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A DYNAMIC PROGRAMMING APPROACH TO
SEQUENCING PROBLEMS*

MICHAEL HELDt anp RICHARD M. KARPt
INTRODUCTION

Many interesting and important optimization problems require the
determination of a best order of performing a given set of operations.
This paper is concerned with the solution of three such sequencing problems:
a scheduling problem involving arbitrary cost functions, the traveling-
salesman problem, and an assembly-line balancing problem. Each of these
problems has a structure permitting solution by means of recursion schemes
of the type associated with dynamic programming. In essence, these re-
cursion schemes permit the problems to be treated in terms of combinations,
rather than permutations, of the operations to be performed. The dynamic
programming formulations are given in §1, together with a discussion of
various extensions such as the inclusion of precedence constraints. In each
case the proposed method of solution is computationally effective for
problems in a certain limited range. Approximate solutions to larger
problems may be obtained by solving sequences of small derived problems,
each having the same structure as the original one. This procedure of suc-
cessive approximations is developed in detail in §2 with specific reference
to the traveling-salesman problem, and §3 summarizes computational ex-
perience with an IBM 7090 program using the procedure.

1. PROBLEM FORMULATIONS

1.1 A scheduling problem. Suppose we are givena set of jobsJy, Jo, - -+,
J. which are to be executed successively on a single facility. Any given
job J; is assumed to require the services of the facility for =, units of time.
With J; is also associated a function ¢,(¢), giving the cost associated with
completing J; at time ¢{. We assume that the facility is to be constantly
in use, and that no job is to be interrupted before completion." With these
assumptions, any given order of execution of the jobs (a schedule) may
be represented by an ordering (7; 7 - - - 2,) of the integers from one through
n, indicating that the jobs are to be executed in the order J;, , J4y , -+, J5, .
Given such a schedule, the termination time #;, of J;, is D5y i, and

* Received by the editors August 31, 1961.

t International Business Machines Corporation, New York, N. Y.

1 There is no advantage in violating these assumptions when the functions ¢ ()
are monotone nondecreasing, representing penalties incurred for deferring the com-
pletion of the jobs.
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the total cost associated with the schedule is

(1) i ci(tsy).

We seek an ordering for which (1) assumes its minimum value €.

Several authors have considered this problem for special kinds of cost
functions. For example, McNaughton [9] considers the case in which each
ci(t) is constant up to some point in time, and then increases linearly.
The dynamic programming algorithm which follows requires no assump-
tions to be made about the cost functions.

Let S = {ki, ks, -+, kues} be a subset of {1, 2, ---, n}, and denote
by ts the quantity Z]. cs Ty Let C(S) be the minimum cost incurred in
executing the jobs Jy, , Jiy, -+, Jr,s , In any order whatever, in the
interval [0, ¢s]. For I € S, let S — [ denote the set obtained by deleting
I from S. Then we may define the following recurrence relations, in which
C(S), for any set S, is expressed in terms of the values of C for subsets of
S:

(a) (n(8) = 1): C({l}) = ci(m), forany l.

2
@ (b)  (n(8) > 1): C(8) = minges [C(S — 1) + eilts)]-

To justify this, we argue as follows: In an optimal order of execution for
the jobs with indices in S(i.e., one which realizes the cost C'(S)) some
job, call it J; , must be executed last, and the remaining jobs (those with
indices in S — ) must be executed optimally in [0, ¢s_;]. Then the total
cost incurred by such an ordering will be C(S — ) + ci(ts). Taking the
minimum over all choices of [, we obtain (2b).

It follows that an ordering (7; 7, - - - 2,) is optimum if and only if,
(3) C({ir, 2, -+, &) = CU{ir, &, -, ©pa}) + ci(tar,in,..ip))
(2=2p=n).
The procedure for finding an optimum solution has two phases. In the
first phase, the quantities C(S), for all S C {1, 2, --- | n}, are computed
recursively from (2); @ is given by C({1, 2, --- , n}). In the second phase,
(3) is used to generate an optimum ordering (7 % - -+ %.); ¢, is obtained
first, and then, successively, 2,1, tn—s, -, 21 -

The fundamental operations required are additions and comparisons,
which oceur in equal numbers. The number of additions in the first phase
is given by X rik (Z) = n2™"; the number of additions in the second
phase is at most ) _jrok = [n(n 4 1)/2] — 1. If one storage location is
assigned to each number C'(S), the number of locations required is 2" — 1.
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1.2. The traveling-salesman problem. The dynamic programming
formulation of the scheduling problem just considered is based on the
fact that the cost incurred in executing a job depends only on which jobs
preceded it. We now discuss the traveling-salesman problem, which ex-
hibits a different kind of cost dependence.

“The traveling-salesman problem is that of finding a permutation

P = (141 ---1,) of the integers from 1 through n that minimizes the
quantity
(4) @iy + Giyiy + Gigiy + -+ + Qip1,

where the a.s are a given set of real numbers. More accurately, since there
are only (n — 1) ! possibilities to consider, the problem is to find an efficient
method for choosing a minimizing permutation.

“The problem takes its name from the fact that a salesman wishing
to travel by shortest total distance from his home to each of n — 1 speci-
fied cities, and then return home, could use such a method if he were given
the distance a.pg between each pair of cities on his tour. Or, if the salesman
desired the shortest total travel time, the a.s would represent the indi-
vidual travel times” [6].

While no completely aceceptable computational method exists for solving
the traveling-salesman problem, several procedures have been developed
for obtaining optimum or near optimum solutions. These procedures,
however, are usually somewhat tedious, intuitive, and difficult to program
for a computer. A “state of the art” discussion of the traveling-salesman
problem may be found in [1]. We proceed to give a dynamic programming
formulation for this problem.?

Given SC {2,3,---,n} and I € 8, let C(S, l) denote the minimum
cost of starting from city onc and visiting all cities in the sct S, terminating
at city {. Then

(a) (n(S) =1): c{{l}, ) = ay, foranyl.
(b) (n(S) > 1): C(S, 1) = ming,es; [C(S — I, m) + an.

To see this, suppose that, in visiting the cities in S, terminating at city ¢,
city m immediately precedes city [. Then, assuming that the other cities
are visited in an optimum order, the cost incurred is C(S — I, m) + ami -
Taking the minimum over all choices of m, we obtain (5b). Finally, if
€ denotes the minimum cost of a complete tour, including the return to
city one,

(6) C = minlE{Z,S ,,,,, n} [C({2, 3) tee >n}7 l) + all]'

2 This formulation, discovered independently by the authors, is essentially identi-
cal to one proposed by Bellman in [2].
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A permutation (1 ¢ ¢; - - - 7,) is optimum if, and only if,
(7) ¢ = C({27 3) ] n}y 7/71) + (1281

and, for2 < p < n — 1,

(8) C({'ZZ y 13 y T 7:;0; ip+l}, 7:;0+1) = C({7'2 ) 73 y " ip}; 7:17) + Qipip,y -

As in the scheduling problem, a two-phase computation is used to ob-
tain an optimum solution. In the first phase, the quantities C'(S, I) are
computed recursively from (5), and @ is computed from (6). In the second
phase, (7) and (8) are used to compute an optimum permutation (z, is
determined first, and then, successively, 4,1, tn_z, - , 72).

Again, the fundamental operations employed in the computation are
additions and comparisons. The number of each in the first phase is given

by (e ke — 1) (" - 1)) F =1 == D — 22"+ (n—1).

The number of occurrences of each operation in the second phase is at most
n—1

k=2 k = [n(n — 1)/2] — 1. If one storage location is assigned to each
number C(SS, [), the number of locations required is

glk (” - 1) = (n — )2,

1.3. An assembly-line balancing problem. In the scheduling and travel-
ing-salesman problems, all possible orderings of the elements (jobs or cities)
were allowed. Many sequencing problems involve constraints which pro-
hibit certain orderings from occurring. An advantage of the dynamic
programming approach is that such constraints facilitate the solution,
rather than hinder it. We illustrate this with reference to an assembly-
line balancing problem posed by Salveson [10].

An assembly line is required to carry out, for each unit produced, a set
of jobs denoted by Jy, Jy, -+, J.. A given job J; may be executed
in 7; units of time, and may be assigned to any of the locations (work
stations) placed serially along the assembly line. The assignment is to
be made so that:

(1) t:, the sum of the execution times of jobs assigned to the sth work
station does not exceed the cycle time T; T — t; is called the idle time at
the 7th station,

(2) all precedence requirements arising from the technology of the as-
sembly process (we assume that these take the form ‘“J; must precede
J»’) are satisfied,

(3) the number of work stations is minimized.

The existence of precedence constraints is reflected in the notions of
feasible sets and feasible assignments. A given subset S C {1, 2, - -, n}
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is said to be feastble if there is no pair (J;, J,) such that (a) I ¢ S, (b)
m € S, and (¢) J; is required to precede J, . An assignment of jobs to
work stations 1, 2, --- | ¢ is called feasible, if, for each 7 = ¢, the set of
jobs assigned to the first ¢ work station is feasible. With any feasible set
S = {ki, ko, -+, kuesy} 1s associated a “cost” C(S), which is the mini-
mum, over all feasible assignments of the jobs with indices in S, of the
quantity (r — 1)T + t,, where r is the number of work stations needed
in the assembly line and ¢, is the sum of the execution times of jobs as-
signed to the final work stations, according to a particular assignment.
Then the quantity C'(S) may be computed according to the following re-
currence relations, which hold only for feasible sets:

(@) ((S) =1: C{}) =mn
(9 (b) (n(8) > 1):
C(8) = min. [C(8 — ) + A(C(S = 1), r)],

€
8—1 feasible

(i) if[—%:‘:l:x—l_y] or l:x}—y:'=x—ij—’y’ then A(z,y) =y

x4y z+y
:| and [ T ]< T

=
—
S
L

A
—

2
R !

5

then Az, y) =T|:x;:y:|+y——x.

The quantity A(C(S — I), 7:) denotes the incremental cost associated with
assigning job J;, assuming that the jobs specified by the elements of
S — [ have already been assigned in an optimum manner.

The recurrence relations (9) are nearly identical to those used in the
formulation of the scheduling problem (2), and a similar two-phase com-
putation may be used to compute C({1, 2, --- | n}), and thence to obtain
an optimum assignment of an assembly line.*

1.4. Some extensions. The recurrence relations employed for the solu-
tion of the assembly-line balancing problem closely resemble those de-
rived in treating the scheduling and traveling-salesman problems. The
formulation of the line-balancing problem, however, necessarily included

3[ ] denotes ‘“‘integer part of”.

4 The problem of cutting specified lengths =, , 72, -+ -, 7, of stock from a minimum
number of standard reels of length 7" may be treated by precisely the same recurrence
relations, with all sets S taken as feasible. For linear programming approaches to
the cutting stock problem see [5] and [7].
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precedence relations, which were reflected in the restricted class of subsets
considered. Precedence restrictions on the order of execution of jobs to
be scheduled, or on the route of a traveling salesman, can be handled by
similar means.

Another variation on the three problems under consideration involves
the possibility of “parallelism”: a set of cities to be visited may be dis-
tributed among several salesmen; assembly operations may be divided
among several assembly lines; jobs may be scheduled on any of several
facilities. As an illustration of this type of situation, we shall introduce
some modifications into the scheduling problem.

Suppose that facilities F©, F* ... F™ are available. Any given job
Jr may be performed by any facility, with respective execution times
RS SR , 7", The cost associated with terminating J; at time ¢ on

facility F'” is given by ¢’ (¢). Then an optimum division of jobs among
facilities, together with an optimum schedule for each facility, is obtained
as follows: :

(a) For each set S compute the functions C”(S) by means of (2),
with 7i” and c,(ci)(t) substituted for 7, and ¢ (t), respectively, in the 7th
computation.

(b) Compute the minimum®, over all partitions of {1, 2, --- , n} into
sets SV, 8®, ... | S of the quantity D i, C?(8); let this minimum
oceur for the partition 7V, 7® ... 7@,

(¢) In the optimum schedule, the jobs in 7” are performed on F'?.
The order of execution on each facility is computed from (3), as before.

The numbers of operations in the algorithms under discussion can
be considerably reduced when equivalences are noted among the elements
to be ordered. Consider, for example, a scheduling situation in which
the n jobs to be scheduled may be partitioned into q equivalence classes,
such that any two jobs in the same class have the same execution time
and cost function. Then, any set of jobs is characterized by a vector
V= (o1, 0, -+, vy, specifying that the set contains v; elements in the
Ith equivalence class; moreover, all sets for which the vector is the same
may be treated as one. Then, if each class of sets is specified by a vector V,
(2) may be replaced by

(10) (a) C(0,0,---,0) =0
(b) C(V) = mini<i<gand >0 [C(V — €1) + a(V-1)].
Here 7 = (71, 72, -+, 7,), where 7; is the execution time of a job in the

lth equivalence class, ¢;(¢) is the cost function for jobs in the th equivalence

5 It is possible to give a dynamic programming algorithm for the efficient compu-
tation of this minimum.



202 MICHAEL HELD AND RICHARD M. KARP

class, and V' — e¢; is a vector obtained by subtracting one from the [th
component of V.°

2. SUCCESSIVE APPROXIMATIONS

It is characteristic of the algorithms under discussion that their com-
plexity, measured by numbers of arithmetic operations and storage re-
quirements, grows quite rapidly. They are, however, a vast improve-
ment over complete enumeration, and permit the rapid direct solution of
problems of moderate size.” In this section we show how the algorithms
can be combined with a method of successive approximations to provide a
systematic procedure for treating large problems. This procedure yields a
sequence of permutations, each obtained from its predecessor by the solu-
tion of a derived subproblem of moderate size having the same structure
as the given problem. The associated costs form a monotone nonincreasing
sequence which may not converge to the optimum solution; however, com-
puter experimentation has yielded excellent results in a variety of cases
(cf. §3). As an illustration, we shall specify a method of successive ap-
proximations for solving large traveling-salesman problems.

Given a permutation P = (1 ¢, --- 4,) representing a route through n
cities, the cities may be partitioned into w ordered sets, each consisting of
cities which occur successively in P, and maintaining the same order as in
P. A u-city traveling-salesman problem is then solved in which each ordered
set is treated as a city, and the cost of going from the set (7; ;41 « -+ %—1 %)
t0 (27 %141 *** Tme1 Tm) 1S @iy - If w is not too large, this derived problem
may be solved by the dynamic programming algorithm of §1.2. The solu-
tion implies a reordering P’ of P, with P’ having cost less than or equal to
that of P.

Two types of partitions have proved especially useful. In the first type,
called a local partition, each of the ordered sets but one consists of a single
element, so that the tours associated with P and P’ differ locally, if at all.
At the other extreme, a global partition takes the u sets as nearly equal in
size as possible, so that, if changes are made, they tend to be of a global
nature. Examples of these two types of partitions, and of possible reorder-
ings associated with them, are shown in Figs. 1a and 1b. In these examples,
n = 16 and u = 8. In the solution of large problems, it has proved desirable
to employ alternate phases of local and global improvement.

Through experience with a computer program, systematic procedures

6 This division into equivalence classes is a particularly useful device in the
problem of cutting stock, where it is usually necessary to cut many rolls of the same
length. The number of equivalence classes is then equal to the number of different
lengths to be cut.

7 An IBM 7090 program can solve any 13-city traveling-salesman problem in 17
seconds.
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(a) LOCAL
P = [11 3] [5] (71 [9] (111 [13] [15 2 4 6 8 10 12 14 16]

P= 18] [ (71 B @11 (9] 5] 15 2 4 6 8 10 12 14 16]
(b) GLOBAL

P = 3] (5.7) 19 11] [13 _15] 6 12] 14 16]

P = | 254] (;; % 15] [14'16)

Fia. 1. Examples of local and global improvements.

for the selection of derived problems have been worked out. As part of
this selection process, a technique was obtained for determining whether
a given derived problem is likely to yield an improvement (i.e., cost of
P’ < cost of P). Each derived problem is specified by a « X u cost matrix
C = (c¢,), with a row and column for cach set of cities to be rearranged.
We assume that the rows and columns of this matrix are so ordered that
the slant elements ¢,y , €12, - -+, Cu_1.0 give the cost of the transitions which
occur in the current permutation . If the cost of P’ is to be strictly less
than the cost of P, the optimum tour for the derived traveling-salesman
problem defined by C must employ transitions corresponding to off-slant
elements of C. The ratio of slant clements which are row or column minima
to the total number u of slant elements has proved to be a reliable measure
of the “promise” of a derived problem. At any point in the computation,
matrices for which this slant ratio exceeds a critical value (which may be
adjusted as the computation proceeds) are not considered further.

If no such selection procedure is used, it can be shown that the successive
approximation technique yields the same final tour for any two equivalent
traveling-salesman problems. T'wo problems with associated n X n cost
matrices (a;,) and (0;,) are said to be equiralent if there are constants
a and g such that, for any eyelic permutation T' of the indices 1,2, -+ | n

Zr Uy = CYZI‘ be‘j + 6.

Since corresponding submatrices of equivalence matrices (a:;) and (b;;)
need not have the same slant ratio, the invariance of the computation
under equivalence transformations is lost when selection is employed.
However, it is possible to derive a canonical representative for each equiva-
lence class (sec Appendix 1) and invariance, if desired, can be maintained
by transforming any given problem into its canoniecal form.

)
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3. THE COMPUTER PROGRAM

In this section, we present some computational results obtained with an
IBM 7090 program for the traveling-salesman problem. This program
solves problems involving 13 or fewer cities by direct application of the
dynamic programming algorithm of §1.2; larger problems are treated by
means of the successive approximation technique of §2.

3.1. Specifications. In the program implementing the successive approxi-
mation procedure, each derived problem is of size 13. The program proceeds
in alternating phases of local and global improvement. Each local improve-
ment phase cycles through the n possible derived problems corresponding
to the optimal reordering of consecutive cities, until a full cycle is con-
sidered without any improvement. At this point, the slant ratio threshold
is increased, and, if it does not exceed an upper bound prescribed for the
current phase, the local improvement continues; otherwise a global im-
provement phase is entered. During each global improvement phase, at
most n + 1 derived problems are considered. The first of these is obtained
by choosing a partition which maximizes the sum of the slant elements in
the derived cost matrix, thus tending to make the slant ratio small. The
program selects the n remaining problems by a definite but arbitrary
rule which makes the sizes of the 13 sets as nearly equal as possible. The
derived problems are examined in turn, and for those such that the slant
ratio does not exceed the current threshold, a dynamic programming calcu-
lation is performed to obtain an optimum tour. As soon as a derived
problem yields a solution better than that associated with its slant, the
improvement is incorporated into the over-all problem, and a new phase of
local improvement is initiated. If no derived problem yields an improve-
ment, the slant-ratio threshold is increased, and, if it does not exceed an
upper bound specified for the current phase, the problems are re-examined;
otherwise a new phase of local improvement is initiated, and no global
improvement is made at this stage of the calculation.

The calculation proceeds until a point of diminishing returns is reached,
as measured by an empirical stopping criterion involving the number of
derived problems treated by the dynamic programming algorithm without
success in any given phase. In any event, the program is terminated after
the fifth phase of global improvement.

The strategy of the calculation, including the choice of derived prob-
lems, the adjustment of slant-ratio thresholds, and the termination of the
computation, has been suggested by computational experience. Within
wide limits the successful performance of the program does not depend
critically on these choices.

3.2. Results. We now present six examples which were treated by the
IBM 7090 computer program. In these examples, the execution time for a
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run varied between two minutes and fifteen minutes. In each case, the
mnitial tour was chosen at random.

(1) The 42-city problem of Dantzig, Fulkerson, and Johnson. In [4] the
cost of an optimum tour was shown by a special argument to be 699.

Run No. Cost of Initial Tour Cost of Final Tour
1 3235 699
2 3513 705
3 3207 704
4 3240 699
5 2913 704

(ii) A 20-city problem due to Croes. In [3], Croes states that the cost of
an optimum tour is 246.

Run No. Cost of Initial Tour Cost of Final Tour
1 732 246
2 816 246
3 811 246

(iii) A 48-square knight’s tour. If the distance between two squares of a
chessboard is taken as the minimum number of knight’s moves required to
reach one square from the other, the problem of finding a closed knight’s
tour (a tour of the board by knight’s moves, such that each square is
visited exactly once, and terminating with a return to the initial square)
may be treated as a traveling-salesman problem. Since a closed knight’s
tour is known to exist for an abbreviated 6 X 8 chessboard [8], the corre-
sponding traveling-salesman problem has an optimum solution with cost 48.

Run No. Cost of Inittal Tour Cost of Final Tour
1 132 56
2 132 52
3 124 54
4 132 56

(iv) A 36-square king’s tour. A closed king’s tour may be formulated as a
traveling-salesman problem in the same manner as was the knight’s tour.
Obviously a closed king’s tour exists for a 6 X 6 chessboard; hence, the
corresponding traveling-salesman problem has an optimum solution with
cost 36.

Run No. Cost of Initial Tour Cost of Final Tour
1 87 36
2 103 36

(v) A tour of 48 cities in the United States. Machine results coupled with
visual inspection suggest the conjecture that an optimum tour has cost
11,470. The matrix for this problem and the conjectured optimum tour are
given in Fig. 2,
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Run No. Cost of Initial Tour Cost of Final Tour
1 50,716 11,566
2 42,288 12,116
3 45,400 11,984
4 51,223 11,688

(vi) A 25-city problem for which the cost of an optimum tour is believed
to be 1711. The cost matrix for this problem and the probable optimum
tour are given in Fig. 3.

Run No. Cost of Initial Tour Cost of F nal Tour
1 5626 1711
2 5838 1711
3 5115 1711

4. CONCLUSIONS

The dynamic programming approach set forth in this paper is by no
means a universal key to the solution of sequencing problems. However,
it can be employed in a number of important situations, and, when applic-
able, offers several advantages. For small problems, optimum solutions
can be obtained with only a small, and precisely predictable, amount of
computation. Larger problems lend themselves to a successive-approxima-
tion technique which, although lacking rigorous justification, has worked
out remarkably well in practice.® Finally, these techniques can be mecha-
nized completely by rather simple computer programs.

APPENDIX 1
REDUCTION OF A MATRIX TO CANONICAL FORM

In §2, two n-city traveling-salesman problems defined by matrices
(a:;) and (b;;) were said to be equivalent if there existed constants o and B
such that, for any tour T,

Zr Qi; = aZP bij + 8.

In this appendix, we characterize this equivalence directly in terms of the
defining matrices, and show how to obtain a canonical representative of
each equivalence class.

In the discussion that follows, it is convenient to define four special
classes of matrices: (e;;) is a constant-row matriz (constant-column matriz)
if all its elements are zero, except for a single row (column), all of whose
off-diagonal elements are equal (the diagonal element is arbitrary); (e;;)
is a potential matriz’ if for every triple ¢, j, k, es; + ez = e ; (es;) isan

8 An IBM 7090 program applying the successive approximation technique to the
single-facility scheduling problem of §1.1 has met with success comparable to that
reported above for the traveling-salesman problem.

® Any potential matrix defines a traveling-salesman problem for which the cost of
any closed tour is zero.
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7mage matrix if its diagonal elements are equal to zero, and each of its
row and column sums is zero.

We now define a homomorphic mapping 7' of the additive group G of
n X n (real) matrices onto the additive group G of n X n (real) image
matrices. Given (d;;) € G we define the mapping in two steps:

(1) diy = ndi; — 2iada — Dpe dy;
(2) dij = dij + Dot ar[nbudn — 6 — 8;6] + ctars .
Here, 8, is the Kronecker delta and oy, s, -+, ayy1 are determined

uniquely from a system of n -+ 1 linear equations” expressing the condi-
tions that d;; = 0 for all ¢ and D/ > 7 d:;; = 0. It is easily seen that
(d;;) belongs to G.

It can be shown that the kernel N of the map T is the normal subgroup
of (¢ generated by the set of constant-row, constant-column, and potential
matrices. It follows, by the law of homomorphism for groups [11], that two
matrices have the same image under the mapping 7 if and only if each can
be derived from the other by the addition of constant row, constant column,
and potential matrices.

The canonical form of a matrix is its image under the mapping 7. Two
matrices are said to be equivalent if each can be derived from the other
using only the following operations: (a) addition of constant-row and con-
stant-column matrices, (b) addition of potential matrices, and (¢) multi-
plication of a matrix by a scalar constant. Thus, two matrices are equi-
valent if and only if their canonical forms differ by a constant scalar
multiplicative factor.

Finally, it can be shown that two n X n traveling-salesman problems are
equivalent if and only if their defining matrices are equivalent, so that an
equivalence class of traveling-salesman problems is characterized by the
canonical form of any one of the associated matrices.
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