithm: an example

Step 7
Edge weight: 2,6,9,11,14, 15, 16, 18, 19, 20, 24, 30, 44
Disjoint sets: {a, s, b, c},{d, e, f, t}

Same set!

Kruskal's MST algorithm: an example

Step 8
Edge weight: 2,6,9,11,14, 15,16, 15, 19, 20, 24, 30, 44
Disjoint sets: {a, s, b, c},{d, e, f, t}

Kruskal's MST algorithm: an example

Step 8
Edge weight: 2,6,9,11,14, 15,16, 15, 19, 20, 24, 30, 44
Disjoint sets: {a, s, b, c},{d, e, f, t}

Kruskal's MST algorithm: an example

Step 8
Edge weight: 2,6,9,11,14, 15,16, 15, 19, 20, 24, 30, 44
Disjoint sets: {a, s, b, c},{d, e, f, t}

Kruskal's MST algorithm: an example

Step 8
Edge weight: 2,6,9,11,14, 15,16, 15, 19, 20, 24, 30, 44
Disjoint sets: {a, s, b, ¢, d, e, f, t}

9/37

Time complexity of KRUSKAL’S MST algorithm

Operation Array Tree Link-by-rank Link-by-rank +
path compression

MAKESET 1 1 1 1
FIND 1 n log n log* n
UNION n n log n log* n
MST-KRUSKAL O(n?) O(mn) O(mlogn) O(mlog™* n)

KruskAL’s MST algorithm: n MAKESET, n — 1 UNION, and m
FIND operations.

10/37

Implementing UNION-FIND: array or linked list

Dae
11/37

Implementing UNION-FIND: array

@ Basic idea: for each element, we record its "set name”

individually.
s abhcde ft
Set name:[0]1]2]3[4]5]6]7]
@ Operation:
FIND(z)

1. return SetName[a];
e Complexity: O(1)

12/37

Implementing UNION-FIND: array

@ Operation:
UNION(z,)
sy =FIND(z);
sy =FIND(y);
for all element i do
if SetName[i]]==s, then
SetName[i]=s,
end if
end for

N gk wends

s abpcdeft
Set name:[0]1]2]3[4][5]6]7]

Set name:[0[1[2]3]5]5]6]7]

Set name:[0[1][2]3]6]6]6]7]

e Complexity: O(n)

13/37

representative of the set

Tree implementation: organizing a set into a tree with its root as

J

14/37

Tree implementation: FIND

@ Basic idea: We use a tree to store elements of a set, and use
root as “set name”. Thus, only one representative should be
maintained.

Set: {s,a,b,¢} (&)

@ Operation:
FIND(z)
1. r=uzx
while 7! = parent(r) do
r = parent(r);
end while
return 7

15/37

Tree implementation: UNION

@ Operation:
UNION(z, y)
1. r, =FIND(2);
2: 7y =FIND(y);
3: parent(ry) = 1y;

e Example: UNION(¢, a)

16/37

Tree implementation: worst case

@ Worst case: the tree degenerates into a linked list. For
example, UNION(¢, b), UNION(b, a), UNION(a, s).

UNION(¢, b)
UNION(b, a)
PePET — 7
®
©
e Complexity: FIND takes O(n) time, and UNION takes O(n)

time.

@ Question: how to keep a “good” tree shape to limit path
length?

17/37

Link-by-rank: shorten the path by maintaining a balanced tree

J

18/37

Tree implementation with link-by-size

@ Basic idea: We shorten the path by maintaining a
balanced-tree. In fact, this will limit path length to O(log n).

@ How to maintain a balanced tree? Each node is associated
with a rank, denoting its height. The tree has a balanced
shape via linking smaller tree to larger tree; if tie, increase the
rank of new root by 1.

QQ?

Figure 2. Three sets: {s}, {a}, {b, ¢}

19/37

Tree implementation with link-by-size: UNION operation

UNION(z,)

r, =FIND(2);

ry =FIND(y);

if rank(ry) > rank(ry) then
parent(ry) = ry;

else
parent(ry) = 1y,
if rank(ry) == rank(ry,) then

rank(ry) = rank(ry) + 1,

end if

end if

LCOoNIA RN H

,_.
=

UNION(¢, b)
UNION(b, a)

Q Q Q Q Union(as) @)

Note: a node’s rank will not change after it becomes an-internal

hﬁf‘lﬂ

20/37

Properties of rank |

@ For any node z, rank(z) < rank(parent(z)).
@ Any tree with root rank of k contains at least 2¥ nodes. (Hint:
by induction on £.)

© Once a root node was changed into internal node during a
UNION operation, its rank will not change afterwards.

rank: 0 rank: k+1
@)

rank: k

©Q Suppose we have n elements. The number of rank k nodes is
at most g;. (Hint: Different nodes of rank k share no
common descendants.)

21/37

Properties of rank I

rank 4: 1 nodes

rank 0: 11 nodes

@ Thus, all of the trees have height less than log n, which means
both FIND and UNION take O(log n) time.

22/37

Path compression: compress paths to make further FIND efficient J

DA
23/37

Path compression

o Basic idea: After finding the root r of the tree containing z,
we change the parent of the nodes along the path to point
directly to r. Thus, the subsequent FIND(z) operations will be
efficient.

@ Note: Path compression changes height of nodes but does not
change rank of nodes. We always have height(z) < rank(x);
thus, the three properties still hold.

2437

Path compression: FIND operation

FIND(z)

[y

if z! = parent(z) then
parent(z) = FIND(parent(z));
else
return z,
end if

25 /37

Some properties of FIND and UNION

@ FIND operations change internal nodes only while UNION
operations change root node only.

@ Path compression changes parent node of certain internal
nodes. However, it will not change the root nodes, rank of
any node, and thus will not affect UNION operations.

26 /37

Path compression: complexity

e Example: FIND(c)

9 FIND(¢) @

_—

ORG & @@

e A FIND(c) operation might takes long time; however, the
path compression makes subsequent FIND(c¢) (and other
middle nodes in the path) efficient.

Starting from each item forming an individual set, any sequence of
m operations (including FIND and UNION) over n elements takes
O(mlog* n) time.

Analysis of path compression: a brief history

In 1972, Fischer proved a bound of O(mloglogn).

In 1973, Hopcroft and Ullman proved a bound of O(mlog* n).

In 1975, R. Tarjan et al. proved a bound using “inverse
Ackerman function”.

Later, R. Tarjan, et. al. and Harfst and Reingold proved the
bound using the potential function technique.

Here, we present the proof in Algorithms by S. Dasgupta, C. H.
Papadimitriou, and U. V. Vazirani.

28 /37

log™ n: lterated logarithm function

@ Intuition: the number of logarithm operations to make n to

be 1.
N {0 ifn=1
@ log"n=
1+ log*(logn) otherwise

n log* n

1 0

2 1

[3,2%] 2

[5,24] 3

[17,216] 4

(65537, 205536] 5

@ Note: log™ n increases very slowly, and we have log* n < 5
unless n exceeds the number of atoms in the universe.

29/37

Analysis of rank

@ Let's divide the nonzero ranks into groups as below.

Group Rank Upper bound of #elements
0 1 5
1 2 2%
2 3,22 =%
3 5,24 =
4 [17, 216] 75
5 (65537, 265536] ot

o Note:
o Group number is log™ rank and the number of groups is at
most log™ n.

o The number of elements in the rank group Gy (k> 2) is at
most 5 as the number of nodes with rank ris at most ;.

22...
v

We W|II see why the group was set to take the form

(2% —|—1 2?] soon.

k-1 k 30/37

Amortized analysis: total time of m FIND operations

@ Basic idea: a FIND operation might take long time; however,
path compression makes subsequent FIND operations efficient.
@ Let's consider a sequence of m FIND operations, and divide
the traversed links into the following three types:
° links to
e Type 2: links traversed between different rank groups
e Type 3: links traversed within the same rank groups
e For example, the links that FIND(a) travels:
Go & Go Gs

@A D—(P —(—(7
NSNS 2
@ The total timeis T'= T7 + T + T3, where T; denotes the
number of links of type 7. We have:
] .
o Ty = O(mlog™ n). (Hint: there are at most log™ n groups.)
o T35 = 0O(nlog" n). (To be shown later.)
@ Thus, T'= O(mlog* n).

31/37

Amortized analysis: why T3 = O(nlog” n)?

o Note that the link f— parent(f) of type 3 in FIND(f) will
change parent(f): the rank of parent(f) increases by at least
1. In the example shown below, parent(f) changes from ¢® to
R’

G3

@ Let's consider the next FIND(f) operation. There are two
cases:

@ If no UNION was executed before the next FIND(f) operation,
parent(f) is itself a root, and will be
accounted into

@ If a UNION operation linked A7 to another root node, say 7,
before the next FIND(f) operation, then the next FIND(/)
operation will again lead to the increase of the rank of

parent(f).)5

Case 1 of the next FIND(f): no UNION was executed

before

e If no UNION was executed before the next FIND(/f) operation,
parent(f) is itself a root, and
will be accounted into

Gg G3
" CORAR TKER

G3

Next FIND() /@\ (4.7

33/37

Case 2 of next FIND(f): an UNION was executed before

e If an UNION was executed before, the next FIND(f) will again
lead to the increase of the rank of parent(f), in which the link
[— parent(f) might still be of type 3; however, we claim
that the link cannot be of type 3 over 2* times.

G3 GS
G

3

UNION(f, 4) (P O P
Gg GS

— 2 2
Next FIND(}‘)u & = F (P
Ts Te T7 Tg Ts Te T7 Ts 34/37

The link f— parent(f) cannot be of type 3 over 2¢ times

e The link f— parent(f) cannot be of type 3 over 2* times
since after performing at most 2* FIND(f),
o parent(f) is itself a root; thus, the link f— parent(f) in
subsequent FIND() are of and will be accounted into

G

Next FIND(f) ﬂ

o or the rank of parent(f) increase to make it lie in another
group different from f; thus, the link f— parent(f) in
subsequent FIND(f) operations are of type 2 and will be
accounted into 75.

Next FIND(f)

35/37

Why T3 = O(nlog™ n)? continued

@ Formally we have

T3

<

IN

log* n

Yyl

k=2 feGr «k
log* n 9

St
2
—2 22 Kk

{

k
O(nlog™ n)

2
(the largest rank in group Gy is 22)

(#nodes in group Gy, <

k

36 /37

O(nlog™ n): another explanation using “credit”

Let's give each node credits as soon as it ceases to be a root.
If its rank is in the group [k+ 1,2%], we give it 2% credits.

The total credits given to all nodes is nlog* n. (Hint: each
group of nodes receive n credits.)

If rank(f) and rank(parent(f)) are in the same group, we will
charge f 1 credit.

In this case, rank(parent(f)) increases by at least 1.

Thus, after at most 2¥ FIND operations, rank(parent(f)) will
be in a higher group.

Thus, fhas enough credits until rank(f) and rank(parent(f))
are in different group, which will be accounted into 75.

37/37

