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ABSTRCT

All pairs of a large set of known vertebrate DNA sequences were
searched by computer for most similar segments. Analysis of this data
shows that the computed similarity scores are distributed proportionally to
the logarithm of the product of the lengths of the sequences involved.
This distribution is closely related to recent results of Erdos and others
on the longest run of heads in coin tossing. A simple rule is derived for
determination of statistical significance of the similarity scores and to
assist in relating statistical and biological significance.

IW2O0DUCTION
Identification and interpretation of molecular sequence similarities

is a fundamental problem in molecular biology. An increasing amount of

nucleic acid sequence data is becoming available in such data bases as

GenBank in the U.S. and the EMBL data bank in Europe. A compendium of the

data has appeared as a supplement to Nucleic Acids Research (1). These

data can be analyzed for relationships, both functional and evolutionary,

by a variety of techniques (briefly reviewed in (2)). The recent

identification (3) of a simian sarcoma viral onc gene with a human growth

factor is a good example of the utility of these data. Useful computer

methods have been developed for this analysis, where, among other

techniques, dynamic programming is employed to find best matching (most

similar) regions of sequences (4-6). Sequence comparison methods are

reviewed in (7). What has been, until now, lacking in such analyses is a

completely valid test to assess the statistical significance of these

similarity scores observed between DNA sequences. Though the literature

abounds with sequence alignments, and biological arguments based on those

alignments, there is very seldom any estimate provided of the statistical

significance (given the lengths and compositions of the two sequences being
compared) of those alignments. This article addresses the need to provide
such an estimate.
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Even if it were not possible to give a derivation of the statistical

distribution of similarity scores from first principles, the existing

nucleic acid sequence data are sufficient for an empirical investigation of

the distribution. Such an investigation is important since all known

heuristic and Mbnte Carlo techniques frequently assign statistical

significance where unwarranted (8). The data can be divided into subsets

of sequences having similar function and taxonomic classification.

Different distributions might be anticipated for these subsets. For

example, protein coding sequences might display higher similarity among

themselves simply due to their similar statistical properties (base

composition and nearest neighbor frequencies (8)). Our subsets Include 204

vertebrate DNA protein coding sequences as well as eukaryotic structural

RNA's, eukaryotic viruses, vertebrate non-coding sequences, and non-

vertebrate eukaryotic sequences from GenBank (1). For example, we have

compared vertebate DNA sequences (and their complements) and eukaryotic

virus sequences to a set of 204 vertebrate DNA sequences.

We present both empirical evidence and theoretical justification for a

specific statistical distribution of the similarity scores among

biologically realized sequences. This leads to a simple rule for assessing

statistical significance of similarities. The method developed in this

paper is not only of practical value for nucleic acid sequence analyses,

but is shown to be related to important recent developments in probability

theory.

ETIOD
All sequence data were from GenBank (1). The alignment algorithm

employed in this study incorporates genetic transformations (base

substitutions and deletion/insertions) and finds the most similar or

highest scoring segments between two sequences; this algorithm has been

described in detail previously (4). The similarity score of two aligned

segments is the number of matches minus penalties for mismatches and

gaps. The algorithm finds the maximum of the scores of all such aligned

pairs of segments, therefore finding the best matching segments out of all

possibilities. The algorithm is a generalization of the dynamic

programming algorithm introduced by Needleman and Wunsch (9), and was

designed for the specific nature of the data, which include many repeated
(e.g. Alu sequences) and biologically related (e.g. mRNA and genomic

sequences) segments.
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A FORTRAN program was developed to implement the above similarity

algorithm on a CRAY-1 computer system. By utilizing the vector

architecture of this computer it is possible to investigate comparisons

among very large numbers of nucleic acid sequences in reasonable execution

time. All pairwise comparisons among 204 vertebrate sequences (including

the complement strands) were carried out in approximately 170 minutes, at a

rate of over 240 sequence comparisons per minute with an average sequence

length of 800 nucleotides.

To simplify the problem of comparing these results, the algorithm

parameters were held constant. While the ability to identify overall

sequence homology among a given set of sequences is dependent on the

algorithm parameters (10) and the statistical characteristics (8) of the

genetic domains involved, the identification of maximal segment homologies

appears to be less sensitive. The parameter values used in this study --

matches equal 1.0, mismatches equal -0.90 and gaps (single base

deletion/insertions) equal -2.0 -- were chosen because they allow a high

proportion of the known segment homologies among hemoglobin protein coding

regions to be identified. In cases where previously identified hemoglobin

homologies were not reproduced exactly with these parameters, the

differences involved only a slight rearrangement of neighboring gaps. This

was true even for previously studied non-protein encoding sequences such as

the ribosomal RNAs (thus increasing confidence in the employment of these

particular parameter values). The percentage of matched bases (including

gaps) and the ratio of implied transitions to transversions among the

aligned mismatches were also calculated. Among previously identified

homologies the percentage is generally greater than sixty-eight and the

ratio greater than two thirds.

The set of best similarity scores resulting from comparison of each

given sequence with all sequences in the vertebrate data set was used to

generate a frequency distribution. Representative examples of these

distributions appear in Figure 1. The sequence being compared with the

other sequences in a data set will be referred to as the query sequence.

Although similarity scores of 40 or larger are considered outliers and

are easily identified as statistically significant, assessment of lower

scores requires a deeper analysis. It is natural to ask whether these

frequency distributions, or some subset of them, are normally distributed.

A Lilliefor's test (11) of normality was run on these distributions where
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Figure 1. A-E are similarity score histograms of observed maximum
similarities of a single query sequence to the members of a reference set
of sequences. F contains two composite histograms. All values higher than
50 were recorded at 50. A) Histogram obtained from the query of 204
vertebrate sequences using the chicken x-gene (32); AA represents homology
with chicken ovalbumin (33) while AB represents the suspected (10) homology
with the primate alpha-i antitrypsin. B) Histogram obtained from the query
of 423 eukaryotics and viral sequences using the mouse alpha hemoglobin
pseudogene (19); BA represents homologies with seven other vertebrate alpha
globins; BB represents the least similar alpha globin, the human pseudogene
(34); BC-BD represent the other hemoglobins ranging from the X.laevis beta
globin (20) to the rabbit beta globins (35). C) Histogram obtained from
the query of 204 vertebrate sequences using one of the mouse Bi ubiquitous
repeat (21) sequences; CA-CB represent the other mouse Bl's (21), two
Chinese Hamster equivalents (36) and two human Alus (22) that neighbor the
epsilon globin and preproinsulin genes; CC represents mouse and hamster
RNAs (36), presumably arising from Bl-like repeat transcription; between CC
and CD are all the other nequivocal Alu/Bl-like sequences including those
from rat, human, and mouse; CE includes a number of apparently unrelated
short sequence similarities, but also includes the most distant previously
identified hamster Alu-like sequence, 250 close (36). D) Histogram
obtained from the query of 160 vertebrate protein coding (spliced)
sequences using the bovine growth hormone, presomatotropin (37); DA
represents four other somatotropin sequences from human (38) and rat (39);
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DB represents the next most similar sequence found in a mouse

immunoglobulin heavy chain constant region (40). E) Ristogram from the
query of the vertebrate non-protein encoding sequences using the same

coding sequence for a query as in D above; RA represents the most similar
sequence within this data set, a rat tRNA cluster. F) the sum of 423
eukaryotic similarity histograms, solid line; and the sum of 100 similarity
histograms for random sequences having nearest neighbor frequencies
identical to those found in vertebrate coding regions (3), solid circles.

all similarity scores larger than 40 were trimmed from the distribution. A

one percent level test resulted in rejection of normality in 98 percent of

the cases (see Fig. lk for an example of one of the few distributions

passing this test). These results clearly indicate that statistical

significance should not be assigned by standard normal distribution

techniques.

Earlier attempts to perform analysis of the distributions of matches

for comparison of random sequences have provided few results directly

useful for sequence analysis. Chvatal and Sankoff (12) began studies of

the distribution of the number of matches in random sequences where gaps

and mismatches receive no penalty. Their problem, known as the longest

common subsequence problem, has attracted a good deal of attention but

nothing directly applicable to the more general problem of molecular

sequence comparison. The difficulty of this problem seems to leave little

hope for a complete distribution theory.

Deriving the probability distribution of the length of the longest run

of heads in a sequence of n independent coin tosses is a problem with a

long history of solutions difficult to do computations with (13). In 1970),

however, Erdos and Renyi found the longest run of heads to be, in the limit

with probability one, log(n) where the logarithm is to base l/p, p-P(Heads)

( 14,15) . The technical statements of these and related results, known as

the Erdos-Renyi law, are involved and precise formulations appear in the

references (14, 15).

The coin tossing problem is related to sequence matching problems in

the following way. Two random sequences of length n are aligned by

a, a2 *- an

b b, *. bn

We now convert the alignment to a sequence of 'R's and T's. If ai - bi , an

"H" replaces ai; otherwise a "T" does. This replaces the alignment by a

bi
sequence of heads and tails. The length of the longest run of matches in

the alignment is equal to the length of the longest run of heads in the
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associated coin tossing sequence, and therefore follows the Erdos-Renyi
law.

The algorithm employed in the present study gives the best matching
region for all possible alignments, motivating the following formulation.

Let Ri be the longest run of uninterrupted matches for the particular
alignment

a1a2 ... ai ai+l an
b1 b2 bn-i+l bn

flere R ( n-i+1 and, for n-i large, the Erdos-Renyi law holds for Ri. The

best of all these R is R where

R - max Ri
-n,< i4n

It is possible to prove (18) that the limit law of R is equivalent to an

Erdos-Renyi law with a different constant, that is, 2.0 multiplied by
log(n)/log(l/p), where p - P(Nktch) - p2+ p2+ p2 For sequences ofA T c c euecso
length n and m, the expected value of R, allowing k mismatches, is

E(R) = (log(nm) + k loglog(nm) + (k+l) log(l-p) - log(k!))/log(l/p)
+ k + y/X - 12

and the variance is

a2, 2/6X2+ 1/12

where y - .577... is the Euler-Mbscheroni constant and X = ln( l/p). These

results, with a complete error analysis, appear in a paper by Arratia et

al. (16). Karlin et al. (17) announced a related result with k = 0 (no
mismatches allowed) and slightly different constants. Surprisingly, the

variance does not grow with n. There are mathematical reasons that lead

one to believe that this feature of essentially constant variance also

holds for a reasonable number of mismatches, deletions, and insertions

(18).

RESULTS AND DISCUSSION

To study these data from this viewpoint, the similarity scores were

plotted versus the logarithm of the products of the sequence length, where

log is again to the base li/p, p = P(?Mtch) . A strong linear trend is

observed, with essentially constant variance, and the data are shown in

Figure 2. The possible influence of the biological properties of the

sequences on these results was tested by comparison with bnte Carlo
simulations of sequences with the same nearest neighbor frequencies as the

biological sequences (8); this test resulted in linear trends with slopes
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Figure 2. Similarity scores of vertebrate DNA sequences and their
complements and eukaryotic virus sequences (a total of 20,706 data points)
compared with a set of 204 vertebrate DNA sequences plotted against
log(n1n2) where ni and n2 are sequence lengths and log is to the base
1/p, where p = P(Mktch). Points plotted on the upper horizontal axis
represent similarity scores > 40.0. Each point represents the best
similarity score found in comparing the corresponding query sequence to the
204 vertebrate sequences.

close but not identical to the slopes resulting from the biological

sequences.

We also studied the results of querying two clearly biologically

disjoint data sets - vertebrate protein coding and non-protein coding (see

examples in Fig. ID and 1E). The general statistical properties of the

resulting frequency distributions for similarity scores were quite close to

each other and to those generated by querying the full vertebrate data

set. While there was a slight (constant) increase in the distribution mean

when querying the protein coding data set with protein coding sequences (as

compared to querying the non-protein coding data set with protein coding

sequences), the linear relationship was retained with approximately

identical slope. Sensitivity to the algorithm parameters was explored by

varying the algorithm weights as well as the form of the gap weights

(10). The linear trends persist, with the slope decreasing as the mismatch

and gap penalties increase.

To estimate statistical significance, there are two approaches. We

calculate how many standard deviations a similarity score is above the mean
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and judge it significant if it is more than, say, 2a above the mean. It is

possible to take a much more cautious approach with Chebyshev's inequality

(13): The probability that a random variable exceeds its mean by more than

X is less than or equal to (a/X). Our a n 1.5, calculated from the data

in Figure 2, so that a similarity score exceeds its (estimated) mean by

more than 4.5 with probability less than or equal 1/9 - .111...., by more

than 6.0 with probability less than or equal 1/16 - 0.0625, etc. Both of

these procedures are useful and conservative. We use the first method and

calculate the number of a's a similarity score exceeds the mean.

A fit of the data displayed in Figure 2, using robust techniques for

handling outliers, resulted in the equation

[Eq. 1.1] S = 2.55 - 8.99,

where S is the mean best similarity, n and m are the sequence lengths and p

P(Mhtch) = p2 + p2 + 2 4 2. The estimate of a from the data is

[Eq. 1.2] a - 1.78.

These values are now used to examine certain comparisons.

These values for S and a can then be compared to the similarity score

for any actual alignment, and thus provide a criterium for appraising
statistical significance. The following paragraphs provide several

examples of the calculation of statistical significance. These examples
also illustrate the fact that statistical significance and biological

significance are closely related but not identical.

In many cases, alignments indicating high statistical significance are

the result of comparing two sequences already known to be biologically
related (homologous). In Figure 1B a query of the data using a mouse alpha
hemoglobin (19) produced a wide spread in similarity scores. Since the

hemoglobins form a large and divergent family dating from before the

origins of the vertebrates, the nearly continuous range of observed

similarities is not surprising. Even the distant beta globin of the

African toad, X. laevis (20), has a similarity score with the mouse alpha

globin corresponding to 6 a's above the mean, indicating statistical

significance. Since the mouse sequence has n = 1441, the toad sequence has

a = 600, and p = .248, the mean was estimated by

2.55 log((600)(1441)) _ 8 99 - 16 01
log(l/..99241.01
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The score was 27.00 so that 27.00 - 16.01 - 10.99 - (5.17)(1.78) - 6.17a.

Using a highly repetitive sequence such as mouse B1 (21) also

generates a wide spread of similarity scores (Fig. 1C), but in this case

statistical and biological signifance can be confused. Similarity scores

between 16.5 and 20.0 are contributed both by apparently biologically

unrelated sequence segments and by a previously identified hamster Alu-like

repetitive segment (36). In such cases, statistically significant

similarity scores may not reflect true homology (clear biological function

or taxanomic relatedness), but merely compositional or pattern restrictions

common to the compared sequences. An extreme example is the CCRCC (1 -

purine) repeat found in the winter flounder (P. americanus) antifreeze

protein gene (23). This compositional restriction leads to high similarity

to other sequences with regions rich in C (or complements of sequences rich

in G). Similarly, the (TC)24 region at the end of three rat tRNA genes

(24) matches the complement of the mouse immunogloblin y-l intron (25),

which contains a (GAGAG)15 region, with a similarity score of 54.90. In

this last example the mean is estimated by

2.55 log ((764)(2109)) - 8.99 - 18.42.log(-1/.265)-
The similarity score, 54.90, exceeds the mean by 20.49a.

There are a few cases where similarities are equal to or greater than

four a's above the mean and for which no reasonable biological

justif ication yet exists . The best example observed in these data is

obtained from comparison (see Fig. 1E) of the 18S rRNA of X. laevis (26)

and an intron in the IE gene of Herpes simplex virus (27), which yielded a

similarity score of 37.20. Here the mean is estimated by

2.55 log(2948)(431) _ 8.99 - 19.11.

S - 37.20 exceeds 19.11 by 10.16a.

Numerous segment similarities can now be clearly identified as

statistically insignificant in spite of appearances. For example the

algorithm aligns the following segments between the protein encoding
regions of yeast actin (28) and mouse alpha-fetoprotein (29).

GTTCTGGQATGQTGCAAAGC;G
GTTCTGGTATG-TGTAAAGCGG

The expected score is

2.55 log(2012)( 1750) - 8.99 - 18.83.log( 11 .25 1)
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The actual similarity score of 13.3 - 18.0(18 matches) - 2.7(3 mismatches)
- 2.0(1 deletion) therefore supports chance rather than biology, even

though there are 87 percent matches and two out of the three tmplied point

mutations are transitions. Note that the gap is not a multiple of three as

expected for homologous coding regions.

Biological and/or experimental information can explain what might

otherwise by surprisingly significant alignments. Statistically

significant similarities were often found when the query sequences were the

comnplements of the 'sense' or published strands. As expected, the

similarity value distributions were on the average equivalent to those

generated by the original sequence. Structural rRNA's have the interesting

property that they are more similar to their complements than to any other

complemented sequence. This is no doubt the result of the secondary

structure motifs in these molecules. Unexpectedly, a few cDNA sequences

(from mRNA) were found to be highly self-complementary as well. For

example, cDNA from rat preprorelaxin mRNA (30) shows a weak imperfect

reflected repeat in the first and second thirds of the B peptide. An even

stronger example appears in the published cDNA sequence from the human

enkephalin precursor mRNA sequence (31). Here the first 113 bases of the

presumptive mRNA leader are found repeated exactly as a reverse complement

some seven hundred bases downstream. The fact that the repeat is perfect

and comprises one of the termini of the cDNA suggests that it may have

arisen as a reverse transcriptase error. The statistical significance of

the resulting similarity value draws our attention in this case to a

potential experimental complication rather than a historical biological

event.

In summary, Equations 1.1 and 1.2 provide a quick method of estimating.
the statistical significance of sequence alignments. For alignment
algorithms employing the weighting parameters used here (match - 1.0,
mismatch - -0.9, deletion - -2.0) the constant values in these equations

are good as they stand; for alternative parameter weights, Eqs. 1.1 and 1.2
can be rederived using a fitting procedure for data such as that in Fig.
2. Finally, we stress that the affirmation (or negation) of the biological

significance of a given found similarity should be based in part, though
not entirely, on the statistical significance.
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