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Abstract
An innovative reconfigurable supercomputing platform—XD1000—is being developed by XtremeData to exploit the 
rapid progress of FPGA technology and the high performance of HyperTransport™ interconnection. In this paper, we 
present implementations of the Smith-Waterman algorithm for both DNA and protein sequences on the platform. The 
main features include: a multistage processing element (PE) design which significantly reduces the FPGA resource 
usage and allows more parallelism to be exploited; a pipelined control mechanism with uneven stage latencies—a 
key to minimize the overall PE pipeline cycle time; and a compressed substitution matrix storage structure, resulting 
in substantial decrease of the on-chip SRAM usage. Finally, we implement a 384-PE systolic array running at 66.7 
MHz, which can achieve 25.6 GCUPS peak performance. Compared with the 2.2-GHz AMD Opteron host processor, 
the FPGA coprocessor results in acceleration of 185 and 250, respectively.

Introduction
The XD1000 is an innovative reconfigurable supercomputing platform developed by XtremeData Inc. [20]. Taking 
advantage of the rapid progress of FPGA technology and the high performance of the HyperTransport 
interconnection that provides an efficient link between a main processor with a FPGA coprocessor, the XD1000 
provides an ideal and cost-effective acceleration platform for many algorithms. As shown in Figure 1, the XD1000 
integrates a leading-edge Altera® Stratix® II FPGA into a dual Opteron-based system. The FPGA coprocessor module 
can be inserted directly into an Opteron 940 socket and uses the motherboard’s existing CPU infrastructure to create a 
full-featured environment for FPGA-based reconfigurable computing coprocessor functions. The FPGA coprocessor 
connects directly to the CPU’s HyperTransport bus and the DIMM slots on the motherboard while utilizing the 
existing power supply and heat sink solution for the CPU. The high-bandwidth, low-latency HyperTransport link 
between the XD1000 coprocessor and the Opteron CPU enables tightly coupled FPGA acceleration of X86 
applications previously impossible with legacy PCI-bus based solutions [9].

Figure 1. The XD1000 Platform Block Diagram
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Utilizing the XD1000 platform, we present implementations of the Smith-Waterman algorithm for both DNA and 
protein sequences. To squeeze the maximum performance from the FPGA, we bring forward a multistage PE design 
which significantly reduces the FPGA resource usage and, hence, allows more parallelism to be exploited. In 
addition, our design features a pipelined control mechanism with uneven stage latencies—a key to minimizing the 
overall PE pipeline cycle time. We also present a compressed substitution matrix storage structure, resulting in 
substantial decrease of the on-chip SRAM usage. Using these methods, we implement a 384-PE systolic PE array 
operating at 66.7 MHz, which can achieve a peak performance of 25.6 GCUPS. Compared with the 2.20-GHz AMD 
Opteron host processor, the FPGA could gain 185 and 250 times acceleration, respectively.

Smith-Waterman Algorithm and Systolic PE Array
The Smith-Waterman algorithm is a well-known dynamic programming algorithm for performing local sequence 
alignment for determining similar regions between two DNA or protein sequences. The algorithm was first proposed 
by T. Smith and M. Waterman in 1981. Nowadays, it is still a core algorithm of many applications [18].

The algorithm consists of two steps: 

1. Calculate the similarity matrix score.

2. According to the dynamic programming method, trace back the similarity matrix to search for the optimal 
alignment. In the algorithm, the first step will consume the largest part of the total calculation time. The 
definition of the Smith-Waterman algorithm is shown as below:

For two sequences S and T, the length of S is n, |S|= n; the length of T is m, |T| = m; V(i,j) is the optimal alignment 
score of two sub-sequence S[1]…S[i] and T[1]…T[j], the calculation of V(i,j) is defined as Formula 1 and Formula 2:

Initialization:                                                              (Formula 1)

Recursion relation:                    (Formula 2)

In these formulas, a “-” stands for a null character or gap; V(i,0) stands for the result of comparing each character in S 
with a gap in T; the definition of V(0,j) is the counterpart of comparing each character in T with a gap in S; and 
(S[i],T[j]) is the value of substitution matrix.

While calculating the similarity matrix, the score of any matrix element V(i,j) always depends on the score of three 
other elements: 

■ The up-left neighbor element V(i-1,j-1)
■ The left neighbor V(i,j-1)
■ The up neighbor V(i-1,j)

Therefore, the calculation sequence of the similarity matrix will be as shown as Figure 2. It begins from the top-left 
element to bottom-right element according to the direction as shown by the arrow. Through observation of the 
similarity matrix calculation process, we found that for each clock cycle, every element on an anti-diagonal line 
marked with the same number could be calculated simultaneously, with the standing for the elements that could be 
calculated at the same time. For example, in the first cycle, only one element marked as (1) could be calculated. In the 
second cycle, two elements marked as (2) could be calculated. In the third cycle, three elements marked as (3) could 
be calculated, etc., and this feature implies that the algorithm has a very good potential parallelity.
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Figure 2. Similarity Matrix Calculating Sequence and Data Dependency

To further describe the level of similarity between two real bioinformatics sequences, an affine gap model was 
introduced to the Smith-Waterman algorithm by O. Gotoh in 1982 [4]. In the affine gap model, the gap is used to 
compensate for the insertion or deletion, to make the alignment more condensed in satisfying an expecting model. 
The gap is usually a consecutive null character string in a sequence and should be as long as possible. In the affine 
gap model, the penalty score (or cost) for the first gap is called gap_open, and the cost for the following gaps is called 
gap_extension. According to the affine gap model, the formulas to calculate the similarity matrix are described 
below:

Initialization:                                                       (Formula 3)

Recursion relation:                      (Formula 4)

                (Formula 5)

                (Formula 6)

In these formulas, α stands for the gap_open, and β stands for the gap_extension. E(i,j) and F(i,j) are the maxima of 
the following two items: open a new gap or keep extending an existing gap.
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Systolic array was initially introduced by H. T. Kung and C. E. Leiserson in their papers [10] [11], and it has proven 
to be very efficient in computing matrix multiplication or LU-decomposition. Further research revealed that dynamic 
programming algorithm also mapped very well to a systolic array due to its potential parallelity [12]. 

In 1985, R. J. Lipton and D. P. Lopresti mapped the edit distance algorithm, a typical dynamic programming 
algorithm for the global alignment of DNA sequences, to a systolic array by implementing an nMOS prototype chip 
[13]. The preliminary results of the prototype performed hundreds to thousands times faster than a contemporary 
minicomputer. In 1987, D.P. Lopresti built the first systolic array system for comparing nucleic acid sequences: 
P-NAC [14]. Based on these works, many systolic array systems were developed, including BISP of California 
Institute of Technology [3], BioSCAN of the University of North Carolina [21], B-SYS, Splash /Splash-2 of Brown 
University, [8] [6] [7], Kestrel of the University of California at Santa Cruz [5], etc.

In recent years, along with the rapid progress of bioinformatics and FPGA technology, some new systems were 
developed for both commercial and research purpose, including TimeLogic DeCypher [19], CLC Bioinformatics 
Cube [2], and the Hyper Customized Processors for Bio-Sequence Database Scanning of NTU [16] [17], etc.

Based on these works, we present our implementations of the Smith-Waterman algorithm for both DNA and protein 
sequences on an innovative reconfigurable supercomputing platform, the XD1000. Compared with these works, from 
the perspective of application, our design extends the sequence length limit to 64 KBp, which will satisfy the 
requirement of various applications. In the Smith-Waterman algorithm design for DNA sequence, there are four 
software-programmable parameters, which allow the hardware implementation compatible with the existing software 
programs, including both linear and affine gap model algorithms. In the Smith-Waterman algorithm design for 
protein sequence, the substitution matrix is also reconfigurable, which allows users to choose from the different 
evolution models or develop their own evolution models. From the perspective of hardware architecture, we present a 
new multistage PE design and a compressed substitution matrix storage method, which result in a significant decrease 
of FPGA resource usage and, hence, allows more parallelism to be exploited from the FPGA.

In our design, we map a systolic PE array to an anti-diagonal line of the score matrix as shown in Figure 3. For 
instance, in the fifth clock cycle, the PE array is mapped to calculate the elements marked with (5), and in the next 
cycle, the PE array will be mapped to calculate the elements marked with (6). In the following sections, we will 
discuss in detail how to implement a PE.
4
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Figure 3. Mapping the Smith-Waterman Algorithm to a Systolic PE Array

Due to the hardware resource limitation, we can only implement a limited number of PEs on the FPGA. Thus, in the 
calculation of a similarity matrix, we need to divide the matrix into sub-matrices. In each iteration, the PE array will 
calculate one sub-matrix, and store the intermediate results in memory for the next iteration to use. 

As shown in Figure 4, a systolic PE array consists of many identical cascading PEs. Before the start of the 
calculation, sequence S should be shifted into the array under the control of the Move_in_S signal. The init_in signal 
to each PE decides whether or not this PE will join in the calculation. Sequence T is synchronous to init_in when 
entering into the PE array. The mid_in is used to feed back the temporary intermediate data to the PE array when 
multi-iteration calculation is needed. 

Figure 4. Systolic PE Array of the Smith-Waterman Algorithm

Our design was created such that the shift in direction of sequence S is opposite to that of sequence T. This 
configuration guarantees that sequence S will be stored in the PE array as the original sequence, which means the tail 
of the sequence will always be stored in the last PE. This method not only facilitates the software process of preparing 
data, but also guarantees that the computing of the score matrix is continuous when multi-iterations are needed.
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The Smith-Waterman Algorithm-PE Design
In Formula 3, Formula 4, Formula 5, and Formula 6, a straightforward PE schematic was proposed (shown in 
Figure 5) [16] [17], and the functions of each DFF (D-type flip-flop) are detailed below:

■ S-Out and T-out DFFs are used to store S[i] and T[j].
■ E-out DFF is used to store E(i,j), and it will be used by the same PE in the next clock cycle. Its inputs come from 

the same PE which was generated in the previous clock cycle, representing the values in its upper neighbor 
element.

■ F-out DFF is used to store F(i,j), and it will be used by the next PE. Its inputs come from the previous PE, 
representing the values in its left neighbor element.

■ The input of V-diag DFF comes from the previous PE, and it is registered for one cycle before it is used by the PE, 
so it represents the value of its upper-left neighbor element.

■ V-out DFF is used to store V(i,j).
■ Max_out DFF is used to store the maximum value of the similarity matrix. It has three inputs: 

● The maximum value coming from the previous PE
● V(i,j) coming from the current PE
● The maximum value stored in itself

Figure 5. A Straightforward Smith-Waterman Algorithm PE Design

Before the hardware implementation, we need to estimate the FPGA resources used by the PE design. The PE data 
width should be decided by the maximum sequence length and the maximum value in the substitution matrix. For 
example, if the length is 64 KBp and the maximum value is 11, then the PE data width should be at least 20 bits, 
which means 220>64K*11. In the straightforward PE design, there are five add/sub operations and six max operations. 
Because each max operation consists of a subtraction and a 2:1 multiplexing operation, there are 11 add/sub and 6 2:1 
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multiplexing operations in total for a PE. If the data width is set to 20 bits, a PE will require about 340 adaptive 
look-up tables (ALUTs). 

The Altera Stratix II EP2S180 FPGA used as the FPGA coprocessor in this study has 14,3520s ALUTs in total. The 
HyperTransport interface and some other logic will require 8 percent of resources (normally, maximum FPGA 
resource utilization is less than 90 percent), so we can accommodate at most 340 PEs. Considering the cost of other 
necessary control logic modules, the number of PEs we can implement will be less than 270 if we simply adopt the 
straightforward PE design. Therefore, we need to endeavor to reduce the resource cost of the PE, so that we can put as 
many PEs on the FPGA as possible.

Simplify the Max-Out Operation of V(i,j)
In the PE design, the Max-out DFF is used to store the maximum value of the similarity matrix. To get the maximum 
value, for the first step, it must compare the maximum output from the previous PE with V(i,j) of the current PE, 
which stands for the comparison between the horizontal neighbor matrix elements. In the second step, it must 
compare the output from the first step with the value stored in the Max-out DFF itself. This stands for the comparison 
between the vertical neighbor matrix elements. The result will be stored back to the Max-out DFF itself again after 
the two steps.

Considering that at the end of the calculation, all the maximum values stored in each Max-out DFF will shift out of 
the array, we can move the second comparison step outside of the array, while the first comparison step is maintained 
by each PE. This way, we can delete a maximum operation from the PE (the purple “max” block in Figure 5.).

Simplify the Operation of V(i,j) - α
When we cascade multiple PEs to form a PE array as shown in Figure 6, we find that the output of V-out –α in the left 
PE (red sub-block) is identical to the V-in –α of the right PE (blue sub-block). Therefore, we can delete the V-in –α 
from the PE design. What we need to do is add a new output of the V-out –α called V-out-Alpha and an input called – 
instead of the V-in –α. When cascading the PE to form the PE array, we need to connect the V-out-Alpha signal of the 
left PE to the V-in-Alpha signal of the right PE.

Figure 6. Cascading Smith-Waterman Algorithm PE in an Array
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Compact the Max Operation
A max operation consists of a subtraction and a 2:1 multiplexing operation. For example, R = (X < Y)? Y : X will 
translate into two equations—Temp = X - Y; R = Sign_Bit_Temp? Y : X—when it is synthesized into a FPGA. 
Therefore, the max operation of two 20-bit data will require 40 ALUTs. 20 ALUTs are used for the subtraction, 
another 20 ALUTs are used for the 2:1 multiplexing operation, and both of the operations will be implemented by the 
ALUTs. But, indeed, only the sign bit of the result will be used as the select control signal for the 2:1 multiplexing 
operation. The difference itself will be discarded. In hardware implementation, the sign bit is identical to the 
carry_out of the most magnificent bit (MSB) of the subtraction.

Compared to its previous-generation FPGA, the Stratix II FPGA represents a significant improvement in its adaptive 
logic module (ALM) design [1]. While operating in arithmetic mode, the ALM can support simultaneous use of the 
adder’s carry output along with combinational logic outputs. In this mode, the output of the adder is ignored. This 
usage of the adder with the combinational logic output provides resource savings of up to 50 percent for functions 
that can use this ability. A conditional operation, such as the max operation R = (X < Y)? Y : X, can fully use this 
feature of the ALM, as shown in Figure 7.

Figure 7. Max Operation Example

To implement this function, the adder is used to subtract Y from X. The carry-out signal is then fed to the logic array 
block (LAB)-wide sync-load signal. If X is less than Y, the carry-out signal is 1. The sync-load is asserted and selects 
the sync-data as input. In this case, the data Y drives the sync-data inputs to the registers. If X is greater than or equal 
to Y, the sync-load signal is de-asserted and X drives the data port of the registers.

A prerequisite to compacting the comparison operation and 2:1 multiplexing operation to an ALM is that the output 
of the 2:1 multiplexing only feeds to a DFF. In other words, we need a DFF immediately after the max operation. By 
doing this, it appears that we will introduce additional logic resource usage. Because it improves the usage percentage 
in each ALM, however, it helps to conserve general FPGA resources.
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A problem arising from these introduced DFFs is that the PE would require more than one clock cycle to finish the 
calculation of one matrix element, which would hinder the performance greatly.

Handling the Negative Number
When calculating the V(i-1,j-1)+σ(S[j],T[j]), the result is probably negative due to the σ(S[j],T[j]) being negative 
when S[j] is not equal to T[j]. Because all the max operations are based on unsigned numbers, we need to process the 
negative number before it comes to the max function.

According to Formula 4, all negative numbers will be reset to zero. This means that whenever a negative number is 
generated from the add/sub operation, we can reset it to zero unconditionally. Therefore, in the PE design, we 
introduce a DFF to store the result from the add/sub operation, and we use the MSB (the sign bit) of the add/sub result 
as a synchronous clear signal to the DFF. Thus, when a positive number is derived from the add/sub function, it will 
be stored into the DFF as it is; when a negative number is derived from the add/sub function, a zero will be stored into 
the DFF instead.

Multistage in the PE Design
In the previous sections, we introduced some DFFs to reduce the area cost and to process the negative numbers, but 
this also generated more clock cycles to finish the calculation of a matrix element. To solve this problem, our design 
features a pipelined control mechanism with uneven stage latencies—a key to minimizing the overall PE pipeline 
cycle time.

With the FPGA internal phase-locked loop (PLL), we generate four clocks with the same clock frequency but with a 
different phase relationship, as shown in Figure 8. These clocks are connected to the DFFs as the requirement of the 
multistage PE design, as shown in Figure 9.

Figure 8. Clocks for the Multistage PE Design

The phase delays are decided by the timing simulation of the PE design. For example, the delay from clock to 
clock-d2, is set to 6.3 ns, because there is a subtraction operation and a max operation that need to finish during this 
period, and the longest data path is about 6 ns; the delay from clock-d2 to clock-d3 is set to 4.5 ns, because there is 
only a maximum operation during this period, and the longest datapath is about 4 ns.

Figure 9 is the block diagram of a PE design with multistage (the LUT logic will be discussed in the next section). In 
the design, α and β are software programmable parameters, and the values of σ(S[i],T[j]) are also two software 
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programmable parameters. By setting the parameters properly, the hardware implementation could be compatible 
with the existing software programs, including both linear and affine gap model algorithms.

Figure 9. Multistage PE Design

When implemented in the Altera Stratix II FPGA, the design will require about 180 ALUTs. In contrast, for the 
unoptimized straightforward PE design, even when considering the techniques of packing the max operation with the 
output register (for V-out and Max-out), it will still need 300 ALUTs. Therefore, through the optimizations discussed 
in the next section, we reduced about 40 percent of ALUT usage of a PE. This means that we can implement more 
PEs in the FPGA and, as a result, exploit more parallelism from it. Meanwhile, the uneven stage latencies control 
mechanism guarantees that the PE can work at a reasonably high frequency. In our final implementation, the main 
clock frequency of the PE is 66.7 MHz.

LUT Design in Smith-Waterman PE for Protein Sequence
The difference between a DNA sequence and a protein sequence is that there are only four types of nucleotides (A, G, 
C, and T) in a DNA sequence, but there are 20 types of amino acids in a protein sequence. When encoding the DNA 
sequence, we need only two bits to represent the four letters, but for the amino acid sequence, we need at least five 
bits. That will require a little bit more DFFs to store the sequences in the PE design, but will not affect the structure of 
the PE design.

The key point is that the penalty score substitution matrices for the nucleotide and amino acid are totally different. 
For the DNA sequence, there are only two values for the substitution matrix. These are the values when S[i] and T[j] 
are equal and not equal. But for the protein sequence, the penalty score of substituting a letter with another letter is 
different for each letter because of the biological meaning. Therefore, the substitution matrix is normally organized as 
a 20*20 penalty score matrix. A widely used score matrix, Blosum62, is shown in Figure 10 [15].
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Figure 10. Blosum62 Substitution Matrix

Obviously we need to store the substitution matrix in a RAM block as a LUT in the PE. In Blosum62, the maximum 
score is 11, and the minimum score is -4, but in some other types of substitution matrices, the data may vary in a 
bigger range. Considering the generality, we set the data width to 9 bits, and since the MSB is the sign bit, the data 
range is -255 ~ +255, which should be large enough for most cases.

As we mentioned in the beginning of this section, we need 10 bits to store S[i] and T[j] in the PE, 5 bits for each. If 
we simply implement the LUT without any optimization, the depth of the RAM should be 210=1024; therefore, we 
need two M4k RAM blocks to store a LUT. 

In fact, there are only 400 entries in the table used by the substitution matrix. The others are blank, and occupied by 
the non-existent encoding positions. Meantime, the substitution matrix is symmetric to the diagonal line—only 210 
elements are necessary, so if we simply implement the LUT without any optimization, nearly 80 percent of the 
memory space will be wasted in storing the unnecessary information. To store the substitution matrix more efficiently 
in the RAM block, we introduced a new storage method which divides the matrix into four small matrices and stores 
only three of them respectively. The sub-matrix partition is shown in Figure 11.

C S T P A G N D E Q H R K M I L V F Y W
C 9 -1 -1 -3 0 -3 -3 -3 -4 -3 -3 -3 -3 -1 -1 -1 -1 -2 -2 -2
S -1 4 1 -1 1 0 1 0 0 0 -1 -1 0 -1 -2 -2 -2 -2 -2 -3
T -1 1 4 1 -1 1 0 1 0 0 0 -1 0 -1 -2 -2 -2 -2 -2 -3
P -3 -1 1 7 -1 -2 -1 -1 -1 -1 -2 -2 -1 -2 -3 -3 -2 -4 -3 -4
A 0 1 -1 -1 4 0 -1 -2 -1 -1 -2 -1 -1 -1 -1 -1 -2 -2 -2 -3
G -3 0 1 -2 0 6 -2 -1 -2 -2 -2 -2 -2 -3 -4 -4 0 -3 -3 -2
N -3 1 0 -2 -2 0 6 1 0 0 -1 0 0 -2 -3 -3 -3 -3 -2 -4
D -3 0 1 -1 -2 -1 1 6 2 0 -1 -2 -1 -3 -3 -4 -3 -3 -3 -4
E -4 0 0 -1 -1 -2 0 2 5 2 0 0 1 -2 -3 -3 -3 -3 -2 -3
Q -3 0 0 -1 -1 -2 0 0 2 5 0 1 1 0 -3 -2 -2 -3 -1 -2
H -3 -1 0 -2 -2 -2 1 1 0 0 8 0 -1 -2 -3 -3 -2 -1 2 -2
R - 3 -1 -1 -2 -1 -2 0 -2 0 1 0 5 2 -1 -3 -2 -3 -3 -2 -3
K -3 0 0 -1 -1 -2 0 -1 1 1 -1 2 5 -1 -3 -2 -3 -3 -2 -3
M -1 -1 -1 -2 -1 -3 -2 -3 -2 0 -2 -1 -1 5 1 2 -2 0 -1 -1
I -1 -2 -2 -3 -1 -4 -3 -3 -3 -3 -3 -3 -3 1 4 2 1 0 -1 -3
L -1 -2 -2 -3 -1 -4 -3 -4 -3 -2 -3 -2 -2 2 2 4 3 0 -1 -2
V -1 -2 -2 -2 0 -3 -3 -3 -2 -2 -3 -3 -2 1 3 1 4 -1 -1 -3
F -2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1 -3 -3 0 0 0 -1 6 3 1
Y -2 -2 -2 -3 -2 -3 -2 -3 -2 -1 2 -2 -2 -1 -1 -1 -1 3 7 2
W -2 -3 -3 -4 -3 -2 -4 -4 -3 -2 -2 -3 -3 -1 -3 -2 -3 1 2 11
11
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Figure 11. Sub-Matrix Partition

We can divide the whole 20*20 matrix into four sub-matrices according to the four possible combinations of the MSB 
of S[i] and T[j], as shown in Figure 11. The yellow partition is a 16*16 matrix, the blue partition is a 4*4 matrix, and 
the pink partitions are two symmetric 4*16 matrices. Based on the partition, we can store these sub-matrices into a 
RAM block according the rules in Figure 12 and Figure 13.

Figure 12. Substitution Matrix Element Address Encoding Method

Figure 12 shows how to map these sub-matrices into the different positions of the RAM block, or how to assign 
addresses to the matrix elements. We encode S[i] and T[j] to Ds[4:0] and Dt[4:0] respectively, according to the 
alphabet sequential.

■ When Ds[4]=0 and Dt[4]=0, let Addr[8]=0, Addr[7:4]=Ds[4:0], Addr[3:0]=Dt[4:0], there are 256 entries in 
this address range, and the yellow partition will be stored in it.

■ When Ds[4]=0 and Dt[4]=1, let Addr[8:6]=3’b100, Addr[5:4]=Dt[1:0], Addr[3:0]=Ds[4:0], there are 64 
entries in this address range, and the pink partition will be stored in this area.

■ When Ds[4]=1 and Dt[4]=0, we can swap Ds and Dt, so the second pink partition will be stored in the same 
address range. In other words, because the two pink partitions are symmetric, we only store one of them to the 
RAM block.

■ When Ds[4]=1 and Dt[4]=1, let Addr[8:4]=5’b10100, Addr[3:2]=Ds[1:0], Addr[1:0]=Dt[1:0], there are 16 
entries in this address range, and the blue partition will be stored in this area.

S/T 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13
00
01
02
03
04
05
06
07
08
09
0a
0b
0c
0d
0e
0f

10
11
12
13

MSB of S & T MSB Memory Address[8:0] LSB
Ds[4] Dt[4] Bit[8] Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0]

0 0 0 Ds[3:0] Dt[3:0]
0 1 1 0 0 Dt[1:0] Ds[3:0]
1 0 1 0 0 Ds[1:0] Dt[3:0]
1 1 1 0 1 0 0 Ds[1:0] Dt[1:0]
12
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According to this method, the three different partitions could be stored in a continuous address range from 
9’b0_0000_0000 to 9’b1_0100_1111, and only 336 entries are needed to store the whole substitution matrix. In a real 
FPGA, we can use an M4k block to carry out this implementation.

Figure 13 shows the memory storage structure of the substitution matrix; the left nine columns are the addresses of 
the memory, and the right nine columns are the data stored in the memory. The MSB of the data is signed bit, when it 
is 0, the value is a non-negative number; when it is 1, the value is a negative number.

Figure 13. Substitution Matrix Storage Structure in Memory

Core Logic Design of the Smith-Waterman Algorithm
In order to implement the whole calculation process, we need to design some supplemental modules outside the 
systolic PE array, including counters, FIFOs, shifters, calculator, and some registers. The block diagram of core logic 
is shown in Figure 14.

MSB MSB(=Signed bit) Data LSB
0 0 0 0 0 0 0 0 0 S

S
S
S

0 1 1 1 1 1 1 1 1 S

1 0 0 0 0 0 0 0 0 S
S
S

1 0 0 1 1 1 1 1 1 S

1 0 1 0 0 0 0 0 0 S
S

1 0 1 0 0 1 1 1 1 S

LSBAddress
13
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Figure 14.  Core Logic Design of the Smith-Waterman Algorithm

In Figure 14, the functions of each module are described below:

■ The S and T Counter are used to control the sequences shifting into the PE array process according to the length 
of S/T.

■ The S/T FIFO is used to buffer the input data coming from the HyperTransport bus interface.
■ The S/T Shifter is used to shift the 64-bit input data to an encoded sequence letter in each clock cycle, and the 

encoded sequence letter will be transferred into the PE array.
■ The Mid-data FIFO is used to store the temporary intermediate data from the PE array when multi-iteration 

calculation is needed.
■ The Mid-in Generator module is used to calculate V-in –α for the first PE, and it is also used to buffer the mid-data 

for the PE array according to the requirement of multistage clocks.
■ The Mid-out Combination module is used to combine the output from the PE array and write to Mid-data FIFO.
■ The Max Comparator module is used to compare the Max-out and V-out from the PE array and store the maximum 

value in it. This part is equivalent to the second comparison step in Figure 5 (the purple max block) and represents 
the comparison between the vertical neighbor matrix elements.

■ The Control/Result Registers module is used by the host to write parameters and control registers to, and read the 
status as well as the result from

Performance Evaluation
To evaluate the performance of the FPGA, we compared it with the host system of the XD1000 platform, which has a 
2.2-GHz AMD64 Opteron processor and 8-Gbyte DDR2 SDRAM memory. The operating system of the XD1000 is 
Linux 2.6.16.14, and all software was compiled by GCC 4.1.1 with the “-O3” optimization option.

Speedup Test for Smith-Waterman Algorithm of DNA
For the Smith-Waterman algorithm of DNA, we implemented 384 PEs in the FPGA, which cost 121,836 ALUTs (85 
percent of 143,520 ALUTs in total) and 3,587,296 memory bits (38 percent of 9,383,040 bits in total). In this study, 
the PE array working frequency was 66.7MHz, and the peak performance of the PE array was 25.6 GCUPS. The 
testing results are shown in Figure 15. 

Smith-
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Processing
Element
Array
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Mid-in
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FIFO

Mid-data
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Mid-out
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Result
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Figure 15. Speedup Test Result of Smith-Waterman Algorithm of DNA

We can find that when the sequences are short, the speedup is very low. For example, when the length of S/T sequence 
both are 256 Bp, the speedup over the software is only 2.04 for the following reasons. 

The PE array is not fully joining in the calculation. At any clock cycle, only a fraction of the PEs are effectively 
running. In fact, amongst the 384 PEs, only 256 of them are valid with a query letter in it (from sequence S), and the 
beginning 128 PEs are invalid. According to the working principle of the systolic PE array, all the letters of sequence 
T will initially transfer through the beginning 128 PEs before a valid calculation can occur. Therefore, the beginning 
128 cycles are used to pipe the sequence T to the first valid PE. In the 129th cycle afterwards, there is only 1 PE 
participating in the calculation. For each of the following clock cycles, another PE will join in the calculation until the 
384th cycle, where there will be 256 PEs running. After that point, for each following clock cycles, a PE will quit 
from the calculation, until in the 640th cycle, when only the last PE is running. Therefore, the calculating will cost 
640 cycles in total, and there are only an average of 102 PEs running effectively in each cycle.

Another important reason is that the FPGA initialization time is a constant when the sequences are very short. Before 
transferring the sequences to the PE array, each nucleotide letter is encoded to a 2-bit data, for example, the 256 Bp 
will be decoded to 512-bit or 64-byte data. However, according to the HyperTransport direct memory access (DMA) 
transfer requirement, the minimum transfer block is 4 Kbytes. Therefore, it will cost the same time to transfer a 256 
Bp sequence as to transfer a 16 KBp sequence from the host CPU to the PE array. This also implies that it is needed 
to improve the performance of transferring a small data block for the XD1000 platform.

During the calculation, except for the parallel part that could be run by the PE array, there still is a serial part that 
needs to be run by the host CPU; for example, for such functions as preparing data, initializing the FPGA, etc. 
According to Amdahl’s law, when the task scale is small, this serial part will dominate the time cost. No matter how 
many times you can speed up the parallel part, the overall improvement of the task will be limited by the parallel part 
to the serial part ratio.

Speedup Test for Smith-Waterman Algorithm of Protein
For the Smith-Waterman algorithm of protein, we also implemented 384 PEs in the FPGA, which cost 111,574 
ALUTs (78 percent of 143,520 ALUTs in total) and 5,348,320 memory bits (57 percent of 9,383,040 bits in total). In 
this study, the PE array working frequency was 66.7 MHz, and the peak performance of the PE array was 25.6 
GCUPS. The testing results are shown in Figure 16.

Length
of S/T
(Bp)

Software
Time (s)

FPGA
Time (s) Speedup

256 0.000461 0.000226 2.04

512 0.001837 0.000374 4.91

1024 0.007307 0.000472 15.48

2048 0.029225 0.000898 32.54

4096 0.116680 0.001781 65.51

8192 0.497743 0.004661 106.79

16384 2.208849 0.014080 156.88

32768 8.351658 0.048909 170.76

65536 33.524406 0.180816 185.41
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Figure 16. Speedup Test Result of Smith-Waterman Algorithm of Protein

Compared to the DNA Smith-Waterman algorithm, the protein test reveals much higher speedup with the same 
hardware peak performance. That is because when the calculations are driven by software, the software needs to look 
up a big table to get the substitution matrix value, and it will use more time than it would if it were just comparing two 
letters to see if they are equal.

In the software implementation for the Blosum62 substitution matrix (Figure 10), the matrix is stored in a 
two-dimensional array. Before accessing an element of the array, the software needs to calculate the index of the 
element. Unfortunately, the amino acid letters are not continuous as the alphabet is. Five letters are missing before the 
last letter “Y;” therefore, the software program has to use the “case” statement to map a letter to an index. There are 
20 types of letters in the protein sequences, so the software program needs a very long case statement. Without 
optimization, the software program would require as much as twice the time, as shown in Figure 16.

As an improvement, we expanded the substitution matrix from 20*20 to 25*25, put these five missing letters into the 
matrix, and re-ordered the matrix according to the alphabet sequential. The substituting score from a valid letter to an 
invalid letter was set to zero. With this approach, we could calculate the index by only one sentence: just use the 
ASCII value of a letter minus 0x41 (0x41 is the ASCII of “A”). This approach enables the software to run 100 percent 
faster than the unoptimized software version.

Conclusion and Future Work
In this paper, we presented implementations of the Smith-Waterman algorithm for both DNA and protein sequences 
based on the XD1000 reconfigurable supercomputing platform. To exploit more parallelism from the FPGA, we 
proposed a multistage PE design with uneven stage latencies control mechanism and a compressed substitution 
matrix storage method, which greatly decreased FPGA resource usage. By these methods, we implemented a 384-PE 
systolic array working on 66.7 MHz, which can achieve 25.6 GCUPS peak performance. Compared to the 2.2-GHz 
AMD64 Opteron host processor of the XD1000 platform, the FPGA was able to gain 185 and 250 times speedup, 
respectively.

In the meantime, our design extended the sequence length limit to 64KBp, which satisfies the requirement of various 
applications. In the Smith-Waterman algorithm design for DNA sequence, there are four software programmable 
parameters, which allow the hardware implementation compatible with the existing software programs, including 
both linear and affine gap model algorithms. In the Smith-Waterman algorithm design for protein sequence, the 
substitution matrix is also reconfigurable, which allows users to choose from the different evolution models or 
develop their own evolution models. These features also make our implementation much more practical in a real 
application.

Length
of S/T
(Bp)

Software
Time (s)

FPGA
Time (s) Speedup

256 0.000675 0.000303 2.23

512 0.002693 0.000376 7.16

1024 0.010747 0.000490 21.93

2048 0.042928 0.000828 51.85

4096 0.172775 0.001753 98.56

8192 0.704018 0.004675 150.59

16384 2.887660 0.014221 203.06

32768 11.364635 0.049333 230.37

65536 45.297020 0.181534 249.52
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Our future work includes extending our design to accelerate the network content processing, such as approximate 
character string matching for multi-patterns and multi-rules, network intruding detection, etc. An initial experiment 
shows that it will probably achieve more than 100 times speedup over the general-purpose CPU. We will also try to 
harness the reconfigurable computing platform in the scientific computing area of floating point applications, such as 
processing Monte Carlo algorithms, BLAS, FFT, FIR, etc., hopefully extending the performance of the Opteron 
processor by an order of magnitude.
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