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ON A ROUTING PROBLEM?*
By RICHARD BELLMAN (The RAND Corporation)

Summary. Given a set of N cities, with every two linked by a road, and the times
required to traverse these roads, we wish to determine the path from one given city to
another given city which minimizes the travel time. The times are not directly pro-
portional to the distances due to varying quality of roads and varying quantities of
traffic.

The functional equation technique of dynamic programming, combined with approxi-
mation in policy space, yields an iterative algorithm which converges after at most
(N — 1) iterations.

1. Introduction. The problem we wish to treat is a combinatorial one involving
the determination of an optimal route from one point to another. These problems are
usually difficult when we allow a continuum, and when we admit only a discrete set
of paths, as we shall do below, they are notoriously so.

The purpose of this paper is to show that the functional equation technique of
dynamic programming, [1, 2], combined with the concept of approximation in policy

' space, yields a method of successive approximations which is readily accessible to either

hand or machine computation for problems of realistic magnitude. The method is dis-
tinguished by the fact that it is a method of exhaustion, i.e. it converges after a finite
number of iterations, bounded in advance.

2. Formulation. Consider a set of N cities, numbered in some arbitrary fashion
from 1 to N, with every two linked by a direct road. The time required to travel from
i to j is not directly proportional to the distance between 4 and j, due to road conditions

. and traffic. Given the matrix T = (4,;), not necessarily symmetric, where ¢,; is the

time required to travel from ¢ to j, we wish to trace a path between 1 and N which
consumes minimum time.

Since there are only a finite number of paths available, the problem reduces to
choosing the smallest from a finite set of numbers. This direct, or enumerative, approach
is impossible to execute, however, for values of N of the order of magnitude of 20.

We shall construct a search technique which greatly reduces the time required to
find minimal paths.

3. Functional equation approach. Let us now introduce a dynamic programming
approach. Let

f. = the time required to travel from¢toN,7=1,2,--- , N — 1,
using an optimal policy, (3.1)
with fy = 0.
Employing the principle of optimality, we see that the f; satisfly the nonlinear system
of equations

fi =Mln [tii+ fi]: 1= 112: b yN_ 17
" (3.2
fN - 0.
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This system differs from the usual systems encountered in dynamic programming
in that we do not have a ready computational scheme.

4. Uniqueness. Let us show that there exists at most one solution of the system
in (3.2).

Assume that {f,} and {F,} are two solutions, with fy = F, = 0, and let k£ be an
index for which f, — F, achieves it maximum. Then ’

fe = Mlkn le; + fi] (4.1)
Fk = Min [tki + F,'].
ik
Let the minimum in the first equation be assumed for J = r, and the second for j = s

It is clear, since ¢,; > O for all ¢, j, that r k, s # k. Then we have the equalities and
inequalities:

fo=t+ f <t + .,

(4.2)
Fo=t,+F, <t +F,.
These lead to
fo=Fu< 1 - F, w3
= f, —F,.
Since k was an index where f, — F, achieved its Iﬁaximum, we must have
fo = F,=f, —F,, (4.4)
which can only be true if in (2) we have
fe =t + f,. (4.5

Now repeat this procedure for the pair {7, , F,}. It follows, from the foregoing argu-
ment, that there must be another pair {f,, F,} with f, — F, = fs—F, =f —F,.
Furthermore, p 5 s, and p # £, since we have

fk = tka + t", + fp . (46)

Proceeding in this way, we exhaust the set of points¢ = 1,2 ... N — 1, with the
result that one of the terms in the continued equality above must be fx — Fy = 0.
Hence f; = F.fori=1,2, ... N — 1,

5. Approximation in policy space. Let us now turn to the problem of determining
an algorithm for obtaining the solution of the system in (3.2). The basic method is that
of successive approximations. We choose an initial sequence {£{”1, and then proceed
iteratively, setting

fx(‘kH) = 1\11n (t” + fl('k)]x 1= 1,2 N — 1, .
= (5.1
e =0,

fork =0,1,2, ---,.
The choice of {f{”} seems to require some care. Let us then invoke the concept of
approximation in policy space in order to obtain a sequence which is monotone Increasing.
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Perhaps the simplest policy that we can employ is to proceed directly from ¢ to N.
Define

2 =ty, i=1,2 ---,N. (5.2)
It follows that fi" as defined by
fz('l) = Mln [t + f:('O)]y t=12 .- ,N—1,
e (5.3
| © =0,
E satisfies the inequality
10 < 1O i=1,2,--- N. (5.4)

This inequality is immediate when we realize that i represents the minimum
- time for a path with at most one stop. It follows then inductively that the sequences
- {f¥} as defined by (5.1), with {{” as in (5.2), satisfy the inequalities

f§k+l)< :k)’ 7;=172;"'7N: k=071’2"” (55)

It is important to note that there are many other policies we could employ to obtain
monotone convergence.*

It follows that

lim £ = §,, i=1,2,---,N, (5.6)
k—oo .
furnishing a solution to (3.2).

It is clear from the physical interpretation of this iterative scheme that at most
(N — 1) iterations are required for the sequence to converge to the solution.

6. Computational aspects. It is easily seen that the iterative scheme discussed above
is a feasible method for either hand or machine computation for values of N of the
order of magnitude of 50 or 100.}

For each 7, we require only the column (¢;,),j = 1,2, - -+, N of the matrix 7. Hence,
the memory requirement for a digital computer is small.

7. Monotone increasing convergence. Turning back to (3.2), let us consider the
sequence of approximations defined by

f§0)=1\£intii, i=1,2,"',N-17
0 _
v =0 .1)
f;“—l) = 1\/‘[1n [tii + f;‘k)]r 1 = 1; 2: 7N - l!
IEr
(k+1)
N = 0.

It is clear that f**V > f{®. It is not, however, obvious that this method yields a
uniformly bounded sequence. To establish this, let us show, inductively, that
ff'k)-<—fi) i:1)21"')N) k=0;1;2y"" (7'2)
where {f.} is the solution of (3.2). ’

*1 owe this choice of an initial policy to F. Haight.

tAdded in proof (December 1957): After this paper was written, the author was informed by Max
Woodbury and George Dantzig that the particular iterative scheme discussed in Sec. 5 had been ob-
tained by them from first principles.
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The inequality is certainly true for ¥ = 0. Hence, assuming that it holds for k, we
have .

£ = Min [t,; + ] < Min [t;, + f:l
3
<.

It follows that the sequence {f{"’} converges to {f,} as k — o« furnishing the desired
monotone convergence. Once again, only a finite number of iterations will be required.
It is to be expected that the first method will converge more rapidly.
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ON THE DAMPED OSCILLATIONS EQUATION
WITH VARIABLE COEFFICIENTS*

By E. V. LAITONE (University of California, Berkeley)

A useful upper bound can be given for the oscillatory solutions of the second-order
linear differential equation with continuous differentiable coefficients

w”(t) + pu'() + ¢@u(®) = 0 (1

which commonly occurs in vibration studies and airplane or missile dynamics.
The solutions of Eq. (1) are oscillatory whenever

o) = (g —p*/4 —p/2Dz2m >0 @)

see Bellman [1] or Kamke [2], and for this case it will be shown that as long as ¢ is mono-
tonic the solutions are bounded in the following manner:

t

10 | 5 5, 160u0” + 10+ p0u0/2F) " e (- [ p2ar). @

" This result can be derived by introducing the unique transformation, see Bellman
[1] or Kamke [2]

t
U = v exp <—f /2 dt> (4)
0
which preserves the same zeros in the oscillatory solutions. Then Eq. (1) is transformed to
() + ¢(Hu()) = 0, ®)

*Received February 5, 1957.




