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SUMMARY 

Algorithms that compare two proteins or DNA sequences and produce an alignment of the best 
matching segments are widely used in molecular biology. These algorithms produce scores that when 
comparing random sequences of length n grow proportional to n or to log(n) depending on the algorithm 
parameters. The Azuma-Hoeffding inequality gives an upper bound on the probability of large 
deviations of the score from its mean in the linear case. Poisson approximation can be applied in the f 

i logarithmic case. 

1. INTRODUCTION 

Sequence comparison algorithms are widely applied to 
produce aligned amino acid and nucleotide sequences. 
The DNA databases, DDBJ, EMBL and GenBank, contain 
about 180 x lo6 basepairs as of Spring 1994 and they 
double in size every two years. New DNA sequences are 
compared to the DNA databases and translations of 
DNA sequences into amino acid sequences are com- 
pared to the protein databases. These database searches 
find relationships of newly determined sequences to 
known sequences, providing hypotheses as to the 
evolution and function of the new sequences. (Barker 
& Dayhoff 1982; Doolittle et al. 1983). This is one of the 
ways that computation is essential to the practice of 
modern biology. 

The sequence comparison algorithms produce 
scores representing the similarity of the molecules. If 
x and y are two aligned letters, s(x ,  y )  is the associated 
similarity score. A gap of k letters receives a score 
- g ( k ) .  Thus with s ( x ,  y )  = I ( x  = y )  and g ( k )  = Sk, the 
alignpent A 

goo d 
ga -d 

has score 1 + 0 - 6 + 1 = 2 - 6 = S(A). Note that 
there is a deletion of the second ‘0’ in good (or an 
insertion of ‘0’ between a and d in gad). The problem 
of sequence alignment is to find the highest scoring 
alignments. Insertions and deletions (indels) make 
alignment a hard computational problem. 

As there are thousands of sequences in a database, it 
is not possible to look at each comparison. Instead the 
scores should be screened by estimates of statistical 
significance so that the scientist only examines the 
most statistically significant alignments. 

In the next section a commonly used alignment 
algorithm is presented. When applied the random 
sequences of length n, the scores grow with n either 
proportional to n or proportional to log(n). The 

- 
b 
1 - 

algorithm parameters determine this behaviour. In 
the linear growth region, the Azuma-Hoeffding 
inequality gives an upper bound for P(S - lE(S) 
> 7.). In the logarithmic region, Poisson approxima- 
tion can be applied to give good estimates for the 
probability of large scores. Numerical studies are 
performed for both these approximations. 

2. ALGORITHM 

Our sequences will be x = x1x2 . . . xn and 
y = y 1 y 2 . .  . y ,  for deterministic letters xi and yj and 
X = X l X 2 . .  . X ,  and Y = Y1 Y2. .  . Y, for iid letters Xi 
and 5. For ease of exposition we take s(x ,  y )  to be the 
score of aligned letters and g ( k )  = k6 to be the penalty 
of a k letter indel. This makes a penalty of 6 per 
deleted letter. The first algorithm is for global 
alignment, where all of x must be aligned with all of 
y. The algorithm is an application of dynamic 
programming which solves the alignment problem 
by building up solutions to subproblems. Set 
Si,j = S ( x l x 2 . .  .xi, y l y 2 . .  . y j ) .  An alignment achiev- 
ing score S,,j must end in one of these ways 

because 1, aligning deletions, is not valid in 
alignment. Optimality requires the alignment preced- 
ing the final aligned letters to be optimal if the overall 
alignment is. Therefore 

Sij = max{Si-l,j - 6,Si-l,j-l + s(xi, yj), S,,j-l - 6). 

To begin the recursion set Soj = -6j and Si,o = -6i. 
This algorithm takes O(nrn) time. 

Alignments are determined by tracing back from 
the optimal score S(x, y) = S,,, to determine the steps 
from (O,O) to (n,rn). 

Sequences that are known to be related by descent 
from a common ancestor should be aligned by global 
alignment. Many sequences have one or more 
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that align well but can be 
otherwise unrelated. In this case local alignment 
algorithms are recommended. The following local 
alignment algorithm of Smith & Waterman (1981) is 
a modification of the global alignment algorithm. 
Define 

A O O O O O 1 3 Z I O 2 2 ' ~ ~ 5  

c 1 0 0 1 1 0 2 2 1 0 1 3 3 5 5  

H(x, y) = max(0; S ( x k . .  . x i , y l . .  . yj): 

1 < k < i < n , l  < l < j < r n } .  

While this definition requires solving 

(": l)  (": ') 
separate alignment problems there is an O(nm) 
algorithm for this problem too. Set 
Hi,j = max{O;S(xk.. .x;,yl.. .yj): 1 < k < i, 1 < 1 < j } .  

Then the recursion is 

Hi,j = max{Hi-l,j - 6, Hi-1,j-l + s(xi,yj), Hij-1 - 6,0}, 

with Hij = 0 if either i or j are 0. The score 
H(x,y)  = max{Hij : 1 < i < n, 1 < j  < m }  is the lar- 
gest value of Hi,j. 

In table l a  we show a simple local alignment 
example with x = TCTGACAAAGGCAAC, y = 
CGTCCAATAGCCAAT, s(x,y) = +1 if x = y, 
s(x,y) = -1 if x # y and 6 = 1. The optimal local 
alignment has score H = 6 and the traceback in 
boxes yields the alignment 

CAATAGCCAA 
CAA-AGGCAA. 

. 

A 

There may well be several local alignments of interest. 
Many intersect the set of optimal local alignments, 
differing in small ways from the optimal alignments. 
These are not of the most interest, at least in an initial 
look at the sequence comparison. Instead we ask if there 
are any other distinct alignments of interest. Define an 
alignment clump to be the set of alignments sharing one 
or more pair of aligned letters with a given alignment. 
When the first optimal alignment is found, the matrix 
can be declumped by removing the effect of all 
alignments in the clump. Then the largest remaining 
score is the size of the second best alignment clump. This 
procedure can be continued as long as desired 
(Waterman & Eggert 1987). In table l b  the above 
example is delumped (outlined by lighter lines) and the 
second best clump and alignment highlighted. The 
corresponding alignment of score 3 is 

C G T C C A A T A G C C A A T  

T O O l O O O O l O O O O O O l  

c l o o 2 l o o o o o l l o o o  

T O O l l l O O l O O O O O O l  

G 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0  

A O O O O O l l O l O O O l  1 0  

c l o o l o o o  0 0 1 1 0 0 0  

l O O O 2 l O  

1 0 0 0 1 3 2  ,% , 0 0 0 0 

A O O O O  

CAA 
CAA. 

We close this section by noting that costs of 
g ( k )  = a + Pk for indels of length k are commonly 
used and that there is a simple O(nm) algorithm to 
compute alignments. 

3. A PHASE TRANSITION 

Now let the sequences X = XlX,. . . X n  and 
Y = Yl Yz . . . Y, have iid letters. The random variable 
of interest is H ( X , Y )  where we wish to estimate tail 
probabilities. First consider the mean or dominant 

Table 1. ( a )  Best .,ea1 aligament; (6) declumping f o r  the 
second best alignment 
(4 

A 0  

A 0  

G O  

G O  

C I  

? i n 2  I O  0 0 1 0 

O 0 0  'Ty;; ,: 
2 1  0 0 0  

1 0 0 0 0 2 4 4 3  
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0 

1 

1 
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0 - 

0 

0 

0 

0 

0 

0 

0 - 

0 0 0 0 0  

l l 0 2 2 l  

I 

E 

term H(X,Y) as n --+ 00. We take the simple scoring 
parameter s(x ,  y) = +1, x = y; s ( x ,  y) = - 1, x # y and 

The global alignment score is subadditive in 
g ( k )  = 6k. 

distribution. Set S, = S(Xl . .  . X,, Y1.. . Y,): 

Sn+m 3 Sn + S(Xn+1* 1 . Xn+rn, Yn+1. . . Yn+m), 

where S(X,+l.. . X,+,, Y,+l.. . Yn+J equals S, in J 

* 

distribution. Subadditive ergodic theory implies the 
existence of a constant a(p, 6) such that 

Sn 
n-+m n lim - = a(p,  a), almost surely and L1. 

A famous version of this problem is called the 
longest common subsequence problem where 6 = 0. 
Chvital & Sankoff (1975) show the existence of the 
constant a(o0,O) but even for P(Xi = 0) = 1- 
P(Xi = 1) E (0, 1) the constant remains unknown. 

It is clear that S, < H, and 

Sn Hn - < - < l  
n n  
Thus the asymptotics of H, are between na(p, 6) and n. 
When a(p,6)  > 0 it can be proved that 

Hn lim- = a(p ,S) ,  
n n  

in probability. 
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When a ( p , S )  < 0 the situation is very different. 
Positive scores of local alignments are rare events. I t  
can be proved that for a certain constant 6 ,  for all 
E > 0, 

. 

< (2 + r ) b )  + 1, 

and it is conjectured that limH,/logn -+ 26. A 
heuristic for this result goes as follows, Let 
s(x,y) = -00 when x # y and 6 = 00. H, is then the 
longest exactly matching region. Set p = P(X = Y ) .  
Neglecting end effects there are n2 places to start an 
alignment of length m so the expected number is about 
n2pm. Solving 1 = n2pm yields m = 2 logl/p(n). 

So we have learned that H, has linear growth for 
{ (p, 6): a(p, 6) > 0) while H, has logarithmic growth 
for { (p ,8) :  a(p, 6) < 0). The graph of a(p,6) = 0 
appears in figure 1 .  It  is the location of a phase 
transition between linear and logarithmic growth of 
score as sequence length n + 00. These results appear 
in Arratia & Waterman ( 1994) .  

The linear and logarithmic growth regions have 
quite distinct statistical behaviour. In the next two 
sections we will give some theory and numerical 
simulations to illustrate this. 

4. THE LINEAR REGION 

For (p,6) such that a(p,S) > 0, we have 

- Hn s n  
n-+m n n-tm n lirn - = lim - = a(p, 6). 

Therefore, divided by n,H, and S, behave the same 
way. This holds because the average score per pair of 
letters is positive and it is always advantageous to 
extend to an essentially global alignment. 

Now some results are given for alignments with 
a ( p ,  6) > 0. First we give a lemma that deserves to be 
well known. 

Lemma 1 (Azuma-Hoeffding) Let 20 = 0, Z1, Z2, 
. . . be a martingale relative to {F,} so that Zn-l = 
lE(WIFn-l),n > 1. r f  there is a sequence of positive 
constants c, such that 

12, - zn-1l < c, for n 2 1 ,  

0.0 1 
0.0 0.2 0.4 0.6 0.8 

cc 
Figure 1. Phase transition boundary. 

then 

lE(epG> < exp [/P/(z 2 c i ) ] .  

An outline of the proof is given in Williams (1991). 
T o  apply this to sequence alignment let s* = 

max{s(x,y)}, s, = min{s(x, y)}, and indel penalty 
g ( k )  = a + Pk. Then set 

c = max{min{2s* + 4 g ( l ) ,  2s* - 2s,},O}. 

We can obtain with some work (Arratia & Waterman 
1994)  : 

i=l 

This bound will be examined with data below, but it 
gives exponential decay of deviations from E(&). In 
addition equation (2) can be extended to H, in the 
linear region. 

Steele (1986) has a result on the variance for non- 
symmetric statistics that has a similar sytle upper 
bound. Applied to alignment we obtain 

Var(S,)  < n( 1 - P)C, (3) 
where p = P(Xl = Y1). 

Equations (2) and (3)  give us bounds on important 
quantities for alignments that are generally interesting 
in the linear region and for global alignments. We are 
interested in several questions. Does Azuma-Hoeffding 
provide useful bounds on the tail probabilities? Does 
Steele’s result provide a useful bound on the variance? 
How do these results compare between global align- 
ments and local alignments in the linear region? 

T o  explore this we first look a t  the LCS problem 
(s(x, y) = I(z = y) and 6 = 0) for P(X = A )  = 
1 - P(X = B) E (0,l). In  figure 2 we give histograms 
of 1000 scores for n = 250,500,750,1000 along with 
graphs of the corresponding estimates P(Sn - lES 2 yn) 
versus y (dotted line) and the bound e-?n/(24 (solid 
line) where c + 2. Clearly these bounds are not useful. 

Corresponding graphs appear in figure 3 where 
global alignment with the Dayhoff PAM250 matrix 
with g ( k )  = 5 + k. Here c = 58. The decay of the tail 
probabilities is slower but Azuma-Hoeffding is not 
useful. Repeating this analysis for local alignment 
in figure 4 does not change the curves very much. 
These linear region local alignments are truly global 
alignments. 

For each of these three situations (LCS, global 
PAM250 and local PAM250), the mean of S, is 
known to grow like a . n and Var(S,) < n( 1 - p ) c .  The 
means and variances are shown in figure 5. Certainly 
Var(S,) looks linear in n for all three cases. 

5. THE LOGARITHMIC REGION 

When we move to the case where 

s n  
n+m n lim - = a(p,8) < 0, 

the positive scoring local alignments are rare events 
and the statistical behaviour of local alignment scores 
H, = H(Xl . . . X, ,  Y 1 . .  . Y,) is very different from that 
obtained with parameters’ in the linear region. In 
recent years Poisson approximations have been given 
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Figure 2. Histograms and tail probabilities for LCS: ( a )  n = 250; ( b )  n = 500; ( c )  n = 750; and ( d )  n = 1000. 

for special cases of Hn and related statistics. For the 
longest alignment with up to a given fraction of 
mismatches (Arratia et al. 1990) or a given fraction of 
indels (Neuhauser 1994) the Chen-Stein method 
(Arratia et al. 1989) has been applied to give Poisson 
approximations. Our  problem requires handling 
scoring and weighted indels. 

Let s(x,y) be a scoring function so that 
max,,ys(s,y) > 0 and lE(s(X, Y ) )  < 0, and let 
g(k) = 00 for all k 2 1 so there are no indels. Define 
5 E (0, 1) to be the largest root of 1 - E(A-s((X)Y)) = 0. 
Then 

n+w lim (Hn/logl/t(n2)) = 1, (4) 

in probability. When we compare sequences of length 
n and m the divisor becomes logl/t(nm), which we call 
the centre of the distribution of H,,. For random 
sequences there is a constant y that can be determined 
numerically (by solving an equation) such that 

P{H(X,Y) > t = logl/t(mn) + c) - 1 - e-ymnt'. ( 5 )  

The first result equation (4) obtaining the centre 
logllt(nm) for scoring was given in Arratia et al. 
(1988). Later Karlin & Altschul (1990) extended the 
result to the more general scoring schemes described 
above and presented equation (5) which is a Poisson 
approximation. The idea of the Poisson approxima- 

tion is that the number of clumps exceeding the centre 
by c, with t = logl/*(rnn) + c, is Poisson with mean 

A E ymnf' = y f .  

A Poisson with mean yrnnk' has no scores as large as t 
with probability e-rmnf. 

To put this style of Poisson approximation in 
context we refer to the Poisson clumping heuristic 

according to a Poisson process, and them clump sizes 
are assigned independently to the clumps. For our 
sequence comparison problem, the number of 
(alignment) clumps with score exceeding a test value 
t = centre + c has an approximate Poisson distri- 
bution with mean A. The probability that at least 
one score exceeds t is 1 - B(no score exceeds 
t )  = 1 -e-'. This model has only been rigorously 
established for the case described in the preceding 
paragraph. None the less we provide numerical 
evidence that Poisson clumping model holds in the 
entire logarithmic region. Alignment clumps are 
marked by the end ( i , j )  of optimal local alignments 
and the score HtJ is the clump size. 

There is an obvious way to estimate 6 and y by 
using equation (5). Simulate N scores H ( X , Y )  for 
sequences of length n and m. The distribution function 
F H ( t )  is e-ynm*' from the Poisson assumption. Taking a 
log-log transformation of the empirical distribution 

-i 

(Aldous 1989). In this model clumps are located ? 
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Figure 3. Histograms and tail probabilities for global alignment using PAM250; (a )  n = 250; ( b )  n = 500; 
(c) n = 750; and ( d )  n = 1000. 

function, we expect log(y) + log(nm) + t log([) and by 
fitting this curve y and 6 can be estimated. As we use 
a straightforward sample of N comparisons, we call 
this method direct estimation. A drawback is the time 
required to do N = 1000 (say) comparisons with 
n = m = 900. 

A more efficient method of estimation that tests the 
Poisson clumping model is as follows. Let H(jl denote 
the size of the i-th largest clump. Using our 
computational algorithm to declump we produce 
scores H(1) 2 Hp)  2 . . . H(N, for the first N clumps. 
Scores 2 t should, by the clumping heuristic, 
constitute a random sample of H ( X , Y )  that exceed 
t .  Using one comparison, then, we can declump and 
obtain a sample to estimate 5 and y as above. This 
procedure is called declumping estimation. 

Now that we have described two methods to 
estimate [ and y that are accomplished by simula- 
tion. Earlier we have shown that the distribution fits 
independently simulated data very well even when mn 
is changed (Waterman & Vingron 1994). Here we 
will explore the fit to the Swisprot database with 
N = 14642 protein sequences. 

The test of fit is done as follows. A query sequence 
of length m is compared with N database sequences. 
Score Hi comes from comparison of the query 

sequence with a database sequence of length ni. The 
model is 

P(H;  < t) = e-ymnlt'. (6) 
To obtain iid random variables, the random variables 
u. = e-ymn,fHi 

are all uniform (0,l). While the N sequences in 
Swisprot are not independent, we proceed as if they 
are. Ordering U ( l )  2 U(2) 2 . . . 2 U(N), recall that 
lE(U(,)) = i / (N + 1). Letting the i-th score in this list 
be H;, 

and 

-log ( -log ( N  - 1)) + log(mni) ZZ 

- logy - H,* logp. (7)  

A comparison of human a hemoglobin with the 
Swisprot database was performed. Using both direct 
and declumping estimates of y and 5, equation ( 7 )  
was used in the following .way to obtain figure 6a 
(direct) and figure 66 (declumped). We simulated 
1000 pairs sequences of length 900, iid with letter 
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Figure 4. Histograms and tail probabilities for local alignment using PAM250; (a) n = 250; ( b )  n = 500; 
(c) n = 750; and ( d )  n = 1000. 

frequencies of hemoglobin and of the database. If the 
fit were perfect the data would lie on the solid line at 
45". Interestingly both direct and declumped esti- 

mates give about the same fit, giving a good test of the 
Poisson clumping heuristic. 

Because sequences are known to have dependent 

J 

2500 

200 500 

200 400 600 800 loo0 
n 

200 ' 400 600 800 loo0 
n 

Figure 5. Means and variances as a function of n for: (a) LCS; ( b )  global PAM250; and (c) local PAM250. 
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Figure 6. ( u )  Direct estimates; ( b )  declumping estimates. 

letters, the lack of fit may simply be due to database 
sequences not having iid letters. In figure 7 we show 
the fit from simulating sequences by a Markov chain 
(with estimated transition probabilities from Swis- 
prot). The small improvement is consistent with early 
work of Smith et al. (1985). 

In figure 8 direct estimation is used with m = 142 
(the length of a hemoglobin) and n = 350 (approxi- 
mately the median database sequence length). The fit 
is better than that of figure 6, almost entirely due to 
an improved estimate of y,  which scales the 'clump 
volume' ymn. 

Notice that we have been fitting the distribution of 

parameters by simulation, not by using the data to 
estimate parameters. We now develop a maximum 

- scores from a database comparison by estimating 

5 10 15 

- l o g ( y t ~ o g @ )  
Figure 7.  Estimates from Markov sequences. 

5 10 15 

-log(Ytmog@) 

Figure 8. Direct estimates with m = 142 and n = 350. 

likelihood model. Our approach is closely related to 
that of Mott (1992). He understood the implications 
of the phase transition results of Arratia & Waterman, 
and used the extreme value form of the distribution 
function, which is another face of Poisson approxima- 
tion. Mott used a four-parameter model. Using 
equation (6), the density function for H is 

f ( t )  = y m n  log( l/t).$e-Tmnf'. 

The likelihood of Hl, H2,.  . . is then 

and 

The equations 
dloaIL - -- - - u  at 
and 
d log IL 
dY 

-- - 0  

become 
N N N 

ym niHitH1 = 0, 
i=l 

and 
N 

ym i=l nitH' - N = 0, (9) 

the maximum likelihood equations. 
There is a quick application. In figure 6a  5 appears 

to be quite good. Using that value .f+ we use equation 
(9) to re-estimate y:  

N 

The fit shown in figure 9 is not as good as the earlier 
fits. Finally we solve the maximum likelihood 
equations (8) and (9) to obtain the fit in figure 10, 
unfortunately of about the same quality as figure 9. 
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Figure 10. Maximum likelihood estimates. 

In  Waterman & Vingron (1993) we applied these 
ideas to Newat, a database assembled by R. Doolittle 
(1981) that removes closely related sequences. In  that 
database the sequences are more likely to be 
independent. Our  maximum likelihood fit of Newat 
scores is better than we achieve here with Swisprot. I t  
remains to be seen whether with a ‘single copy’ 
version of Swisprot will give improved fits. 

Software is available by anonymous ftp from hto-e.usc.edu. 
This research was supported by grants from the National 
Institutes of Health and the National Science Foundation. 
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Discussion 

R. A. ELTON (Medical  Statistics Un i t ,  University of 
Edinburgh, U.K.). Are there examples where com- 
parisons of biologically unrelated sequences using 
Professor Waterman’s method give quite high prob- 
abilities? This would provide reassuring negative 
evidence for the validity of the theory. Also, how 
does the fact that real DNA is not composed of 

distribution of his statistics? 

M. WATERMAN. The primary issue is to be able to 
detect weak alignments that are biologically signifi- 
cant from alignments that score high simply due to 
the large number of sequences and alignments. There 
are at  least two difficulties with running human ~1 

hemoglobin versus the Swisprot database. The first 
comes from the non-independence of the sequences in 
the database. As mentioned in the paper, another test 
in Vingron & Waterman (1994) applies the theory to 
Newat, a ‘single copy’ database. The fit is very good 
there with the right number of non-homologous 
sequences with high scores. The second problem 
comes from the fact that real protein sequences do 
not have iid letters. As noted in Smith et al .  (1985) 
there is a lack of sensitivity of score distribution on the 
dependencies in biological sequences. In  any case 
dependencies that can be modeled can easily be 
included in our simulations. We have not found this to 
be necessary in practice. 

random sequences of equally common bases affect the 1.. 
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