CS711008Z Algorithm Design and Analysis

Lecture 7. Binary heap, binomial heap, and Fibonacci heap

Dongbo Bu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

1/124

@ Introduction to priority queue

@ Various implementations of priority queue:

o Linked list: a list having n items is too long to support efficient
EXTRACTMIN and INSERT operations simultaneously;

e Binary heap: using a tree rather than a linked list;

e Binomial heap: allowing multiple trees rather than a single
tree to support efficient UNION operation

e Fibonacci heap: implement DECREASEKEY via simply
cutting an edge rather than exchanging nodes, and control
a “bushy” tree shape via allowing at most one child losing
for any node.

2/124

Priority queue

Q>
3/124

Priority queue: motivation

@ Motivation: It is usually a case to extract the minimum
from a set S of n numbers, dynamically.

@ Here, the word "dynamically” means that on S, we might
perform INSERTION, DELETION and DECREASEKEY
operations.

@ The question is how to organize the data to efficiently support
these operations.

4/124

@ Priority queue is an abstract data type similar to stack or
queue, but each element has a priority associated with its
name.

@ A min-oriented priority queue must support the following core
operations:

@ H=MAKEHEAP(): to create a new heap H,

@ INSERT(H, z): to insert into H an element z together with its
priority

© EXTRACTMIN(H): to extract the element with the highest
priority;

©Q DECREASEKEY(H, x, k): to decrease the priority of element z;

© UNION(Hy, Hy): return a new heap containing all elements of
heaps H; and H,, and destroy the input heaps

5/124

Priority queue is very useful

@ Priority queue has extensive applications, such as:

Dijkstra's shortest path algorithm
Prim's MST algorithm

Huffman coding

A* searching algorithm

HeapSort

6/124

An example: Dijkstra’s algorithm

D¢
7/124

Dijkstra’s algorithm [1959]

DUKSTRA(G, s, t)

1:

—
e

11:
12:
13:
14:
15:
16:

©OoNARLD

key(s) = 0; //key(u) stores an upper bound of the shortest distance
from s to u;
P(Q. INSERT (s);
for all node v# s do
key(v) = 400
PQ. INSERT (v) //n times
end for
S={};// Let S be the set of explored nodes;
while S # V do
v* = PQ. EXTRACTMIN(); //n times
S=SuU{v};
for all v¢ Sand < v*,v>€ Edo
if key(v*) + d(v*, v) < key(v) then
PQ.DECREASEKEY(v, key(v*) + d(v*, v)); //m times
end if
end for
end while

Here P() denotes a min-priority queue.

8/124

Dijkstra’s algorithm: an example

9/124

Initialization

10/124

Step 1: EXTRACTMIN

11/124

Step 1: DECREASEKEY

12/124

Step 2: EXTRACTMIN

Step 2: EXTRACTMIN

13/124

Step 2: DECREASEKEY

S={s,a}
PQ = {b(14), ¢(15), d(0), e(o0), floo), #(o0) }

14 /124

Step 3: EXTRACTMIN

S={s,a}
PQ = {b(14), ¢(15), d(33), e(o0), floo), H(o0) }

Step 3: EXTRACTMIN

S={s,a}
PQ = {b(14), ¢(15), d(33), e(o0), floo), H(o0) }

15/124

Step 3: DECREASEKEY

S={s,a,b}
PQ = {c(15), d(33), e(00), f(00), #(c0) }

DECREASEKEY(d, 32)
DECREASEKEY(e, 44)

16 /124

Step 4: EXTRACTMIN

Step 4: EXTRACTMIN

17/124

Step 4: DECREASEKEY

S={s,a,bc}
PQ = {d(32), e(44), flo0), t(c0) }

DECREASEKEY(e, 35)
DECREASEKEY(t, 59)

18/124

Step 5: EXTRACTMIN

S={s,a,bc}
PQ = {d(32), e(35), #(59), f(o0) }

Step 5: EXTRACTMIN

S={s,a,bc}
PQ = {d(32), e(35), #(59), f(o0) }

19/124

Step 5: DECREASEKEY

S={s,a,b,c, d}
PQ = {e(35),(59), f(o0) }

DECREASEKEY(t,51)
DECREASEKEY (e, 34)

20/124

Step 6: EXTRACTMIN

S={s,a,b,c, d}
PQ = {e(34),1(51), f(o0) }

Step 6: EXTRACTMIN

S={s,a,b,c, d}
PQ = {e(34),1(51), f(o0) }

21/124

Step 6: DECREASEKEY

S={s,a,b,cd e}
PQ = {f(45),4(50)}

5)

DECREASEKEY(f, 4!
t,50)

DECREASEKEY(

22/124

Step 7: EXTRACTMIN

S={s,a,b,cd e}
PQ = {f(45),4(50)}

Step 7: EXTRACTMIN

S={s,a,b,cd e}
PQ = {f(45),4(50)}

EXTRACTMIN returns f

23/124

Step 7: DECREASEKEY

S= {5, a, b, c, d7 e?f}
PQ={t(50)}

) \ (:\u
24 /124

Step 8: EXTRACTMIN

S={s,a,b,c,d,e,ft}
rPQ=1{}

e
25/124

Time complexity of DIJKSTRA algorithm

Operation Linked Binary Binomial Fibonacci
list heap heap heap

MAKEHEAP 1 1 1 1
INSERT 1 log n log n 1
EXTRACTMIN n logn log n logn
DECREASEKEY 1 log n log n 1
DELETE n logn log n logn
UNION 1 n log n 1
FinDMIN n 1 log n 1

DIJKSTRA O(n?) O(mlogn) O(mlogn) O(m -+ nlogn)

D1JKSTRA algorithm: n INSERT, n EXTRACTMIN, and m
DECREASEKEY.

26 /124

Implementing priority queue: array or linked list

D¢
27 /124

Implementing priority queue: unsorted array

Unsorted array:

[8l1]6]2fa] [| |

Unsorted linked list:
head

[8 =11 =16 {2 (4]

Operations:

o INSERT: O(1)
o EXTRACTMIN: O(n)

Note: a list containing n elements is too long to find the
minimum efficiently.

28/124

Implementing priority queue: sorted array

@ Sorted array:

[1]2]4f6]8] [| |

@ Sorted linked list:
head

1 =12 =46 (8]

@ Operations:

o INSERT: O(n)
o EXTRACTMIN: O(1)

@ Note: a list containing n elements is too long to maintain the
order among elements.

29/124

Implementing priority queue: array or linked list

Operation Linked
List

INSERT o1

EXTRACTMIN

)
O(n)
DECREASEKEY O(1)
UNION 0o(1)

30/124

Binary heap: from a linked list to a tree

D¢
31/124

Binary heap

Figure 1: R. W. Floyd [1964]

32/124

Binary heap: a complete binary tree

@ Basic idea:
o loosing the structure: Recall that the objective is to find the
minimum. To achieve this objective, it is not necessary to sort

all elements.
o but don’t loose it too much: we still need order between

some elements.

(19 (8)
2 W W @
ey

@ Binary heap: elements are stored in a complete binary tree,
i.e., a tree that is perfectly balanced except for the bottom
level. Heap order is required, i.e., any parent has a key
smaller than his children;

@ Advantage: any path has a short length of O(log, n) rather
than n in linked list, making it efficient to-maintain-heap

o] A

33/124

Binary heap: an explicit implementation

o Pointer representation: each node has pointers to its parent
and two children;
@ The following information are maintained:

e the number of elements n;
e the pointer to the root node;

root

e Note: the last node can be found in O(log n) time.

34/124

Binary heap: an implicit implementation

o Array representation: one-one correspondence between a
binary tree and an array.

e Binary tree = array:
o the indices starting from 1 for the sake of simplicity;
o the indices record the order that the binary tree is traversed

level by level.

e Array = binary tree:
o the k-th item has two children located at 2k and 2k + 1;
o the parent of the k-th item is located at [£];

e T =T T T
7 1 2 3 4 5 6 7 8 9 1011

35/124

Sorted array vs. binary heap

@ Sorted array: an array containing n elements in an increasing
order;

|6|8|10|11|12|18|21|25|
1 2 3 4 5 6 7 8 9 1011

@ Binary heap: heap order means that only the order among
nodes in short paths (length is less than log n) are maintained.
Note that some inverse pairs exist in the array.

|6|10|8|12|18|11|25|21|
1 2 3 4 5 6 7 8 9 1011

36/124

Binary heap: primitive and other operations

D¢
37/124

Primitive: exchanging nodes to restore heap order

@ Primitive operation: when heap order is violated, i.e. a parent
has a value larger than only one of its children, we simply
exchange them to resolve the conflict.

(6 (6
@ (8) (13) (8)
¥ ®@ W @ @y ©@ W @
Gy @ Gy @

Figure 2: Heap order is violated: 15 > 13. Exchange them to
resolve the conflict.

38/124

Primitive: exchanging nodes to restore heap order

@ Primitive operation: when heap order is violated, i.e. a parent
has a value larger than both of its children, we exchange the
parent with its smaller child to resolve the conflict.

() ()
D) (8) (12) (8)
2 ® O @ @ @& W @
@y @ Gy @

Figure 3: Heap order is violated: 20 > 12, and 20 > 18. Exchange
20 with its smaller child (12) to resolve the conflicts.

39/124

Binary heap: INSERT operation

@ INSERT operation: the element is added as a new node at the
end. Since the heap order might be violated, the node is

repeatedly exchanged with its parent until heap order is
restored.

e For example, INSERT(7):

ey

()
(19 (8)
@ W O @
Q

® O O
&) @

40/124

Binary heap: EXTRACTMIN operation

@ EXTRACTMIN operation: exchange element in root with the
last node; repeatedly exchange the element in root with its
smaller child until heap order is restored.

e For example, EXTRACTMIN():

(6} 3
(19 (8) (19 (2)
2 @ O @ @ O O

1
@))
®

© O @ ©

41/124

Binary heap: DECREASEKEY operation

o DECREASEKEY operation: given a handle to a node,
repeatedly exchange the node with its parent until heap order
is restored.

e For example, DECREASEKEY(ptr, 7):

(&) (6
(19 (8) Q) (%)

2 ©® O @ ® ®» O
@) < pir ®

42/124

Binary heap: analysis

In an implicit binary heap, any sequence of m INSERT, .
DECREASEKEY, and EXTRACTMIN operations with n INSERT
operations takes O(mlog n) time.

Note:
@ Each operation touches at most log n nodes on a path from
the root to a leaf.

In an explicit binary heap with n nodes, the INSERT, .
DECREASEKEY, and EXTRACTMIN operations take O(mlog n)
time in the worst case.

Note:
@ If using array representation, a dynamic array
expanding/contracting is needed. However, the total cost of

array expanding/contracting is O(n) (see TABLEINSERT).
43/124

Binary heap: heapify a set of items

@ Question: Given a set of n elements, how to construct a
binary heap containing them?
@ Solutions:
@ Simply INSERT the elements one by one. Takes O(nlogn)
time.
@ Bottom-up heapifying. Takes O(n) time.
For i = n to 1, we repeatedly exchange the element in node ¢
with its smaller child until the subtree rooted at node 7 is
heap-ordered.

|21|10|11|25|8|18|12|6| | | |
1 2 3 4 5 6 7 8 9 1011

(see a demo) 44,124

Binary heap: heapify

Given n elements, a binary heap can be constructed using O(n)
time.

© There are at most |57 | nodes of height &;
o It takes O(h) time to sink a node of height ;

@ The total time is:

[log, 7] n [logy n] h
> Igmrlh <) oy
h=0 h=0

< 2n

45/124

Implementing priority queue: binary heap

Operation Linked Binary
List Heap
INSERT O(1) O(log n)
EXTRACTMIN O(n) O(log n)
DECREASEKEY O(1) O(log n)
UNION O(1) O(n)

46 /124

Binary heap: UNION operation

@ UNION operation: Given two binary heaps H; and Ha, to
merge them into one binary heap.

Hy

(6)

e O(n) time is needed if using heapify.

@ Question: Is there a quicker way to union two heaps?

47 /124

Binomial heap: using multiple trees rather than a single tree to
support efficient UNION operation

J

Qe

48 /124

Binomial heap

e

Figure 4. Jean Vuillenmin [1978]

49/124

Binomial heap: efficient UNION

@ Basic idea:

o loosing the structure: if multiple trees are allowed to
represent a heap, UNION can be efficiently implemented via
simply putting trees together.

o but don’t loose it too much: there should not be too many
trees; otherwise, it will take a long time to find the minimum
among all root nodes.

Hy

o EXTRACTMIN: simply finding the minimum element of the
root nodes. Note that a root node holds the minimum of the
tree due to the heap order.

50 /124

Why we can't loose the structure too much?

@ An extreme case of multiple trees: each node is itself a tree.
Then it will take O(n) time to find the minimum.

®© 0 6 @

@ Solution: consolidating, i.e., two trees (with the same size)
are merged into one — the larger root is linked to the smaller
one to keep the heap order. Note that after consolidating, at
most log n trees will be left.

link ©
-
@)
O, ® ik @
—
@ O w ®
©

©®

51/124

Binomial tree

Definition (Binomial tree)

The binomial tree is defined recursively: a single node is itself a By
tree, and two By, trees are linked into a By, tree.

B() Bk+1
@)

52/124

Binomial tree examples: By, B, B>

By

O—OE %

O— &

O—

53 /124

Binomial tree example: Bs

® ©® WM
@ @

54 /124

Binomial tree example: B,

55 /124

Binomial tree example: Bs

56 /124

Binomial tree: property

Properties:
Q |B;| = 2%,
Q height(By) = k.
© degree(By) = k.
@ The #th child of a node has a degree of ¢ — 1.
© The deletion of the root yields trees By, Bi, ..., By_1.
@ Binomial tree is named after the fact that the node number of
all levels are binomial coefficients.
Bs
O By 1

57/124

Binomial heap: a forest

Definition (Binomial forest)

A binomial heap is a collection of several binomial trees:
@ Each tree is heap ordered;

@ There is either 0 or 1 By, for any k.

of

@ Note that the roots are organized using douny—Ilnked circular
list, and the minimum of them is recorded using a pointer. 55,124

@ Example:

Binomial heap: properties

Properties:
@ A binomial heap with n nodes contains the binomial tree B; iff
b; = 1, where bibg_1...b1 by is binary representation of n.
@ It has at most |logy n] + 1 trees.
© Its height is at most [logy n].

Thus, it takes O(log n) time to find the minimum element via
checking the roots.

Bo By B2

z

59/124

UNION is efficient: example 1

By By By Bs
(B-------- ©, @D-------- (6)
|
® © ® ® © W
@, W @ ©
By B 32 4

@z

Figure 5. An easy case: no consolldatlng is needed
60 /124

UNION is efficient: example 2 |

By By By BS

FIN T I

@)

Figure 6: Consolidating two Bj trees into a Bs tree

61/124

UNION is efficient: example 2 1l

By DBs By Bs

FIN DT I

Figure 7: Consolidating two By trees into a Bj tree

62/124

UNION is efficient: example 2 Il

Time complexity: O(log n) since there are at most O(log n) trees.

63/124

Binomial heap: INSERT operation

INSERT(2)
1: Create a By tree for z;
: Change the pointer to the minimum root node if necessary;
while there are two By, trees for some k do
Link them together into one By, tree;
Change the pointer to the minimum root node if necessary;
end while

S

64 /124

INSERT operation: an example

Figure 8: An easy case: no consolidating is needed

65 /124

INSERT operation: example 2 |

By By DB Bz

“z

Figure 9: Consolidating two By

66 /124

INSERT operation: example 2 |l

By

iI

Figure 10: Consolidating two B

67 /124

INSERT operation: example 2 IlI

@ © @ ©
@)

Figure 11: Consolidating two Bs

68 /124

INSERT operation: example 2 IV

Figure 12: Consolidating two Bs

69 /124

INSERT operation: example 2 V

Time complexity: O(logn) (worst case) since there are at most
log n trees.

70/124

Binomial heap: EXTRACTMIN operation

EXTRACTMIN()

1: Remove the min node, and insert its children into the root list;
2: Change the pointer to the minimum root node if necessary;

3: while there are two By, trees for some k do

4: Link them together into one By tree;

5 Change the pointer to the minimum root node if necessary;
6: end while

71/124

EXTRACTMIN operation: an example |

72/124

EXTRACTMIN operation: an example |l

By By B Bg

@@I

Figure 13: The four children become trees

73/124

EXTRACTMIN operation: an example IlI

B B Bg

II

Figure 14: Consolidating two B; trees

74/124

EXTRACTMIN operation: an example 1V

@ © @ ©
@)

Figure 15: Consolidating two By trees

75/124

EXTRACTMIN operation: an example V

Figure 16: Consolidating two By trees

76 /124

EXTRACTMIN operation: an example VI

Time complexity: O(log n)

77/124

Implementing priority queue: Binomial heap

Operation Linked Binary Binomial
List Heap Heap

INSERT 0o(1) O(logn) O(logn)
EXTRACTMIN O(n) O(logn) O(logn)
DECREASEKEY O(1) O(logn) O(logn)
UNION 0o(1) O(n) O(log n)

78/124

technique

Binomial heap: more accurate analysis using the amortized

QC

79/124

Amortized analysis of INSERT

Motivation:

o If an INSERT takes a long time (say log n), the subsequent
INSERT operations shouldn't take long!
By By B B

TNy L

@ Thus, it will be more accurate to examine a sequence of
operations rather than each operation individually.

80 /124

Amortized analysis of INSERT operation

INSERT(z)
1: Create a By tree for z;
2: Change the pointer to the minimum root node if necessary;
3: while there are two By, trees for some k do
4 Link them together into one By tree;
5 Change the pointer to the minimum root node if necessary;

6: end while

Analysis:

@ A single INSERT operation takes time 1 + w, where w = #WHILE.

@ For the sake of calculating the total running time of a sequence of
operations, we represent the running time of a single operation as
decrease of a potential function.

@ Consider a quantity ® = #trees (called potential function). The
changes of ® during an operation are:

o & increase: 1.
o P decrease: w.

@ Thus the running time of INSERT can be rewritten in terms of ® as
1+ w = 14 decrease in ®. Note that this representation makes it
convenient to sum running time of a sequence of INSERT operations.g; 1.,

Amortized analysis of EXTRACTMIN

EXTRACTMIN()

Remove the min node, and insert its children to the root list;
: Change the pointer to the minimum root node if necessary;
while there are two By, trees for some k do

Link them together into one By tree;

Change the pointer to the minimum root node if necessary;

6: end while

g wn =

Analysis:

@ A single EXTRACTMIN operation takes d + w time, where d
denotes degree of the removed root node, and w = #WHILE.

@ For the sake of calculating the total running time of a sequence of
operations, we represent the running time of a single operation as
decrease of a potential function.

@ Consider a potential function ® = #trees. The changes during an
operation are:

o ® increase: d.
o ® decrease: w.
@ Similarly, the running time is rewritten in terms of ® as d+ w = d+

decrease in #trees. Note that d < log n. 827124

Amortized analysis

@ Let's consider any sequence of n INSERT and m
EXTRACTMIN operations.

@ The total running time is at most n + mlog n+ total decrease
in #trees.

@ Note: total decrease in #trees < total increase in #trees
(why?), which is at most n + mlogn.

@ Thus the total time is at most 2n + 2mlog n.

e We say INSERT takes O(1) amortized time, and
EXTRACTMIN takes O(log n) amortized time.

Definition (Amortized time)

For any sequence of n; operation 1, ny operation 2..., if the total
time is O(ny 11 + ng T5...), we say that operation 1 takes T}
amortized time, operation 2 takes To amortized time

83/124

Intuition of the amortized analysis

@ The actual running time of an INSERT operation is 1 + w. A
large w means that the INSERT operation takes a long time.
Note that the w time was spent on “decreasing trees”; thus, if
the w time was amortized over the operations “creating trees”,
the “amortized time” of INSERT operation will be only O(1).

@ The actual running time of an EXTRACTMIN operation is at
most log n+ w. Note that at most log n new trees are created
during an EXTRACTMIN operation; thus, the amortized time
is still O(log n) even if some costs have been amortized to it
from other operations due to “tree creating™.

84/124

Implementing priority queue: Binomial heap

Operation Linked Binary Binomial Binomial
List Heap Heap Heap*

INSERT 0(1) O(logn) O(logn) O(1)
EXTRACTMIN O(n) O(logn) O(logn) O(logn)
DECREASEKEY O(1) O(logn) O(logn) O(logn)
UNION 0o(1) O(n) O(logn) O(1)

*amortized cost

85/124

Binomial heap: DECREASEKEY operation

Figure 17: DECREASEKEY: 17 to 1

e Time: O(logn) since in the worst case, we need to perform
node exchanging up to the root.

@ Question: is there a quicker way for decrease key?

86 /124

Fibonacci heap: an efficient implementation of DECREASEKEY via
simply cutting an edge rather than exchanging nodes J

87 /124

Fibonacci heap

Figure 18: Robert Tarjan [1986]

88 /124

Fibonacci heap: an efficient DECREASEKEY operation

@ Basic idea:

e loosing the structure: Binomial heap requires trees to be in
perfect shape. Now we loose this restriction — when heap
order is violated, a simple solution is to “cut off a node, and
insert it into the root list".

e but don’t loose it too much: the “cutting off” operation
makes a tree not “binomial” any more; however, it should not
deviate from a binomial tree too much. A technique to achieve
this objective is allowing any non-root node to lose “at most
one child".

Figure 19: Heap order is violated when DESCREASEKEY 13 to 2.~ 5,

Fibonacci heap: DESCREASEKEY

DECREASEKEY(v, 1)
L key(v) =
2: if heap order is violated then
3: u= s parent;

4: Cut subtree rooted at node v, and insert it into the root list;

5. Change the pointer to the minimum root node if necessary;

6: while uis marked do

7: Cut subtree rooted at node u, and insert it into the root
list;

8: Change the pointer to the minimum root node if
necessary;

9: Unmark w;

10: u = u's parent;

11: end while

12. Mark u;

13: end if

90 /124

DECREASEKEY: an example |

Figure 20: A Fibonacci heap. To DECREASEKEY: 19 to 3.

91/124

DECREASEKEY: an example Il

Figure 21: After DECREASEKEY: 19 to 3. To DECREASEKEY: 15 to 2.

92/124

DECREASEKEY: an example IlI

Figure 22: After DECREASEKEY: 15 to 2. To DECREASEKEY: 12 to 8.

93 /124

DECREASEKEY: an example IV

Figure 23: After DECREASEKEY: 12 to 8. To DECREASEKEY: 14 to 1.

94 /124

DECREASEKEY: an example V

Figure 24: After DECREASEKEY: 14 to 1. To DECREASEKEY: 16 to 9.

95 /124

DECREASEKEY: an example VI

IR

Figure 25: After DECREASEKEY: 16 to 9

96 /124

Fibonacci heap: INSERT

INSERT(z)

1. Create a tree for z, and insert it into the root list;
2: Change the pointer to the minimum root node if necessary;

Note: Being lazy! Consolidating trees when extracting minimum.
__@_@"
© @ @

-C-&-@&-0-0

@t @ @

Figure 26: INSERT(6): creating a new tree, and insert it into the root list

97 /124

Fibonacci heap: EXTRACTMIN

EXTRACTMIN()

1: Remove the min node, and insert its children into the root list;
2: Change the pointer to the minimum root node if necessary;

3: while there are two roots u and v of the same degree do

4. Consolidate the two trees together;

5 Change the pointer to the minimum root node if necessary;
6: end while

98 /124

EXTRACTMIN: an example |

Figure 27: EXTRACTMIN: removing the min node, and adding 3 trees

99 /124

EXTRACTMIN: an example |l

Figure 28: EXTRACTMIN: after consolidating two trees rooted at node 1

@@

Figure 29: EXTRACTMIN: after consolidating two trees rooted at node 1
and 9

100 /124

EXTRACTMIN: an example

Figure 30: EXTRACTMIN: after consolidating two trees rooted at node 1
and 7

Figure 31: EXTRACTMIN: after consolidating two trees rooted at node 3
and 5

101/124

EXTRACTMIN: an example IV

Figure 32: EXTRACTMIN: after consolidating two trees rooted at node 2
and 13

Figure 33: EXTRACTMIN: after consolidating two trees rooted at node 2
and 9

102 /124

EXTRACTMIN: an example V

Figure 34: EXTRACTMIN: after consolidating two trees rooted at node 2
and 3

103 /124

EXTRACTMIN: an example VI

Figure 35: EXTRACTMIN: after consolidating two trees rooted at node 1
and 2

104 /124

Fibonacci heap: an amortized analysis

E DA

105 /124

Fibonacci heap: DECREASEKEY

DECREASEKEY(v, 1)
L key(v) =
2: if heap order is violated then
3: u= s parent;

4: Cut subtree rooted at node v, and insert it into the root list;

5. Change the pointer to the minimum root node if necessary;

6: while uis marked do

7: Cut subtree rooted at node u, and insert it into the root
list;

8: Change the pointer to the minimum root node if
necessary;

9: Unmark w;

10: u = u's parent;

11: end while

12. Mark u;

13: end if

106 /124

DECREASEKEY: analysis

Analysis:

@ The actual running time of a single operation is 1 + w, where
w = #WHILE.

@ To calculate the total running time of a sequence of
operations, we represent the running time of a single
operation as decrease of a potential function.

e Consider a potential function ® = #trees + 2#marks. The
changes of ® during an operation are:

o P increase: 142 =3.
o & decrease: (—1+2x*1)*w= w.

@ Thus we can rewrite the running time in terms of ® as
1+ w=1+4 ® decrease.

Intuition: a large w means that DECREASEKEY takes a long time;
however, if we can “amortize” w over other operations, a
DECREASEKEY operation takes only O(1) “amortized time”.

107 /124

Fibonacci heap: EXTRACTMIN

EXTRACTMIN()

1: Remove the min node, and insert its children into the root list;
2: Change the pointer to the minimum root node if necessary;

3: while there are two roots u and v of the same degree do

4. Consolidate the two trees together;

5 Change the pointer to the minimum root node if necessary;
6: end while

108 /124

EXTRACTMIN: analysis

Analysis:

@ The actual running time of a single operation is d + w, where
d denotes degree of the removed node, and w = #WHILE.

@ To calculate the total running time of a sequence of
operations, we represent the running time of a single
operation as decrease of a potential function.

o Consider a potential function ® = #trees + 2#marks. The
changes of ® during an operation are:

o O increase: d.
o ® decrease: w.

@ Thus the running time can be rewritten in terms of ® as
d+ w = d+ decrease in ®.

Note: d < d,02, Where d,,.. denotes the maximum root node
degree.

109 /124

Fibonacci heap: INSERT

INSERT(z)

1: Create a tree for z, and insert it into the root list;

2: Change the pointer to the minimum root node if necessary;
Analysis:

@ The actual running time is 1, and the changes of ® during
this operation are:

o ® increase: 1.
o & decrease: 0.

Note:

@ Recall that a binomial heap consolidates trees in both INSERT
and EXTRACTMIN operations.

@ In contrast, the Fibonacci heap adopts the strategy of “being
lazy” — tree consolidating is removed from INSERT operation
for the sake of efficiency, and there is no tree consolidating
until an EXTRACTMIN operation.

110/124

Fibonacci heap: amortized analysis

o Consider any sequence of n INSERT, m EXTRACTMIN, and r
DECREASEKEY operations.

@ The total running time is at most: n + md,q, + 7+ total
decrease in .

@ Note: total decrease in & < total increase in ® =
n+ mdpyae + 37

@ Thus the total running time is at most:
n+ Mdpyae + 7+ N+ Mdpez + 37 = 20+ 2mdeq: + 47

@ Thus INSERT takes O(1) amortized time, DECREASEKEY
takes O(1) amortized time, and EXTRACTMIN takes O(dpqz)
amortized time.

@ In fact, EXTRACTMIN takes O(log n) amortized time since
dmaz can be upper-bounded by log n (why?).

111/124

Fibonacci heap: bounding d,,q

D¢
112/124

Fibonacci heap: bounding d,,.,

@ Recall that for a binomial tree having n nodes, the root
degree d is exactly logy n, i.e. d =logy n.

(6
® ©@
© @ @
9

@ In contrast, a tree in a Fibonacci heap might have several
subtrees cutting off, leading to d > log, n.

(6
® OW®
@

@ However, the “marking technique” guarantees that any node
can lose at most one child, thus limiting the deviation from
the original binomial tree, i.e. logyn > d > logy n, where

e 1+\/g 1 410 113/124

Fibonacci heap: a property of node degree

@ Recall that for a binomial tree, the #-th child of each node has
a degree of exactly ¢ — 1.

O
® ©W
© W ©
19

@ For a tree in a Fibonacci heap , we will show that the i-th
child of each node has degree > ¢ — 2.

(6
ORONG,
@

114 /124

For any node in a Fibonacci heap, the i-th child has a degree
>i—2.

O
® ©®® u
@)

Proof.

@ Suppose u is the current ¢-th child of w;

@ If wis not a root node, it has at most 1 child lost; otherwise, it
might have multiple children lost;

@ Consider the time when w is linked to w. At that time,
degree(w) > i— 1, so degree(u) = degree(w) > i — 1;

@ Subsequently, degree(u) decreases by at most 1 (Otherwise, u will
be cut off and no longer a child of w).

@ Thus, degree(u) > i— 2.

[1ip /124

The smallest tree with root degree £ in a Fibonacci heap

@ Let F} be the smallest tree with root degree of &, and for
any node of F}, the #th child has degree > i — 2;

By

© Fo
®

®

Figure 36: |By| = 2! and |Fp| =1 > ¢°

116 /124

Example: B, versus F}

@ Let Fj be the smallest tree with root degree of k, and for any
node of F}, the 4-th child has degree > i — 2;

By
O, Fy
©
® ©
®
@

Figure 37: |By| =22 and |Fy| =2 > ¢!

117 /124

Example: Bj3 versus Fb

o Let F} be the smallest tree with root degree of k, and for any
node of FJ, the ¢th child has degree > i — 2;

Bs
(6
Fy
® ©® W (6
W O © ® ©

@)
Figure 38: | B3| = 23 and |Fy| = 3 > ¢

118/124

Example: B, versus Fj3

Figure 39: |By| = 2% and |F3| =5 > ¢°

119/124

Example: Bs versus F)

Figure 40: |Bs| = 25 and |Fy| =8 > ¢*

120/124

General case of trees in Fibonacci heap

@ Recall that a binomial tree By, is a combination of two By
trees.
By Bjq
O

@ In contrast, Fjy 1 is the combination of an FJ; tree and an
Fj._q tree.

Fy Friq
O

@ We will show that though F}, is smaller than B, the

difference is not too much. In fact, |Fy| >1.618". 1) 10a

Fibonacci numbers and Fibonacci heap

Definition (Fibonacci numbers)

The Fibonacci sequence is 0,1,1,2,3,5,8,13,21, 34.... It can be
0 if k=0

defined by the recursion relation: f, =< 1 if k=1
Jie1+ fo2 ifE>2

o Recall that fi o > ¢F, where ¢ = 1+72\/g = 1.618....

@ Note that ‘Fk| = fr1o, say ’Fo’ =fh=1, ’Fﬂ =f3=2,
|[Fo| = fa = 3.

o Consider a Fibonacci heap H having n nodes. Let T denote a
tree in H with root degree d.

o We have n > |T] > |F4| = far2 > ¢

e Thus d= O(log, n) = O(log n). So, dpaz = O(log n).

Therefore, EXTRACTMIN operation takes O(log n) amortized

time.
122/124

Implementing priority queue: Fibonacci heap

Operation Linked Binary Binomial Binomial Fibonacci
List Heap Heap Heap* Heap*

INSERT 0(1) O(logn) O(logn) O(1) 0(1)
EXTRACTMIN O(n) O(logn) O(logn) O(logn) O(logn)
DECREASEKEY O(1) O(logn) O(logn) O(logn) O(1)
UNION 0(1) O(n) O(logn) O(1) 0(1)

*amortized cost

123/124

Time complexity of DIJKSTRA algorithm

Operation Linked Binary Binomial Fibonacci
list heap heap heap

MAKEHEAP 1 1 1 1
INSERT 1 log n log n 1
EXTRACTMIN n logn log n logn
DECREASEKEY 1 log n log n 1
DELETE n logn log n logn
UNION 1 n log n 1
FinDMIN n 1 log n 1

DIJKSTRA O(n?) O(mlogn) O(mlogn) O(m -+ nlogn)

D1JKSTRA algorithm: n INSERT, n EXTRACTMIN, and m
DECREASEKEY.

124 /124

