A Dynamic Programming Approach to Sequencing Problems

Michael Held; Richard M. Karp

Journal of the Society for Industrial and Applied Mathematics, Vol. 10, No. 1 (Mar.,
1962), 196-210.

Stable URL:
http://links jstor.org/sici?sici=0368-4245%28196203%2910%3A1%3C196%3AADPATS %3E2.0.CO%3B2-P

Journal of the Society for Industrial and Applied Mathematics is currently published by Society for Industrial and
Applied Mathematics.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/siam.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact jstor-info@umich.edu.

http://www.jstor.org/
Tue Jan 27 05:05:20 2004

J. Soc. INDUST. APPL. MATH.
Vol. 10, No. 1, March, 1962
Printed in U.S.A.

A DYNAMIC PROGRAMMING APPROACH TO
SEQUENCING PROBLEMS*

MICHAEL HELDt anp RICHARD M. KARPt
INTRODUCTION

Many interesting and important optimization problems require the
determination of a best order of performing a given set of operations.
This paper is concerned with the solution of three such sequencing problems:
a scheduling problem involving arbitrary cost functions, the traveling-
salesman problem, and an assembly-line balancing problem. Each of these
problems has a structure permitting solution by means of recursion schemes
of the type associated with dynamic programming. In essence, these re-
cursion schemes permit the problems to be treated in terms of combinations,
rather than permutations, of the operations to be performed. The dynamic
programming formulations are given in §1, together with a discussion of
various extensions such as the inclusion of precedence constraints. In each
case the proposed method of solution is computationally effective for
problems in a certain limited range. Approximate solutions to larger
problems may be obtained by solving sequences of small derived problems,
each having the same structure as the original one. This procedure of suc-
cessive approximations is developed in detail in §2 with specific reference
to the traveling-salesman problem, and §3 summarizes computational ex-
perience with an IBM 7090 program using the procedure.

1. PROBLEM FORMULATIONS

1.1 A scheduling problem. Suppose we are givena set of jobsJy, Jo, - -+,
J. which are to be executed successively on a single facility. Any given
job J; is assumed to require the services of the facility for =, units of time.
With J; is also associated a function ¢,(¢), giving the cost associated with
completing J; at time ¢{. We assume that the facility is to be constantly
in use, and that no job is to be interrupted before completion." With these
assumptions, any given order of execution of the jobs (a schedule) may
be represented by an ordering (7; 7 - - - 2,) of the integers from one through
n, indicating that the jobs are to be executed in the order J;, , J4y , -+, J5, .
Given such a schedule, the termination time #;, of J;, is D5y i, and

* Received by the editors August 31, 1961.

t International Business Machines Corporation, New York, N. Y.

1 There is no advantage in violating these assumptions when the functions ¢ ()
are monotone nondecreasing, representing penalties incurred for deferring the com-
pletion of the jobs.

196

DYNAMIC PROGRAMMING AND SEQUENCING PROBLEMS 197

the total cost associated with the schedule is

(1) i ci(tsy).

We seek an ordering for which (1) assumes its minimum value €.

Several authors have considered this problem for special kinds of cost
functions. For example, McNaughton [9] considers the case in which each
ci(t) is constant up to some point in time, and then increases linearly.
The dynamic programming algorithm which follows requires no assump-
tions to be made about the cost functions.

Let S = {ki, ks, -+, kues} be a subset of {1, 2, ---, n}, and denote
by ts the quantity Z]. cs Ty Let C(S) be the minimum cost incurred in
executing the jobs Jy, , Jiy, -+, Jr,s , In any order whatever, in the
interval [0, ¢s]. For I € S, let S — [denote the set obtained by deleting
I from S. Then we may define the following recurrence relations, in which
C(S), for any set S, is expressed in terms of the values of C for subsets of
S:

(a) (n(8) = 1): C({l}) = ci(m), forany l.

2
@ (b) (n(8) > 1): C(8) = minges [C(S — 1) + eilts)]-

To justify this, we argue as follows: In an optimal order of execution for
the jobs with indices in S(i.e., one which realizes the cost C'(S)) some
job, call it J; , must be executed last, and the remaining jobs (those with
indices in S —) must be executed optimally in [0, ¢s_;]. Then the total
cost incurred by such an ordering will be C(S —) + ci(ts). Taking the
minimum over all choices of [, we obtain (2b).

It follows that an ordering (7; 7, - - - 2,) is optimum if and only if,
(3) C({ir, 2, -+, &) = CU{ir, &, -, ©pa}) + ci(tar,in,..ip))
(2=2p=n).
The procedure for finding an optimum solution has two phases. In the
first phase, the quantities C(S), for all S C {1, 2, --- | n}, are computed
recursively from (2); @ is given by C({1, 2, --- , n}). In the second phase,
(3) is used to generate an optimum ordering (7 % - -+ %.); ¢, is obtained
first, and then, successively, 2,1, tn—s, -, 21 -

The fundamental operations required are additions and comparisons,
which oceur in equal numbers. The number of additions in the first phase
is given by X rik (Z) = n2™"; the number of additions in the second
phase is at most) _jrok = [n(n 4 1)/2] — 1. If one storage location is
assigned to each number C'(S), the number of locations required is 2" — 1.

198 MICHAEL HELD AND RICHARD M. KARP

1.2. The traveling-salesman problem. The dynamic programming
formulation of the scheduling problem just considered is based on the
fact that the cost incurred in executing a job depends only on which jobs
preceded it. We now discuss the traveling-salesman problem, which ex-
hibits a different kind of cost dependence.

“The traveling-salesman problem is that of finding a permutation

P = (141 ---1,) of the integers from 1 through n that minimizes the
quantity
(4) @iy + Giyiy + Gigiy + -+ + Qip1,

where the a.s are a given set of real numbers. More accurately, since there
are only (n — 1) ! possibilities to consider, the problem is to find an efficient
method for choosing a minimizing permutation.

“The problem takes its name from the fact that a salesman wishing
to travel by shortest total distance from his home to each of n — 1 speci-
fied cities, and then return home, could use such a method if he were given
the distance a.pg between each pair of cities on his tour. Or, if the salesman
desired the shortest total travel time, the a.s would represent the indi-
vidual travel times” [6].

While no completely aceceptable computational method exists for solving
the traveling-salesman problem, several procedures have been developed
for obtaining optimum or near optimum solutions. These procedures,
however, are usually somewhat tedious, intuitive, and difficult to program
for a computer. A “state of the art” discussion of the traveling-salesman
problem may be found in [1]. We proceed to give a dynamic programming
formulation for this problem.?

Given SC {2,3,---,n} and I € 8, let C(S, l) denote the minimum
cost of starting from city onc and visiting all cities in the sct S, terminating
at city {. Then

(a) (n(S) =1): c{{l},) = ay, foranyl.
(b) (n(S) > 1): C(S, 1) = ming,es; [C(S — I, m) + an.

To see this, suppose that, in visiting the cities in S, terminating at city ¢,
city m immediately precedes city [. Then, assuming that the other cities
are visited in an optimum order, the cost incurred is C(S — I, m) + ami -
Taking the minimum over all choices of m, we obtain (5b). Finally, if
€ denotes the minimum cost of a complete tour, including the return to
city one,

(6) C = minlE{Z,S ,,,,, n} [C({2, 3) tee >n}7 l) + all]'

2 This formulation, discovered independently by the authors, is essentially identi-
cal to one proposed by Bellman in [2].

DYNAMIC PROGRAMMING AND SEQUENCING PROBLEMS 199

A permutation (1 ¢ ¢; - - - 7,) is optimum if, and only if,
(7) ¢ = C({27 3)] n}y 7/71) + (1281

and, for2 < p < n — 1,

(8) C({'ZZ y 13 y T 7:;0; ip+l}, 7:;0+1) = C({7'2) 73 y " ip}; 7:17) + Qipip,y -

As in the scheduling problem, a two-phase computation is used to ob-
tain an optimum solution. In the first phase, the quantities C'(S, I) are
computed recursively from (5), and @ is computed from (6). In the second
phase, (7) and (8) are used to compute an optimum permutation (z, is
determined first, and then, successively, 4,1, tn_z, - , 72).

Again, the fundamental operations employed in the computation are
additions and comparisons. The number of each in the first phase is given

by (e ke — 1) (" - 1)) F =1 == D — 22"+ (n—1).

The number of occurrences of each operation in the second phase is at most
n—1

k=2 k = [n(n — 1)/2] — 1. If one storage location is assigned to each
number C(SS, [), the number of locations required is

glk (” - 1) = (n —)2,

1.3. An assembly-line balancing problem. In the scheduling and travel-
ing-salesman problems, all possible orderings of the elements (jobs or cities)
were allowed. Many sequencing problems involve constraints which pro-
hibit certain orderings from occurring. An advantage of the dynamic
programming approach is that such constraints facilitate the solution,
rather than hinder it. We illustrate this with reference to an assembly-
line balancing problem posed by Salveson [10].

An assembly line is required to carry out, for each unit produced, a set
of jobs denoted by Jy, Jy, -+, J.. A given job J; may be executed
in 7; units of time, and may be assigned to any of the locations (work
stations) placed serially along the assembly line. The assignment is to
be made so that:

(1) t:, the sum of the execution times of jobs assigned to the sth work
station does not exceed the cycle time T; T — t; is called the idle time at
the 7th station,

(2) all precedence requirements arising from the technology of the as-
sembly process (we assume that these take the form ‘“J; must precede
J»’) are satisfied,

(3) the number of work stations is minimized.

The existence of precedence constraints is reflected in the notions of
feasible sets and feasible assignments. A given subset S C {1, 2, - -, n}

200 MICHAEL HELD AND RICHARD M. KARP

is said to be feastble if there is no pair (J;, J,) such that (a) I ¢ S, (b)
m € S, and (¢) J; is required to precede J, . An assignment of jobs to
work stations 1, 2, --- | ¢ is called feasible, if, for each 7 = ¢, the set of
jobs assigned to the first ¢ work station is feasible. With any feasible set
S = {ki, ko, -+, kuesy} 1s associated a “cost” C(S), which is the mini-
mum, over all feasible assignments of the jobs with indices in S, of the
quantity (r — 1)T + t,, where r is the number of work stations needed
in the assembly line and ¢, is the sum of the execution times of jobs as-
signed to the final work stations, according to a particular assignment.
Then the quantity C'(S) may be computed according to the following re-
currence relations, which hold only for feasible sets:

(@) ((S) =1: C{}) =mn
(9 (b) (n(8) > 1):
C(8) = min. [C(8 —) + A(C(S = 1), r)],

€
8—1 feasible

(i) if[—%:‘:l:x—l_y] or l:x}—y:'=x—ij—’y’ then A(z,y) =y

x4y z+y
:| and [T]< T

=
—
S
L

A
—

2
R !

5

then Az, y) =T|:x;:y:|+y——x.

The quantity A(C(S — I), 7:) denotes the incremental cost associated with
assigning job J;, assuming that the jobs specified by the elements of
S — [have already been assigned in an optimum manner.

The recurrence relations (9) are nearly identical to those used in the
formulation of the scheduling problem (2), and a similar two-phase com-
putation may be used to compute C({1, 2, --- | n}), and thence to obtain
an optimum assignment of an assembly line.*

1.4. Some extensions. The recurrence relations employed for the solu-
tion of the assembly-line balancing problem closely resemble those de-
rived in treating the scheduling and traveling-salesman problems. The
formulation of the line-balancing problem, however, necessarily included

3[] denotes ‘“‘integer part of”.

4 The problem of cutting specified lengths =, , 72, -+ -, 7, of stock from a minimum
number of standard reels of length 7" may be treated by precisely the same recurrence
relations, with all sets S taken as feasible. For linear programming approaches to
the cutting stock problem see [5] and [7].

DYNAMIC PROGRAMMING AND SEQUENCING PROBLEMS 201

precedence relations, which were reflected in the restricted class of subsets
considered. Precedence restrictions on the order of execution of jobs to
be scheduled, or on the route of a traveling salesman, can be handled by
similar means.

Another variation on the three problems under consideration involves
the possibility of “parallelism”: a set of cities to be visited may be dis-
tributed among several salesmen; assembly operations may be divided
among several assembly lines; jobs may be scheduled on any of several
facilities. As an illustration of this type of situation, we shall introduce
some modifications into the scheduling problem.

Suppose that facilities F©, F* ... F™ are available. Any given job
Jr may be performed by any facility, with respective execution times
RS SR , 7", The cost associated with terminating J; at time ¢ on

facility F'” is given by ¢’ (¢). Then an optimum division of jobs among
facilities, together with an optimum schedule for each facility, is obtained
as follows: :

(a) For each set S compute the functions C”(S) by means of (2),
with 7i” and c,(ci)(t) substituted for 7, and ¢ (t), respectively, in the 7th
computation.

(b) Compute the minimum®, over all partitions of {1, 2, --- , n} into
sets SV, 8®, ... | S of the quantity D i, C?(8); let this minimum
oceur for the partition 7V, 7® ... 7@,

(¢) In the optimum schedule, the jobs in 7” are performed on F'?.
The order of execution on each facility is computed from (3), as before.

The numbers of operations in the algorithms under discussion can
be considerably reduced when equivalences are noted among the elements
to be ordered. Consider, for example, a scheduling situation in which
the n jobs to be scheduled may be partitioned into q equivalence classes,
such that any two jobs in the same class have the same execution time
and cost function. Then, any set of jobs is characterized by a vector
V= (o1, 0, -+, vy, specifying that the set contains v; elements in the
Ith equivalence class; moreover, all sets for which the vector is the same
may be treated as one. Then, if each class of sets is specified by a vector V,
(2) may be replaced by

(10) (a) C(0,0,---,0) =0
(b) C(V) = mini<i<gand >0 [C(V — €1) + a(V-1)].
Here 7 = (71, 72, -+, 7,), where 7; is the execution time of a job in the

lth equivalence class, ¢;(¢) is the cost function for jobs in the th equivalence

5 It is possible to give a dynamic programming algorithm for the efficient compu-
tation of this minimum.

202 MICHAEL HELD AND RICHARD M. KARP

class, and V' — e¢; is a vector obtained by subtracting one from the [th
component of V.°

2. SUCCESSIVE APPROXIMATIONS

It is characteristic of the algorithms under discussion that their com-
plexity, measured by numbers of arithmetic operations and storage re-
quirements, grows quite rapidly. They are, however, a vast improve-
ment over complete enumeration, and permit the rapid direct solution of
problems of moderate size.” In this section we show how the algorithms
can be combined with a method of successive approximations to provide a
systematic procedure for treating large problems. This procedure yields a
sequence of permutations, each obtained from its predecessor by the solu-
tion of a derived subproblem of moderate size having the same structure
as the given problem. The associated costs form a monotone nonincreasing
sequence which may not converge to the optimum solution; however, com-
puter experimentation has yielded excellent results in a variety of cases
(cf. §3). As an illustration, we shall specify a method of successive ap-
proximations for solving large traveling-salesman problems.

Given a permutation P = (1 ¢, --- 4,) representing a route through n
cities, the cities may be partitioned into w ordered sets, each consisting of
cities which occur successively in P, and maintaining the same order as in
P. A u-city traveling-salesman problem is then solved in which each ordered
set is treated as a city, and the cost of going from the set (7; ;41 « -+ %—1 %)
t0 (27 %141 *** Tme1 Tm) 1S @iy - If w is not too large, this derived problem
may be solved by the dynamic programming algorithm of §1.2. The solu-
tion implies a reordering P’ of P, with P’ having cost less than or equal to
that of P.

Two types of partitions have proved especially useful. In the first type,
called a local partition, each of the ordered sets but one consists of a single
element, so that the tours associated with P and P’ differ locally, if at all.
At the other extreme, a global partition takes the u sets as nearly equal in
size as possible, so that, if changes are made, they tend to be of a global
nature. Examples of these two types of partitions, and of possible reorder-
ings associated with them, are shown in Figs. 1a and 1b. In these examples,
n = 16 and u = 8. In the solution of large problems, it has proved desirable
to employ alternate phases of local and global improvement.

Through experience with a computer program, systematic procedures

6 This division into equivalence classes is a particularly useful device in the
problem of cutting stock, where it is usually necessary to cut many rolls of the same
length. The number of equivalence classes is then equal to the number of different
lengths to be cut.

7 An IBM 7090 program can solve any 13-city traveling-salesman problem in 17
seconds.

DYNAMIC PROGRAMMING AND SEQUENCING PROBLEMS 203

(a) LOCAL
P = [11 3] [5] (71 [9] (111 [13] [15 2 4 6 8 10 12 14 16]

P= 18] [(71 B @11 (9] 5] 15 2 4 6 8 10 12 14 16]
(b) GLOBAL

P = 3] (5.7) 19 11] [13 _15] 6 12] 14 16]

P = | 254] (;; % 15] [14'16)

Fia. 1. Examples of local and global improvements.

for the selection of derived problems have been worked out. As part of
this selection process, a technique was obtained for determining whether
a given derived problem is likely to yield an improvement (i.e., cost of
P’ < cost of P). Each derived problem is specified by a « X u cost matrix
C = (c¢,), with a row and column for cach set of cities to be rearranged.
We assume that the rows and columns of this matrix are so ordered that
the slant elements ¢,y , €12, - -+, Cu_1.0 give the cost of the transitions which
occur in the current permutation . If the cost of P’ is to be strictly less
than the cost of P, the optimum tour for the derived traveling-salesman
problem defined by C must employ transitions corresponding to off-slant
elements of C. The ratio of slant clements which are row or column minima
to the total number u of slant elements has proved to be a reliable measure
of the “promise” of a derived problem. At any point in the computation,
matrices for which this slant ratio exceeds a critical value (which may be
adjusted as the computation proceeds) are not considered further.

If no such selection procedure is used, it can be shown that the successive
approximation technique yields the same final tour for any two equivalent
traveling-salesman problems. T'wo problems with associated n X n cost
matrices (a;,) and (0;,) are said to be equiralent if there are constants
a and g such that, for any eyelic permutation T' of the indices 1,2, -+ | n

Zr Uy = CYZI‘ be‘j + 6.

Since corresponding submatrices of equivalence matrices (a:;) and (b;;)
need not have the same slant ratio, the invariance of the computation
under equivalence transformations is lost when selection is employed.
However, it is possible to derive a canonical representative for each equiva-
lence class (sec Appendix 1) and invariance, if desired, can be maintained
by transforming any given problem into its canoniecal form.

)

204 MICHAEL HELD AND RICHARD M. KARP

3. THE COMPUTER PROGRAM

In this section, we present some computational results obtained with an
IBM 7090 program for the traveling-salesman problem. This program
solves problems involving 13 or fewer cities by direct application of the
dynamic programming algorithm of §1.2; larger problems are treated by
means of the successive approximation technique of §2.

3.1. Specifications. In the program implementing the successive approxi-
mation procedure, each derived problem is of size 13. The program proceeds
in alternating phases of local and global improvement. Each local improve-
ment phase cycles through the n possible derived problems corresponding
to the optimal reordering of consecutive cities, until a full cycle is con-
sidered without any improvement. At this point, the slant ratio threshold
is increased, and, if it does not exceed an upper bound prescribed for the
current phase, the local improvement continues; otherwise a global im-
provement phase is entered. During each global improvement phase, at
most n + 1 derived problems are considered. The first of these is obtained
by choosing a partition which maximizes the sum of the slant elements in
the derived cost matrix, thus tending to make the slant ratio small. The
program selects the n remaining problems by a definite but arbitrary
rule which makes the sizes of the 13 sets as nearly equal as possible. The
derived problems are examined in turn, and for those such that the slant
ratio does not exceed the current threshold, a dynamic programming calcu-
lation is performed to obtain an optimum tour. As soon as a derived
problem yields a solution better than that associated with its slant, the
improvement is incorporated into the over-all problem, and a new phase of
local improvement is initiated. If no derived problem yields an improve-
ment, the slant-ratio threshold is increased, and, if it does not exceed an
upper bound specified for the current phase, the problems are re-examined;
otherwise a new phase of local improvement is initiated, and no global
improvement is made at this stage of the calculation.

The calculation proceeds until a point of diminishing returns is reached,
as measured by an empirical stopping criterion involving the number of
derived problems treated by the dynamic programming algorithm without
success in any given phase. In any event, the program is terminated after
the fifth phase of global improvement.

The strategy of the calculation, including the choice of derived prob-
lems, the adjustment of slant-ratio thresholds, and the termination of the
computation, has been suggested by computational experience. Within
wide limits the successful performance of the program does not depend
critically on these choices.

3.2. Results. We now present six examples which were treated by the
IBM 7090 computer program. In these examples, the execution time for a

DYNAMIC PROGRAMMING AND SEQUENCING PROBLEMS 205

run varied between two minutes and fifteen minutes. In each case, the
mnitial tour was chosen at random.

(1) The 42-city problem of Dantzig, Fulkerson, and Johnson. In [4] the
cost of an optimum tour was shown by a special argument to be 699.

Run No. Cost of Initial Tour Cost of Final Tour
1 3235 699
2 3513 705
3 3207 704
4 3240 699
5 2913 704

(ii) A 20-city problem due to Croes. In [3], Croes states that the cost of
an optimum tour is 246.

Run No. Cost of Initial Tour Cost of Final Tour
1 732 246
2 816 246
3 811 246

(iii) A 48-square knight’s tour. If the distance between two squares of a
chessboard is taken as the minimum number of knight’s moves required to
reach one square from the other, the problem of finding a closed knight’s
tour (a tour of the board by knight’s moves, such that each square is
visited exactly once, and terminating with a return to the initial square)
may be treated as a traveling-salesman problem. Since a closed knight’s
tour is known to exist for an abbreviated 6 X 8 chessboard [8], the corre-
sponding traveling-salesman problem has an optimum solution with cost 48.

Run No. Cost of Inittal Tour Cost of Final Tour
1 132 56
2 132 52
3 124 54
4 132 56

(iv) A 36-square king’s tour. A closed king’s tour may be formulated as a
traveling-salesman problem in the same manner as was the knight’s tour.
Obviously a closed king’s tour exists for a 6 X 6 chessboard; hence, the
corresponding traveling-salesman problem has an optimum solution with
cost 36.

Run No. Cost of Initial Tour Cost of Final Tour
1 87 36
2 103 36

(v) A tour of 48 cities in the United States. Machine results coupled with
visual inspection suggest the conjecture that an optimum tour has cost
11,470. The matrix for this problem and the conjectured optimum tour are
given in Fig. 2,

KARP

MICHAEL HELD AND RICHARD M.

'PaYB}OI UIBq SeY [1¥) Y} ‘SMoys Fulidaquinu dYyj} sB ‘sosodind AB[dSIp I0] "OLI}OWWAS SI XLIjBUL SIYJ, 270N

‘wa)9oLd Ao-gf g DI

*0LF'TT 1380 PaIBIR0SSY
(8 LF L 8 71 81 &1 1% 2% €1 83 2 G2 € G 63 92 8 ¥ € L1 1€ 07 TT 91 ¥ ¥ 9% G¥ 68 ¥¥ LT LE 6T T G ST €V 15 €€ 0€ €2 6 0T 0% 9¢ $¢ 9) :1no} wnwdo painjdafuo)

14 €2 44 1z 0% 61 81 L1 91 ST ¥1 g1 [4s 11 01 6 8 L 9 g 4 € 4 I
91z 136 16 GFF IPL €18 966 099 98¢ €98 199 86¢ 88¢ €98 o6 L38T €20T 8681 @SS 086 8L9 gee 709
866 836 L9¢ €OFI GVOT $6¢ 868 80ST 9281 €0 FIS ©6G oLPT 96 8EL LLT 8¢1 $9¢ G/8 0091 18 GLyT 8ILI
1831 L1835 ¥FIT YOLL 696 60L1 0FGI 928 68F1 96L1 ¥FLT 80ST 89L 6602 F0c 801% 8881 992 €981 €F% 1961 OLIT 0201
90GT GS¥¢ GL8T 1681 L6IT 8861 LOFT 1201 1891 9308 @L6T LELT €L6 §8%C 8TyG €66¢ LIIC €6%C 280 899 781 69T ¥8II
90ST ¥.8% 6761 SP9T 9FFI 1602 0SST 6¥6 €8¥T 991 €F0T 8981 L96 1062 S0F% 899% 0082 6693 €102 06 6818 LSTT 968
%0L 1101 666 68T L0TI 8271 788 08 26¢ 99oT 6801 1G0T 288 GOTT @Il 6BLL OSPI 9941 ¥Vl 2631 288 44 L19
636 LE8T 9GET 0021 €98 Z6V1 €96 1.8 666 S9GT SSPT 0931 IL& LBAT GFBT 6961 6691 6600 99¥1 L8€ €861 899 8%
86 I6L 183 649 099 ey 8L 96L L¥S 6% 608 9% g6L 89 FOL 996 299 8601 00% 1801 L9% 989 av6
¢06 ¥I¥ G6% 9901 012l 01S 206 €9¥T LG0T 8%y 968 ¢¥9 19%T 08T 022 999 06F 609 167 8691 99 9081 99T
L6V1 687 9881 9€81 6821 6961 CLFT 786 €91 ©60% G861 S8SLI LF6 060% GTPe 988% 9916 0¥SC 9903 989 gLIZ FOET LOIL
184 €0L 08¢ LEIT 6¥6 60% SIL 0281 0.0T ¢TI 167 O0TF 8631 29 82§ G¥F 8L o8y 809 6LF1 1G¢ FCT 6671
6701 %641 66F1 LIOT §oCT 0691 GSTT 98¢ 188 6¥L1 18T €S¥I €99 €8L1 L981 20G% 9061 0083 99%1 2L8 2661 869 0¢E
8€0T 8GL 98¢ I¥eT ¥8II eFF €6 6LST 6631 09 €0§ 999 99ST I 29§ 8CE 6L2 1L 8L LeLT 999 P6¥T €GLI
991 8601 62§ ¥6L 06€ 699 €31 88% 98¢ 68L TT9 %87 €97 816 860T TAIT €88 28g1 2¢L €0L LIS 928 13L
1601 8€8 9%9 0TFT OICI 28% gg0l 1691 ¥LET S0F 0.8 €IL P09T €€¢ 59 092 %6c 881 $98 0941 8¥L 0991 GI8I
089 F0¢ oIL 81 &2l 686 L28 T80T €V ¥26 90L €88 1611 679 0€9 1961 9801 69€T IS 6L71 oy 9LL 6201
gLy 667 19c G99 206 0Ly 98¢ €201 LI9 667 88C L6S 20T 0F¢ 99F 916 129 €76 281 60€1 Iz 88 61TL
eIy I6IT TI¢ 9901 ¥iIT €7¢ G666 00L 298 089 909 99€ gv9 686 FOIT 986 18L €eIl 298 C¥L 106 [48:] €86
92T 92 20T 896 9TLI 2GTT €861 9ZLT TIIIT L80T 2G6 88IT €9LT 299 (434 131 I8IT 9631 999 980T 09 1791 8691
69¢ 069 ¥8 8% 788 g79 ¢8% 6.8 0%F 089 OIF 8% Q06 126 ¥09 00IT €08 LEIT L1G €1gl LEE L99 666
08y 76¢ L0I €08 8IS 91¢ 9Lv 8801 93L 11e 06 692 €80T €¥¢ 00§ 08L €8y 928 186 LT 61€ G16 8LIT
98T LYIZ 6081 ¥LET LTPI €861 8e¥I 188 O¥gl 6703 L68T G¥LT 288 6112 €03¢ G8F% 861C 966 08T 6G6 9861 186 ¥99
63¢ 069 €87 88¢ 698 ¢gL 8L% 08L €63 O¥L ¢ 29 €IS 679 €gL ¥Igl €16 6S6T Go¢ E€FII 9%¥ erg 918
$39 0% 062 06L ¥00T ghp 199 8LIT 9L 00% 61 FSF €8IT 08I 91¢ 918 8¥¢ 818 68 L¥PT 99T 6001 082
096 €% TF9 699 ¢y9 081 89S I1¢F 00L I¥¢ FIF 099 €08 826 1911 198 1661 6L 978 9.9 187 0%L
6Ly 669 128 6681 ! 168 €201 L9%1 806 OLL 929 €98 g6%1 1¥€ L6I 6L01 6.8 LI0T %L 96L1 683 6IGT 88¥I
1761 08%1 g8 6gL .-’ 0¥ TIIF 0001 €9. €92 001 991 986 82F ¥6¢ 68L 1994 L08 eey voGl 9%y SI6 6911
881 G8% 6281 e8IT ¢+ GOIT 128 648 Ggz FIIT 268 0¥6 LY6 126 986 08ST 9821 G091 .99 <I€T 10 €8¢ ¥L
09¢ 631 €091 03¢ wyry SPL 68 P9 2L6 988 028 699 €9¢ €GTT LIST 6VIT 616 00ST 0901 99 FIIL Li8 196
9¢L 676 68€C 616 oL8 6L%1 €86 18§ gL& ¢e¢T geer oggl €99 961 2SST G661 G69T GLOT TSIT €L6 1651 89¢ 622
%6L 80L ¥eST 09 669 IIST 9%¢ 9911 666 06 6eg 8¢ geIT ¥0¢ 189 91¢ 91z €19 199 €821 96 ¥TIT ¥9€I
19T 62¢ 08LT ¥S1 L6T GI8 169 019 389 L19 01§ 60¢ €8¢ 618 L96 6701 09L 6SIT 0.9 86L 68L 929 L8
LPS 696 €L9T €29 8GE 699 1901 69F €99 Lggl ¥60T 06 96 8GET TLPT $S9T 081 69L1 G60T €97 gBITl 89E 439
289 1801 1%F¢ 1S9 LS6 60T 8I0T T19L ILIT 6z0T FI8 €08 9L 0%6 186 1061 86IT T19ST I8¢ T60T 1GL 439 88¢
SpL o6b SIST 0SS 6%¢ L6ET 062 L09 L¥8 FPIT 2%z 80¢ 6611 G&F 609 9LF €L 196 819 6981 ¥9¢ eLIT 18¥1
796 L00T ¥6€¢ 8¢ 188 6101 986 489 6801 €8 7601 26¢ %801 98¢ 90¢ 069 €66 O0v. 90% FOET 69 266 1621
2091 LETT LSS 80ST €931 G861 0831 9OFP1 OIEI GFIZ 980T €807 168 6¥L 4 198 8L% €L0T L8¢ 768 6211
GLe 6LL 981T ¥¥E 099 OI0OI €FL LY 616 LIE 9€8 69 8G8I ZI91 6661 GELT 6IIT 048 6221 OFF 627
GI1Z 6GLT €28 0961 6¥8T 80L% LTHT 6961 €902 S¢¥pg ILEI CIFg SO0 9912 96L 889 12L 196 L19T L2z 98IT LS¥I
967 FLL 1€%% 6%F GP9 969 966 LSF 9LL 92F 8001 G¥€ €06I OSE 788 669 028 0¥ 191 L9 9921 68T
768 16% 68ST ¢FG 0¥ 1901 99F $9T 869 6.8 yee 118 TLeT 699 F0€ @81 6701 €ILT 196 0791 8.81
L¥ST SPIT 6.6 GOYT 0931 6807 186 €661 ¥Evl ©L6T €88 G261 709 8991 2911 00% 9LL SLPT 169 8¢¢T 08ST
6G6 9IG 0BT 696 189 SPIT OITT €28 L0S ¥8ST 828 LOST 678 1621 3 6L L80T 2G0T 1981 L€6 %oLT TL6I
121 8891 LPe 9861 2081 $6G¢ ¥8ST €961 9261 1.9 62F1 €29C €99 $922 v PLT 009 06¥I GgvT 071 998 8811
FI1C S8LT 6G6 €F6T L981 ¥ELT S6€T GL6I 101¢ 80%% 6981 088 FIII 8EIT 1 oLl 10L L8LT 8.9 61ST 608 ¥¥L
068T €L6T 0%6 LILT 0991 029¢ 9911 GLT 8681 6.1 9¥Il 1912 6I01 8061 o 00ST 09§ FI9T LgL 6QC 666 oLTl
159 8€0T 928 €09 €26 ©GIgl 198 68L LSIT ¥61 130T 03¢ ¥%0% 892 zs 96. Ge8T €991 9e¥e 883% 0102 €LT
949 185 9921 8¢ T1FE OLIT 9g9 SIS 8FS 182l 29 €9l e L16 Ci 19¢ L16 98% 19%T 09ST €981 LTI
6% 93 Lz 8 62 0F 1€ %¢ e¢ ¥8 g€ 9¢ Lg 8¢ 6¢ 0¥ 17 (42 54 44 74 9% Ly 8¥

IO HID O~ 0D

207

DYNAMIC PROGRAMMING AND SEQUENCING PROBLEMS

‘wa1qQod fig10-¢z ¢ "OIA

*TILT 9S00 Po)BIOOSSY
“(LZ 98I TC 6610291 13,1922 8I €21 18T I1CI €801 F¢) :inoy wnwrydo parnjosfuo)

$¢ € ¢ Tg 02 6 8L AT 9T ST %I € eI I Oof 6 8 L 9 g 14 € (4 I

eIT 0FC 198 96T 0LZ F9¢ 898 GO9I 648 6LF 8¢ 13e 90F TLF G6F €¥e 13F 9€F ¥LE 889 909 LIF 968 €%% | 9¢
09F 1.2 SGT 061 €61 88¢ ¥6 903 668 208 80C 98¢ 16§ SIF OF¢ TI¥e 99€ €82 009 9% 80& 90§ €48 | ¥%
Q67 LLE OLT SSG 66C SL& 03¢ L9 8ST 648 991 L8 G€T 9% ¥EI GLT GLG O%C 89T 6LI 3Lc €6 €¢
88T IS 66 €2 98T SOT #8C 28T LPI 8FPI 98¢ 01 99 29T S8 §& OFc L8T gl SF 80G | &2
L0T TOT S6T 98¢ €0T 9I€ 612 81 €%¢ 80¢ 2€¢ 081 89¢ 0.6 TIG Gov €Fe ¥9C 188 066 | To
8T 86 GOT 0S¢ 602 TIT FHIT 98T 10g 92¢ S6 IST 991 ¥0T 8IE€ 98¢ 29T 92T €8T | 0¢

9TT 66 89 °23% 08I 96 ¥ST 6IC €%¢ 6L 69T ¥ST Gl 98¢ ¥9¢ L9T ¥¥I 10c | 61

€0z %6 8¢ TPT OLT SPT 08¢ 108 88 ILT G4 L3 186 SLT 93l 9§ GIg | 81T

FIT ¥1€ L1G 68T TP 90€ 0S¢ SLT 99% 1.& 603 €&F I¥e &9 1€% 88 | LI

63C 29T 8ST 98T 192 G 0TI 103 L9T 61T €3¢ 0L 80% 82T €8¢ | 91

16 2Ig 66 2% €I 008 L9 113 TIg SIZ 98I GIT 80 93 ST

0ST ¥¢ 68 €IT 98T 6€ ¥IT ¥IT 90z %3I 0§ VIT T i1t

921 $0Z 1S @8 SST 66T SPI 6% 292 00T L9T 98T | €I

16 gl QIT 9% LIT G2l 08¢ 8FPI 92 60T €L cl

€¢l ¢6I 6% €0c €0Cc 8ac 9¥T FOI 00 8T 1T

18 OFT S€T L8T SOT € TIST 99T 901 | O

OFT L2T €9 0S¢ 03 88 98 WLI | 6

PPI ¥PI G¥C €91 8¢ FYI ¥ 8

gL GLT SIT 66 09 981 | L

L1 ¥9T 66 & 981 | 9

%8 6% 961 T1IC | ¢

19T T¥I 631 | ¥

10T 98 €

c8l | ¢

208 MICHAEL HELD AND RICHARD M. KARP

Run No. Cost of Initial Tour Cost of Final Tour
1 50,716 11,566
2 42,288 12,116
3 45,400 11,984
4 51,223 11,688

(vi) A 25-city problem for which the cost of an optimum tour is believed
to be 1711. The cost matrix for this problem and the probable optimum
tour are given in Fig. 3.

Run No. Cost of Initial Tour Cost of F nal Tour
1 5626 1711
2 5838 1711
3 5115 1711

4. CONCLUSIONS

The dynamic programming approach set forth in this paper is by no
means a universal key to the solution of sequencing problems. However,
it can be employed in a number of important situations, and, when applic-
able, offers several advantages. For small problems, optimum solutions
can be obtained with only a small, and precisely predictable, amount of
computation. Larger problems lend themselves to a successive-approxima-
tion technique which, although lacking rigorous justification, has worked
out remarkably well in practice.® Finally, these techniques can be mecha-
nized completely by rather simple computer programs.

APPENDIX 1
REDUCTION OF A MATRIX TO CANONICAL FORM

In §2, two n-city traveling-salesman problems defined by matrices
(a:;) and (b;;) were said to be equivalent if there existed constants o and B
such that, for any tour T,

Zr Qi; = aZP bij + 8.

In this appendix, we characterize this equivalence directly in terms of the
defining matrices, and show how to obtain a canonical representative of
each equivalence class.

In the discussion that follows, it is convenient to define four special
classes of matrices: (e;;) is a constant-row matriz (constant-column matriz)
if all its elements are zero, except for a single row (column), all of whose
off-diagonal elements are equal (the diagonal element is arbitrary); (e;;)
is a potential matriz’ if for every triple ¢, j, k, es; + ez = e ; (es;) isan

8 An IBM 7090 program applying the successive approximation technique to the
single-facility scheduling problem of §1.1 has met with success comparable to that
reported above for the traveling-salesman problem.

® Any potential matrix defines a traveling-salesman problem for which the cost of
any closed tour is zero.

DYNAMIC PROGRAMMING AND SEQUENCING PROBLEMS 209

7mage matrix if its diagonal elements are equal to zero, and each of its
row and column sums is zero.

We now define a homomorphic mapping 7' of the additive group G of
n X n (real) matrices onto the additive group G of n X n (real) image
matrices. Given (d;;) € G we define the mapping in two steps:

(1) diy = ndi; — 2iada — Dpe dy;
(2) dij = dij + Dot ar[nbudn — 6 — 8;6] + ctars .
Here, 8, is the Kronecker delta and oy, s, -+, ayy1 are determined

uniquely from a system of n -+ 1 linear equations” expressing the condi-
tions that d;; = 0 for all ¢ and D/ > 7 d:;; = 0. It is easily seen that
(d;;) belongs to G.

It can be shown that the kernel N of the map T is the normal subgroup
of (¢ generated by the set of constant-row, constant-column, and potential
matrices. It follows, by the law of homomorphism for groups [11], that two
matrices have the same image under the mapping 7 if and only if each can
be derived from the other by the addition of constant row, constant column,
and potential matrices.

The canonical form of a matrix is its image under the mapping 7. Two
matrices are said to be equivalent if each can be derived from the other
using only the following operations: (a) addition of constant-row and con-
stant-column matrices, (b) addition of potential matrices, and (¢) multi-
plication of a matrix by a scalar constant. Thus, two matrices are equi-
valent if and only if their canonical forms differ by a constant scalar
multiplicative factor.

Finally, it can be shown that two n X n traveling-salesman problems are
equivalent if and only if their defining matrices are equivalent, so that an
equivalence class of traveling-salesman problems is characterized by the
canonical form of any one of the associated matrices.

Acknowledgments. The authors are particularly indebted to Mr. R.
Shareshian of IBM’s Mathematics and Applications Department, who
was largely responsible for the preparation of the traveling-salesman com-
puter program mentioned here. Acknowledgments are due as well to Dr.
A. Bomberault of the same department for several stimulating discussions,
particularly with regard to the canonical representation given in Ap-
pendix 1.

REFERENCES

1. R. L. Acgorr (ed.), Progress In Operations Research, Vol. I, Wiley, New York,
1961.

10 This system will be nonsingular unless n = 2.

210 MICHAEL HELD AND RICHARD M. KARP

2.

10.

11.

R. BeErLiMaN, Combinatorial processes and dynamic programming, Proceedings
of the Tenth Symposium in Applied Mathematics of the American Mathe-
matical Society, 1960; also see his later paper Dynamic programming treat-
ment of the traveling salesman problem, J. Assoc. Comput. Mach., 9 (1962).
pp. 61-63.

CroEes, A method for solving traveling-salesman problems, Operations Res.,
6 (1958), pp. 791-812.

G. A.
. G. B. Dantzig, D. R. FULKERSON, AND S. M. JouNsoN, Solution of a large-scale

traveling salesman problem, Operations Res., 2 (1954), pp. 393-410; also
see these authors’ later paper On a linear programming, combinatorial ap-
proach to the traveling salesman problem, Operations Res., 7 (1959), pp. 58-66.

. K. E1sEMANN, The trim problem, Management Seci., 3 (1957), pp. 279-284.
. M. M. Froob, T'he traveling-salesman problem, Operations Res., 4 (1956), pp. 61-75.
. P. C. GiLmMoRE, AND R. E. GoMoORY, 4 linear programming approach to the cutting

stock problem, Operations Res., 9 (1961), pp. 849-859.

. M. KrartcHIK, Mathematical recreations, Dover, New York, 1953, Chapter 11.
. R. McNauvueHTON, Scheduling with deadlines and loss functions, Management

Sei., 6 (1959), pp. 1-12.

M. E. SaLvesoN, The assembly line balancing problem, Journal of Industrial
Engineering, 6 (1955), pp. 18-25.

B. L. vAN pER WAERDEN, Modern Algebra, Vol. I, Ungar, New York, 1950.

