
White Paper

Implementation of the Smith-Waterman Algorithm on a Reconfigurable
Supercomputing Platform
Abstract
An innovative reconfigurable supercomputing platform—XD1000—is being developed by XtremeData to exploit the
rapid progress of FPGA technology and the high performance of HyperTransport™ interconnection. In this paper, we
present implementations of the Smith-Waterman algorithm for both DNA and protein sequences on the platform. The
main features include: a multistage processing element (PE) design which significantly reduces the FPGA resource
usage and allows more parallelism to be exploited; a pipelined control mechanism with uneven stage latencies—a
key to minimize the overall PE pipeline cycle time; and a compressed substitution matrix storage structure, resulting
in substantial decrease of the on-chip SRAM usage. Finally, we implement a 384-PE systolic array running at 66.7
MHz, which can achieve 25.6 GCUPS peak performance. Compared with the 2.2-GHz AMD Opteron host processor,
the FPGA coprocessor results in acceleration of 185 and 250, respectively.

Introduction
The XD1000 is an innovative reconfigurable supercomputing platform developed by XtremeData Inc. [20]. Taking
advantage of the rapid progress of FPGA technology and the high performance of the HyperTransport
interconnection that provides an efficient link between a main processor with a FPGA coprocessor, the XD1000
provides an ideal and cost-effective acceleration platform for many algorithms. As shown in Figure 1, the XD1000
integrates a leading-edge Altera® Stratix® II FPGA into a dual Opteron-based system. The FPGA coprocessor module
can be inserted directly into an Opteron 940 socket and uses the motherboard’s existing CPU infrastructure to create a
full-featured environment for FPGA-based reconfigurable computing coprocessor functions. The FPGA coprocessor
connects directly to the CPU’s HyperTransport bus and the DIMM slots on the motherboard while utilizing the
existing power supply and heat sink solution for the CPU. The high-bandwidth, low-latency HyperTransport link
between the XD1000 coprocessor and the Opteron CPU enables tightly coupled FPGA acceleration of X86
applications previously impossible with legacy PCI-bus based solutions [9].

Figure 1. The XD1000 Platform Block Diagram
September 2007, ver. 1.0 1

WP-01035-1.0

Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform Altera Corporation
Utilizing the XD1000 platform, we present implementations of the Smith-Waterman algorithm for both DNA and
protein sequences. To squeeze the maximum performance from the FPGA, we bring forward a multistage PE design
which significantly reduces the FPGA resource usage and, hence, allows more parallelism to be exploited. In
addition, our design features a pipelined control mechanism with uneven stage latencies—a key to minimizing the
overall PE pipeline cycle time. We also present a compressed substitution matrix storage structure, resulting in
substantial decrease of the on-chip SRAM usage. Using these methods, we implement a 384-PE systolic PE array
operating at 66.7 MHz, which can achieve a peak performance of 25.6 GCUPS. Compared with the 2.20-GHz AMD
Opteron host processor, the FPGA could gain 185 and 250 times acceleration, respectively.

Smith-Waterman Algorithm and Systolic PE Array
The Smith-Waterman algorithm is a well-known dynamic programming algorithm for performing local sequence
alignment for determining similar regions between two DNA or protein sequences. The algorithm was first proposed
by T. Smith and M. Waterman in 1981. Nowadays, it is still a core algorithm of many applications [18].

The algorithm consists of two steps:

1. Calculate the similarity matrix score.

2. According to the dynamic programming method, trace back the similarity matrix to search for the optimal
alignment. In the algorithm, the first step will consume the largest part of the total calculation time. The
definition of the Smith-Waterman algorithm is shown as below:

For two sequences S and T, the length of S is n, |S|= n; the length of T is m, |T| = m; V(i,j) is the optimal alignment
score of two sub-sequence S[1]…S[i] and T[1]…T[j], the calculation of V(i,j) is defined as Formula 1 and Formula 2:

Initialization: (Formula 1)

Recursion relation: (Formula 2)

In these formulas, a “-” stands for a null character or gap; V(i,0) stands for the result of comparing each character in S
with a gap in T; the definition of V(0,j) is the counterpart of comparing each character in T with a gap in S; and
(S[i],T[j]) is the value of substitution matrix.

While calculating the similarity matrix, the score of any matrix element V(i,j) always depends on the score of three
other elements:

■ The up-left neighbor element V(i-1,j-1)
■ The left neighbor V(i,j-1)
■ The up neighbor V(i-1,j)

Therefore, the calculation sequence of the similarity matrix will be as shown as Figure 2. It begins from the top-left
element to bottom-right element according to the direction as shown by the arrow. Through observation of the
similarity matrix calculation process, we found that for each clock cycle, every element on an anti-diagonal line
marked with the same number could be calculated simultaneously, with the standing for the elements that could be
calculated at the same time. For example, in the first cycle, only one element marked as (1) could be calculated. In the
second cycle, two elements marked as (2) could be calculated. In the third cycle, three elements marked as (3) could
be calculated, etc., and this feature implies that the algorithm has a very good potential parallelity.

V i 0(,) 0 0 i n≤ ≤,=
V 0 j(,) 0 0 j m≤ ≤,=⎩

⎨
⎧

V i j(,) max=

0
V i 1– j 1–(,) σ S i[] T j[](,)+

V i 1– j(,) σ S i[] -(,)+
V i j 1–(,) σ - T j[](,)+

1 i n≤ ≤ 1 j n≤ ≤, ,

⎩
⎪
⎪
⎨
⎪
⎪
⎧

2

Altera Corporation Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform
Figure 2. Similarity Matrix Calculating Sequence and Data Dependency

To further describe the level of similarity between two real bioinformatics sequences, an affine gap model was
introduced to the Smith-Waterman algorithm by O. Gotoh in 1982 [4]. In the affine gap model, the gap is used to
compensate for the insertion or deletion, to make the alignment more condensed in satisfying an expecting model.
The gap is usually a consecutive null character string in a sequence and should be as long as possible. In the affine
gap model, the penalty score (or cost) for the first gap is called gap_open, and the cost for the following gaps is called
gap_extension. According to the affine gap model, the formulas to calculate the similarity matrix are described
below:

Initialization: (Formula 3)

Recursion relation: (Formula 4)

 (Formula 5)

 (Formula 6)

In these formulas, α stands for the gap_open, and β stands for the gap_extension. E(i,j) and F(i,j) are the maxima of
the following two items: open a new gap or keep extending an existing gap.

S1 S2 S3 S4 S5 …

0 0 0 0 0 0

T1 0 ① ② ③ ④ ⑤ ⑥

T2 0 ② ③ ④ ⑤ ⑥ ⑦

T3 0 ③ ④ ⑤ ⑥ ⑦ ⑧

T4 0 ④ ⑤ ⑥ ⑦ ⑧ ⑨

T5 0 ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

… ⑥ ⑦ ⑧ ⑨ ⑩

V i 0(,) E i 0(,) 0 0 i n≤ ≤,= =
V 0 j(,) F 0 j(,) 0 0 j m≤ ≤,= =⎩

⎨
⎧

V i j(,) max=

0
E i j(,)
F i j(,)

V i 1– j 1–(,) σ S i[] T j[](,)+

1 i n≤ ≤ 1 j m≤ ≤, ,

⎩
⎪
⎪
⎨
⎪
⎪
⎧

E i j(,) max=
V i j 1–(,) α–
E i j 1–(,) β–

1 i n≤ ≤ 1 j m≤ ≤, ,
⎩
⎨
⎧

F i j(,) max=
V i 1– j(,) α–
F i 1– j(,) β–

1 i n≤ ≤ 1 j m≤ ≤, ,
⎩
⎨
⎧

3

Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform Altera Corporation
Systolic array was initially introduced by H. T. Kung and C. E. Leiserson in their papers [10] [11], and it has proven
to be very efficient in computing matrix multiplication or LU-decomposition. Further research revealed that dynamic
programming algorithm also mapped very well to a systolic array due to its potential parallelity [12].

In 1985, R. J. Lipton and D. P. Lopresti mapped the edit distance algorithm, a typical dynamic programming
algorithm for the global alignment of DNA sequences, to a systolic array by implementing an nMOS prototype chip
[13]. The preliminary results of the prototype performed hundreds to thousands times faster than a contemporary
minicomputer. In 1987, D.P. Lopresti built the first systolic array system for comparing nucleic acid sequences:
P-NAC [14]. Based on these works, many systolic array systems were developed, including BISP of California
Institute of Technology [3], BioSCAN of the University of North Carolina [21], B-SYS, Splash /Splash-2 of Brown
University, [8] [6] [7], Kestrel of the University of California at Santa Cruz [5], etc.

In recent years, along with the rapid progress of bioinformatics and FPGA technology, some new systems were
developed for both commercial and research purpose, including TimeLogic DeCypher [19], CLC Bioinformatics
Cube [2], and the Hyper Customized Processors for Bio-Sequence Database Scanning of NTU [16] [17], etc.

Based on these works, we present our implementations of the Smith-Waterman algorithm for both DNA and protein
sequences on an innovative reconfigurable supercomputing platform, the XD1000. Compared with these works, from
the perspective of application, our design extends the sequence length limit to 64 KBp, which will satisfy the
requirement of various applications. In the Smith-Waterman algorithm design for DNA sequence, there are four
software-programmable parameters, which allow the hardware implementation compatible with the existing software
programs, including both linear and affine gap model algorithms. In the Smith-Waterman algorithm design for
protein sequence, the substitution matrix is also reconfigurable, which allows users to choose from the different
evolution models or develop their own evolution models. From the perspective of hardware architecture, we present a
new multistage PE design and a compressed substitution matrix storage method, which result in a significant decrease
of FPGA resource usage and, hence, allows more parallelism to be exploited from the FPGA.

In our design, we map a systolic PE array to an anti-diagonal line of the score matrix as shown in Figure 3. For
instance, in the fifth clock cycle, the PE array is mapped to calculate the elements marked with (5), and in the next
cycle, the PE array will be mapped to calculate the elements marked with (6). In the following sections, we will
discuss in detail how to implement a PE.
4

Altera Corporation Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform
Figure 3. Mapping the Smith-Waterman Algorithm to a Systolic PE Array

Due to the hardware resource limitation, we can only implement a limited number of PEs on the FPGA. Thus, in the
calculation of a similarity matrix, we need to divide the matrix into sub-matrices. In each iteration, the PE array will
calculate one sub-matrix, and store the intermediate results in memory for the next iteration to use.

As shown in Figure 4, a systolic PE array consists of many identical cascading PEs. Before the start of the
calculation, sequence S should be shifted into the array under the control of the Move_in_S signal. The init_in signal
to each PE decides whether or not this PE will join in the calculation. Sequence T is synchronous to init_in when
entering into the PE array. The mid_in is used to feed back the temporary intermediate data to the PE array when
multi-iteration calculation is needed.

Figure 4. Systolic PE Array of the Smith-Waterman Algorithm

Our design was created such that the shift in direction of sequence S is opposite to that of sequence T. This
configuration guarantees that sequence S will be stored in the PE array as the original sequence, which means the tail
of the sequence will always be stored in the last PE. This method not only facilitates the software process of preparing
data, but also guarantees that the computing of the score matrix is continuous when multi-iterations are needed.

S1 S2 S3 S4 S5 …

0 0 0 0 0 0

T1 0 ② ③ ④ ⑤ ⑥

T2 0 ② ③ ④ ⑤ ⑥ ⑦

T3 0 ③ ④ ⑤ ⑥ ⑦ ⑧

T4 0 ④ ⑤ ⑥ ⑦ ⑧ ⑨

T5 0 ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

… ⑥ ⑦ ⑧ ⑨ ⑩

PE Array PE1 PE2 PE3 PE4 PE5 …

Smith -
Waterman
Processing
Element
No.1

Smith -
Waterman
Processing
Element
No.2

Smith -
Waterman
Processing
Element
No.n

Valid_S
S_inT _in

mid_in
init_in

Clock
Reset_T

Reset_S
Move_in_S

init_out
result
5

Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform Altera Corporation
The Smith-Waterman Algorithm-PE Design
In Formula 3, Formula 4, Formula 5, and Formula 6, a straightforward PE schematic was proposed (shown in
Figure 5) [16] [17], and the functions of each DFF (D-type flip-flop) are detailed below:

■ S-Out and T-out DFFs are used to store S[i] and T[j].
■ E-out DFF is used to store E(i,j), and it will be used by the same PE in the next clock cycle. Its inputs come from

the same PE which was generated in the previous clock cycle, representing the values in its upper neighbor
element.

■ F-out DFF is used to store F(i,j), and it will be used by the next PE. Its inputs come from the previous PE,
representing the values in its left neighbor element.

■ The input of V-diag DFF comes from the previous PE, and it is registered for one cycle before it is used by the PE,
so it represents the value of its upper-left neighbor element.

■ V-out DFF is used to store V(i,j).
■ Max_out DFF is used to store the maximum value of the similarity matrix. It has three inputs:

● The maximum value coming from the previous PE
● V(i,j) coming from the current PE
● The maximum value stored in itself

Figure 5. A Straightforward Smith-Waterman Algorithm PE Design

Before the hardware implementation, we need to estimate the FPGA resources used by the PE design. The PE data
width should be decided by the maximum sequence length and the maximum value in the substitution matrix. For
example, if the length is 64 KBp and the maximum value is 11, then the PE data width should be at least 20 bits,
which means 220>64K*11. In the straightforward PE design, there are five add/sub operations and six max operations.
Because each max operation consists of a subtraction and a 2:1 multiplexing operation, there are 11 add/sub and 6 2:1

D Q

LUT

DQ

D Q

D Q

D Q

Max- in

T - in

D Q

E -out

V (i,j-1)

α

α
F - in

D Q

V-diag

V -out

Max-out

S- in

V - in

F -out

M
ax

M
ax

M
ax

M
ax M

ax

F - out

V-out

S-out

T -out

S-out

T -out

M
ax
6

Altera Corporation Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform
multiplexing operations in total for a PE. If the data width is set to 20 bits, a PE will require about 340 adaptive
look-up tables (ALUTs).

The Altera Stratix II EP2S180 FPGA used as the FPGA coprocessor in this study has 14,3520s ALUTs in total. The
HyperTransport interface and some other logic will require 8 percent of resources (normally, maximum FPGA
resource utilization is less than 90 percent), so we can accommodate at most 340 PEs. Considering the cost of other
necessary control logic modules, the number of PEs we can implement will be less than 270 if we simply adopt the
straightforward PE design. Therefore, we need to endeavor to reduce the resource cost of the PE, so that we can put as
many PEs on the FPGA as possible.

Simplify the Max-Out Operation of V(i,j)
In the PE design, the Max-out DFF is used to store the maximum value of the similarity matrix. To get the maximum
value, for the first step, it must compare the maximum output from the previous PE with V(i,j) of the current PE,
which stands for the comparison between the horizontal neighbor matrix elements. In the second step, it must
compare the output from the first step with the value stored in the Max-out DFF itself. This stands for the comparison
between the vertical neighbor matrix elements. The result will be stored back to the Max-out DFF itself again after
the two steps.

Considering that at the end of the calculation, all the maximum values stored in each Max-out DFF will shift out of
the array, we can move the second comparison step outside of the array, while the first comparison step is maintained
by each PE. This way, we can delete a maximum operation from the PE (the purple “max” block in Figure 5.).

Simplify the Operation of V(i,j) - α
When we cascade multiple PEs to form a PE array as shown in Figure 6, we find that the output of V-out –α in the left
PE (red sub-block) is identical to the V-in –α of the right PE (blue sub-block). Therefore, we can delete the V-in –α
from the PE design. What we need to do is add a new output of the V-out –α called V-out-Alpha and an input called –
instead of the V-in –α. When cascading the PE to form the PE array, we need to connect the V-out-Alpha signal of the
left PE to the V-in-Alpha signal of the right PE.

Figure 6. Cascading Smith-Waterman Algorithm PE in an Array

D Q

LUT

DQ

D Q

D Q

D Q

Max- in

T - in

D Q

E -out

V (i,j-1)

α

α
F - in

D Q

V-diag

V -out

Max-out

S- in

V - in

F -out

M
ax

M
ax

M
ax

M
ax M

ax

F - out

V-out

S-out

T -out

S-out

T -out

M
ax

D Q

LUT

DQ

D Q

D Q

D Q

Max- in

T - in

D Q

E -out

V (i,j-1)

α

α
F - in

D Q

V-diag

V-out

Max-out

S- in

V- in

F -out

M
ax

M
ax

M
ax

M
ax M

ax

F - out

V -out

S-out

T -out

S-out

T -out
M

ax
7

Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform Altera Corporation
Compact the Max Operation
A max operation consists of a subtraction and a 2:1 multiplexing operation. For example, R = (X < Y)? Y : X will
translate into two equations—Temp = X - Y; R = Sign_Bit_Temp? Y : X—when it is synthesized into a FPGA.
Therefore, the max operation of two 20-bit data will require 40 ALUTs. 20 ALUTs are used for the subtraction,
another 20 ALUTs are used for the 2:1 multiplexing operation, and both of the operations will be implemented by the
ALUTs. But, indeed, only the sign bit of the result will be used as the select control signal for the 2:1 multiplexing
operation. The difference itself will be discarded. In hardware implementation, the sign bit is identical to the
carry_out of the most magnificent bit (MSB) of the subtraction.

Compared to its previous-generation FPGA, the Stratix II FPGA represents a significant improvement in its adaptive
logic module (ALM) design [1]. While operating in arithmetic mode, the ALM can support simultaneous use of the
adder’s carry output along with combinational logic outputs. In this mode, the output of the adder is ignored. This
usage of the adder with the combinational logic output provides resource savings of up to 50 percent for functions
that can use this ability. A conditional operation, such as the max operation R = (X < Y)? Y : X, can fully use this
feature of the ALM, as shown in Figure 7.

Figure 7. Max Operation Example

To implement this function, the adder is used to subtract Y from X. The carry-out signal is then fed to the logic array
block (LAB)-wide sync-load signal. If X is less than Y, the carry-out signal is 1. The sync-load is asserted and selects
the sync-data as input. In this case, the data Y drives the sync-data inputs to the registers. If X is greater than or equal
to Y, the sync-load signal is de-asserted and X drives the data port of the registers.

A prerequisite to compacting the comparison operation and 2:1 multiplexing operation to an ALM is that the output
of the 2:1 multiplexing only feeds to a DFF. In other words, we need a DFF immediately after the max operation. By
doing this, it appears that we will introduce additional logic resource usage. Because it improves the usage percentage
in each ALM, however, it helps to conserve general FPGA resources.
8

Altera Corporation Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform
A problem arising from these introduced DFFs is that the PE would require more than one clock cycle to finish the
calculation of one matrix element, which would hinder the performance greatly.

Handling the Negative Number
When calculating the V(i-1,j-1)+σ(S[j],T[j]), the result is probably negative due to the σ(S[j],T[j]) being negative
when S[j] is not equal to T[j]. Because all the max operations are based on unsigned numbers, we need to process the
negative number before it comes to the max function.

According to Formula 4, all negative numbers will be reset to zero. This means that whenever a negative number is
generated from the add/sub operation, we can reset it to zero unconditionally. Therefore, in the PE design, we
introduce a DFF to store the result from the add/sub operation, and we use the MSB (the sign bit) of the add/sub result
as a synchronous clear signal to the DFF. Thus, when a positive number is derived from the add/sub function, it will
be stored into the DFF as it is; when a negative number is derived from the add/sub function, a zero will be stored into
the DFF instead.

Multistage in the PE Design
In the previous sections, we introduced some DFFs to reduce the area cost and to process the negative numbers, but
this also generated more clock cycles to finish the calculation of a matrix element. To solve this problem, our design
features a pipelined control mechanism with uneven stage latencies—a key to minimizing the overall PE pipeline
cycle time.

With the FPGA internal phase-locked loop (PLL), we generate four clocks with the same clock frequency but with a
different phase relationship, as shown in Figure 8. These clocks are connected to the DFFs as the requirement of the
multistage PE design, as shown in Figure 9.

Figure 8. Clocks for the Multistage PE Design

The phase delays are decided by the timing simulation of the PE design. For example, the delay from clock to
clock-d2, is set to 6.3 ns, because there is a subtraction operation and a max operation that need to finish during this
period, and the longest data path is about 6 ns; the delay from clock-d2 to clock-d3 is set to 4.5 ns, because there is
only a maximum operation during this period, and the longest datapath is about 4 ns.

Figure 9 is the block diagram of a PE design with multistage (the LUT logic will be discussed in the next section). In
the design, α and β are software programmable parameters, and the values of σ(S[i],T[j]) are also two software

Clock

Clock-d1

Clock-d2

Clock-d3

3.8 ns
6.3 ns

10.8 ns
15.0 ns
9

Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform Altera Corporation
programmable parameters. By setting the parameters properly, the hardware implementation could be compatible
with the existing software programs, including both linear and affine gap model algorithms.

Figure 9. Multistage PE Design

When implemented in the Altera Stratix II FPGA, the design will require about 180 ALUTs. In contrast, for the
unoptimized straightforward PE design, even when considering the techniques of packing the max operation with the
output register (for V-out and Max-out), it will still need 300 ALUTs. Therefore, through the optimizations discussed
in the next section, we reduced about 40 percent of ALUT usage of a PE. This means that we can implement more
PEs in the FPGA and, as a result, exploit more parallelism from it. Meanwhile, the uneven stage latencies control
mechanism guarantees that the PE can work at a reasonably high frequency. In our final implementation, the main
clock frequency of the PE is 66.7 MHz.

LUT Design in Smith-Waterman PE for Protein Sequence
The difference between a DNA sequence and a protein sequence is that there are only four types of nucleotides (A, G,
C, and T) in a DNA sequence, but there are 20 types of amino acids in a protein sequence. When encoding the DNA
sequence, we need only two bits to represent the four letters, but for the amino acid sequence, we need at least five
bits. That will require a little bit more DFFs to store the sequences in the PE design, but will not affect the structure of
the PE design.

The key point is that the penalty score substitution matrices for the nucleotide and amino acid are totally different.
For the DNA sequence, there are only two values for the substitution matrix. These are the values when S[i] and T[j]
are equal and not equal. But for the protein sequence, the penalty score of substituting a letter with another letter is
different for each letter because of the biological meaning. Therefore, the substitution matrix is normally organized as
a 20*20 penalty score matrix. A widely used score matrix, Blosum62, is shown in Figure 10 [15].

D Q

LUT

D Q

D Q

D Q
Max- in

T - in

D Q

E -out

V(i,j-1)

F - in

D Q

V-diag

V -out

Max-out

S- in

V- in

F -out

M
ax

M
ax

M
ax

M
ax

M
ax

F - out

V-out

S-out

T -out

S-out

T -out

D Q

D Q

D Q

Max-out

V-out -Alpha

V- in-Alpha

Clock-d1

Clock-d2

Clock-d3

Clock-d3Clock-d2Clock-d1Clock Clock
10

Altera Corporation Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform
Figure 10. Blosum62 Substitution Matrix

Obviously we need to store the substitution matrix in a RAM block as a LUT in the PE. In Blosum62, the maximum
score is 11, and the minimum score is -4, but in some other types of substitution matrices, the data may vary in a
bigger range. Considering the generality, we set the data width to 9 bits, and since the MSB is the sign bit, the data
range is -255 ~ +255, which should be large enough for most cases.

As we mentioned in the beginning of this section, we need 10 bits to store S[i] and T[j] in the PE, 5 bits for each. If
we simply implement the LUT without any optimization, the depth of the RAM should be 210=1024; therefore, we
need two M4k RAM blocks to store a LUT.

In fact, there are only 400 entries in the table used by the substitution matrix. The others are blank, and occupied by
the non-existent encoding positions. Meantime, the substitution matrix is symmetric to the diagonal line—only 210
elements are necessary, so if we simply implement the LUT without any optimization, nearly 80 percent of the
memory space will be wasted in storing the unnecessary information. To store the substitution matrix more efficiently
in the RAM block, we introduced a new storage method which divides the matrix into four small matrices and stores
only three of them respectively. The sub-matrix partition is shown in Figure 11.

C S T P A G N D E Q H R K M I L V F Y W
C 9 -1 -1 -3 0 -3 -3 -3 -4 -3 -3 -3 -3 -1 -1 -1 -1 -2 -2 -2
S -1 4 1 -1 1 0 1 0 0 0 -1 -1 0 -1 -2 -2 -2 -2 -2 -3
T -1 1 4 1 -1 1 0 1 0 0 0 -1 0 -1 -2 -2 -2 -2 -2 -3
P -3 -1 1 7 -1 -2 -1 -1 -1 -1 -2 -2 -1 -2 -3 -3 -2 -4 -3 -4
A 0 1 -1 -1 4 0 -1 -2 -1 -1 -2 -1 -1 -1 -1 -1 -2 -2 -2 -3
G -3 0 1 -2 0 6 -2 -1 -2 -2 -2 -2 -2 -3 -4 -4 0 -3 -3 -2
N -3 1 0 -2 -2 0 6 1 0 0 -1 0 0 -2 -3 -3 -3 -3 -2 -4
D -3 0 1 -1 -2 -1 1 6 2 0 -1 -2 -1 -3 -3 -4 -3 -3 -3 -4
E -4 0 0 -1 -1 -2 0 2 5 2 0 0 1 -2 -3 -3 -3 -3 -2 -3
Q -3 0 0 -1 -1 -2 0 0 2 5 0 1 1 0 -3 -2 -2 -3 -1 -2
H -3 -1 0 -2 -2 -2 1 1 0 0 8 0 -1 -2 -3 -3 -2 -1 2 -2
R - 3 -1 -1 -2 -1 -2 0 -2 0 1 0 5 2 -1 -3 -2 -3 -3 -2 -3
K -3 0 0 -1 -1 -2 0 -1 1 1 -1 2 5 -1 -3 -2 -3 -3 -2 -3
M -1 -1 -1 -2 -1 -3 -2 -3 -2 0 -2 -1 -1 5 1 2 -2 0 -1 -1
I -1 -2 -2 -3 -1 -4 -3 -3 -3 -3 -3 -3 -3 1 4 2 1 0 -1 -3
L -1 -2 -2 -3 -1 -4 -3 -4 -3 -2 -3 -2 -2 2 2 4 3 0 -1 -2
V -1 -2 -2 -2 0 -3 -3 -3 -2 -2 -3 -3 -2 1 3 1 4 -1 -1 -3
F -2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1 -3 -3 0 0 0 -1 6 3 1
Y -2 -2 -2 -3 -2 -3 -2 -3 -2 -1 2 -2 -2 -1 -1 -1 -1 3 7 2
W -2 -3 -3 -4 -3 -2 -4 -4 -3 -2 -2 -3 -3 -1 -3 -2 -3 1 2 11
11

Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform Altera Corporation
Figure 11. Sub-Matrix Partition

We can divide the whole 20*20 matrix into four sub-matrices according to the four possible combinations of the MSB
of S[i] and T[j], as shown in Figure 11. The yellow partition is a 16*16 matrix, the blue partition is a 4*4 matrix, and
the pink partitions are two symmetric 4*16 matrices. Based on the partition, we can store these sub-matrices into a
RAM block according the rules in Figure 12 and Figure 13.

Figure 12. Substitution Matrix Element Address Encoding Method

Figure 12 shows how to map these sub-matrices into the different positions of the RAM block, or how to assign
addresses to the matrix elements. We encode S[i] and T[j] to Ds[4:0] and Dt[4:0] respectively, according to the
alphabet sequential.

■ When Ds[4]=0 and Dt[4]=0, let Addr[8]=0, Addr[7:4]=Ds[4:0], Addr[3:0]=Dt[4:0], there are 256 entries in
this address range, and the yellow partition will be stored in it.

■ When Ds[4]=0 and Dt[4]=1, let Addr[8:6]=3’b100, Addr[5:4]=Dt[1:0], Addr[3:0]=Ds[4:0], there are 64
entries in this address range, and the pink partition will be stored in this area.

■ When Ds[4]=1 and Dt[4]=0, we can swap Ds and Dt, so the second pink partition will be stored in the same
address range. In other words, because the two pink partitions are symmetric, we only store one of them to the
RAM block.

■ When Ds[4]=1 and Dt[4]=1, let Addr[8:4]=5’b10100, Addr[3:2]=Ds[1:0], Addr[1:0]=Dt[1:0], there are 16
entries in this address range, and the blue partition will be stored in this area.

S/T 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13
00
01
02
03
04
05
06
07
08
09
0a
0b
0c
0d
0e
0f

10
11
12
13

MSB of S & T MSB Memory Address[8:0] LSB
Ds[4] Dt[4] Bit[8] Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0]

0 0 0 Ds[3:0] Dt[3:0]
0 1 1 0 0 Dt[1:0] Ds[3:0]
1 0 1 0 0 Ds[1:0] Dt[3:0]
1 1 1 0 1 0 0 Ds[1:0] Dt[1:0]
12

Altera Corporation Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform
According to this method, the three different partitions could be stored in a continuous address range from
9’b0_0000_0000 to 9’b1_0100_1111, and only 336 entries are needed to store the whole substitution matrix. In a real
FPGA, we can use an M4k block to carry out this implementation.

Figure 13 shows the memory storage structure of the substitution matrix; the left nine columns are the addresses of
the memory, and the right nine columns are the data stored in the memory. The MSB of the data is signed bit, when it
is 0, the value is a non-negative number; when it is 1, the value is a negative number.

Figure 13. Substitution Matrix Storage Structure in Memory

Core Logic Design of the Smith-Waterman Algorithm
In order to implement the whole calculation process, we need to design some supplemental modules outside the
systolic PE array, including counters, FIFOs, shifters, calculator, and some registers. The block diagram of core logic
is shown in Figure 14.

MSB MSB(=Signed bit) Data LSB
0 0 0 0 0 0 0 0 0 S

S
S
S

0 1 1 1 1 1 1 1 1 S

1 0 0 0 0 0 0 0 0 S
S
S

1 0 0 1 1 1 1 1 1 S

1 0 1 0 0 0 0 0 0 S
S

1 0 1 0 0 1 1 1 1 S

LSBAddress
13

Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform Altera Corporation
Figure 14. Core Logic Design of the Smith-Waterman Algorithm

In Figure 14, the functions of each module are described below:

■ The S and T Counter are used to control the sequences shifting into the PE array process according to the length
of S/T.

■ The S/T FIFO is used to buffer the input data coming from the HyperTransport bus interface.
■ The S/T Shifter is used to shift the 64-bit input data to an encoded sequence letter in each clock cycle, and the

encoded sequence letter will be transferred into the PE array.
■ The Mid-data FIFO is used to store the temporary intermediate data from the PE array when multi-iteration

calculation is needed.
■ The Mid-in Generator module is used to calculate V-in –α for the first PE, and it is also used to buffer the mid-data

for the PE array according to the requirement of multistage clocks.
■ The Mid-out Combination module is used to combine the output from the PE array and write to Mid-data FIFO.
■ The Max Comparator module is used to compare the Max-out and V-out from the PE array and store the maximum

value in it. This part is equivalent to the second comparison step in Figure 5 (the purple max block) and represents
the comparison between the vertical neighbor matrix elements.

■ The Control/Result Registers module is used by the host to write parameters and control registers to, and read the
status as well as the result from

Performance Evaluation
To evaluate the performance of the FPGA, we compared it with the host system of the XD1000 platform, which has a
2.2-GHz AMD64 Opteron processor and 8-Gbyte DDR2 SDRAM memory. The operating system of the XD1000 is
Linux 2.6.16.14, and all software was compiled by GCC 4.1.1 with the “-O3” optimization option.

Speedup Test for Smith-Waterman Algorithm of DNA
For the Smith-Waterman algorithm of DNA, we implemented 384 PEs in the FPGA, which cost 121,836 ALUTs (85
percent of 143,520 ALUTs in total) and 3,587,296 memory bits (38 percent of 9,383,040 bits in total). In this study,
the PE array working frequency was 66.7MHz, and the peak performance of the PE array was 25.6 GCUPS. The
testing results are shown in Figure 15.

Smith-
Waterman
Processing
Element
Array

S/T
Shifter

Mid-in
Generator

S/T
FIFO

Mid-data
FIFO

Max
Comparator

Mid-out
Combination

S-Counter

T -Counter

Control/
Result

Registers

S/T

Control

Load

Load

Init

S

T

Mid-in

Max-out

rd

rd

Init

Mov- S

Shift

Valid_S

Wr-FIFO

T- Count

S -Count

V- out

Result

Mid-data

F- out
T -out
14

Altera Corporation Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform
Figure 15. Speedup Test Result of Smith-Waterman Algorithm of DNA

We can find that when the sequences are short, the speedup is very low. For example, when the length of S/T sequence
both are 256 Bp, the speedup over the software is only 2.04 for the following reasons.

The PE array is not fully joining in the calculation. At any clock cycle, only a fraction of the PEs are effectively
running. In fact, amongst the 384 PEs, only 256 of them are valid with a query letter in it (from sequence S), and the
beginning 128 PEs are invalid. According to the working principle of the systolic PE array, all the letters of sequence
T will initially transfer through the beginning 128 PEs before a valid calculation can occur. Therefore, the beginning
128 cycles are used to pipe the sequence T to the first valid PE. In the 129th cycle afterwards, there is only 1 PE
participating in the calculation. For each of the following clock cycles, another PE will join in the calculation until the
384th cycle, where there will be 256 PEs running. After that point, for each following clock cycles, a PE will quit
from the calculation, until in the 640th cycle, when only the last PE is running. Therefore, the calculating will cost
640 cycles in total, and there are only an average of 102 PEs running effectively in each cycle.

Another important reason is that the FPGA initialization time is a constant when the sequences are very short. Before
transferring the sequences to the PE array, each nucleotide letter is encoded to a 2-bit data, for example, the 256 Bp
will be decoded to 512-bit or 64-byte data. However, according to the HyperTransport direct memory access (DMA)
transfer requirement, the minimum transfer block is 4 Kbytes. Therefore, it will cost the same time to transfer a 256
Bp sequence as to transfer a 16 KBp sequence from the host CPU to the PE array. This also implies that it is needed
to improve the performance of transferring a small data block for the XD1000 platform.

During the calculation, except for the parallel part that could be run by the PE array, there still is a serial part that
needs to be run by the host CPU; for example, for such functions as preparing data, initializing the FPGA, etc.
According to Amdahl’s law, when the task scale is small, this serial part will dominate the time cost. No matter how
many times you can speed up the parallel part, the overall improvement of the task will be limited by the parallel part
to the serial part ratio.

Speedup Test for Smith-Waterman Algorithm of Protein
For the Smith-Waterman algorithm of protein, we also implemented 384 PEs in the FPGA, which cost 111,574
ALUTs (78 percent of 143,520 ALUTs in total) and 5,348,320 memory bits (57 percent of 9,383,040 bits in total). In
this study, the PE array working frequency was 66.7 MHz, and the peak performance of the PE array was 25.6
GCUPS. The testing results are shown in Figure 16.

Length
of S/T
(Bp)

Software
Time (s)

FPGA
Time (s) Speedup

256 0.000461 0.000226 2.04

512 0.001837 0.000374 4.91

1024 0.007307 0.000472 15.48

2048 0.029225 0.000898 32.54

4096 0.116680 0.001781 65.51

8192 0.497743 0.004661 106.79

16384 2.208849 0.014080 156.88

32768 8.351658 0.048909 170.76

65536 33.524406 0.180816 185.41

Speedup Test for DNA Smith-Waterman Algorithm

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

256 512 1024 2048 4096 8192 16384 32768 65536

Sequence Length(Bp)

Sp
ee

du
p

15

Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform Altera Corporation
Figure 16. Speedup Test Result of Smith-Waterman Algorithm of Protein

Compared to the DNA Smith-Waterman algorithm, the protein test reveals much higher speedup with the same
hardware peak performance. That is because when the calculations are driven by software, the software needs to look
up a big table to get the substitution matrix value, and it will use more time than it would if it were just comparing two
letters to see if they are equal.

In the software implementation for the Blosum62 substitution matrix (Figure 10), the matrix is stored in a
two-dimensional array. Before accessing an element of the array, the software needs to calculate the index of the
element. Unfortunately, the amino acid letters are not continuous as the alphabet is. Five letters are missing before the
last letter “Y;” therefore, the software program has to use the “case” statement to map a letter to an index. There are
20 types of letters in the protein sequences, so the software program needs a very long case statement. Without
optimization, the software program would require as much as twice the time, as shown in Figure 16.

As an improvement, we expanded the substitution matrix from 20*20 to 25*25, put these five missing letters into the
matrix, and re-ordered the matrix according to the alphabet sequential. The substituting score from a valid letter to an
invalid letter was set to zero. With this approach, we could calculate the index by only one sentence: just use the
ASCII value of a letter minus 0x41 (0x41 is the ASCII of “A”). This approach enables the software to run 100 percent
faster than the unoptimized software version.

Conclusion and Future Work
In this paper, we presented implementations of the Smith-Waterman algorithm for both DNA and protein sequences
based on the XD1000 reconfigurable supercomputing platform. To exploit more parallelism from the FPGA, we
proposed a multistage PE design with uneven stage latencies control mechanism and a compressed substitution
matrix storage method, which greatly decreased FPGA resource usage. By these methods, we implemented a 384-PE
systolic array working on 66.7 MHz, which can achieve 25.6 GCUPS peak performance. Compared to the 2.2-GHz
AMD64 Opteron host processor of the XD1000 platform, the FPGA was able to gain 185 and 250 times speedup,
respectively.

In the meantime, our design extended the sequence length limit to 64KBp, which satisfies the requirement of various
applications. In the Smith-Waterman algorithm design for DNA sequence, there are four software programmable
parameters, which allow the hardware implementation compatible with the existing software programs, including
both linear and affine gap model algorithms. In the Smith-Waterman algorithm design for protein sequence, the
substitution matrix is also reconfigurable, which allows users to choose from the different evolution models or
develop their own evolution models. These features also make our implementation much more practical in a real
application.

Length
of S/T
(Bp)

Software
Time (s)

FPGA
Time (s) Speedup

256 0.000675 0.000303 2.23

512 0.002693 0.000376 7.16

1024 0.010747 0.000490 21.93

2048 0.042928 0.000828 51.85

4096 0.172775 0.001753 98.56

8192 0.704018 0.004675 150.59

16384 2.887660 0.014221 203.06

32768 11.364635 0.049333 230.37

65536 45.297020 0.181534 249.52

Speedup Test for Protein Smith-Waterman Algorithm

0.00

50.00

100.00

150.00

200.00

250.00

300.00

256 512 1024 2048 4096 8192 16384 32768 65536

Sequence Length(Bp)

Sp
ee

du
p

16

Altera Corporation Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform
Our future work includes extending our design to accelerate the network content processing, such as approximate
character string matching for multi-patterns and multi-rules, network intruding detection, etc. An initial experiment
shows that it will probably achieve more than 100 times speedup over the general-purpose CPU. We will also try to
harness the reconfigurable computing platform in the scientific computing area of floating point applications, such as
processing Monte Carlo algorithms, BLAS, FFT, FIR, etc., hopefully extending the performance of the Opteron
processor by an order of magnitude.

References
1. Altera Corporation, Stratix II Device Handbook, 2006:

www.altera.com

2. CLC Bio Inc., 2006:
www.clcbio.com

3. E. Chow, T. Hunkapiller, J. Peterson, M. S. Waterman, “Biological Information Signal Processor,” in Proc. Int.
Conf. ASAP (M. Valero et al., eds.), Los Alamitos, CA, pp: 144~160, IEEE CS, September 1991.

4. O. Gotoh, “An Improved Algorithm for Matching Biological Sequences,” Journal of Molecular Biology, 162, pp:
705~708, 1982.

5. J. D. Hirschberg, R. Hughey, K. Karplus, “Kestrel: A programmable array for sequence analysis,” In: Proc. Int.
Conf. ASAP ‘96, IEEE CS, pp: 25~34, Chicago, IL, 1996.

6. D. T. Hoang, “A systolic array for the sequence alignment problem,” Brown University, Providence, RI,
Technical Report, pages CS-92-22, 1992.

7. D. T. Hoang, “Searching genetic databases on splash 2,” Proc. IEEE Workshop on FPGAs for Custom
Computing Machines, pp: 185~192, CS Press, Los Alamitos, CA, 1993.

8. R. Hughey, D. P. Lopresti, “B-SYS: A 470-processor programmable systolic array,” Proc. Int. Conf. Parallel
Processing (C.Wu, ed.), vol. 1, (Boca Raton, FL), pp: 580~583, CRC Press, August 1991.

9. HyperTransport Consortium, 2006:
www.hypertransport.org

10. H. T. Kung, C. E. Leiserson, “Systolic Arrays for VLSI,” Interim report, Department of Computer Science,
Carnegie Mellon University, December 1978.

11. H. T. Kung, C. E. Leiserson, “Algorithms for VLSI Processor Arrays,” Introduction to VLSI Systems (C. A.
Mead and L. A. Conway, eds.), chapter 8.3, pp: 271~292, Addison-Wesley, 198.0

12. H. T. Kung. “Why systolic architectures?,” IEEE Computer, 15(1), pp: 37~46, January 1982.

13. Richard J. Lipton and Daniel Lopresti, “A Systolic Array for Rapid String Comparison,” Proceedings of the
Chapel Hill Conference on Very Large Scale Integration, pp: 363~376, 1985.

14. D.P. Lopresti, “P-NAC: A Systolic Array for Comparing Nucleic Acid Sequences,” IEEE Computer, 20 (7), pp:
98~99, 1987.

15. National Center for Biotechnology Information, 2006:
www.ncbi.nlm.nih.gov
17

Implementation of the Smith-Waterman Algorithm on a Reconfigurable Supercomputing Platform Altera Corporation
16. Timothy Oliver, Bertil Schmidt, “High Performance Biosequence Database Scanning on Reconfigurable
Platforms,” Proceedings of the 18th IPDPS, 2004.

17. Timothy Oliver, Bertil Schmidt, Douglas Maskell, “Hyper Customized Processors for Bio-Sequence Database
Scanning on FPGAs,” FPGA‘05, Monterey, CA, 2005.

18. T. F. Smith, M. S. Waterman, “Identification of Common Molecular Subsequences,” Journal of Molecular
Biology, 147(1): pp: 195~197, 1981.

19. TimeLogic Corp., 2005:
www.timelogic.com

20. XtremeData, Inc., XD1000 Development System, 2006:
www.xtremedatainc.com

21. C. T. White, R. K. Singh, et al. “BioSCAN: A VLSI-based System for Biosequence Analysis,” IEEE
International Conference on Computer Design: VLSI in Computers and Processors, pp: 504~509, IEEE
Computer Society Press, Washington, DC, 1991.

Acknowledgements
We would like to thank XtremeData Inc. for inviting us to join their university program and donating to our
laboratory the XD1000 platform with well prepared documents. We would also like to thank Mr. Gary Finley of
XtremeData Inc. for technical support on the platform. Thanks to Mr. Dimitrij Krepis for help in setting up the
XD1000 environment. I would specially like to thank Mr. Tom St. John for his careful edits on this paper.
■ Peiheng Zhang, CAPSL, University of Delaware
■ Guangming Tan, CAPSL, University of Delaware
■ Guang R. Gao, CAPSL, University of Delaware
18

	Abstract
	Introduction
	Utilizing the XD1000 platform, we present implementations of the Smith-Waterman algorithm for both DNA and protein sequences. To...
	Smith-Waterman Algorithm and Systolic PE Array
	The Smith-Waterman Algorithm-PE Design
	Simplify the Max-Out Operation of V(i,j)
	Simplify the Operation of V(i,j) - a
	Compact the Max Operation
	Handling the Negative Number
	Multistage in the PE Design

	LUT Design in Smith-Waterman PE for Protein Sequence
	Core Logic Design of the Smith-Waterman Algorithm
	Performance Evaluation
	Speedup Test for Smith-Waterman Algorithm of DNA
	Speedup Test for Smith-Waterman Algorithm of Protein

	Conclusion and Future Work
	References
	Acknowledgements
	We would like to thank XtremeData Inc. for inviting us to join their university program and donating to our laboratory the XD100...

