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Abstract

In this paper we will consider math background for PAM (Point Accepted Mutation).
PAM matrix is used extensively in BLAST (Basic Local Alignment Search Tool) algorithm,
which is extremely fast, robust and popular heuristic. The paper gives an intuition behind
the the matrix as well the real life examples to clarify the theory. Short introduction into
BLAST algorithm concludes the paper.

Introduction

With the advent of fast and reliable technology for sequencing nucleic acids
and proteins, centralized databases were created to store the large quantity of
sequence data produced by labs all over the world. This created a need for
efficient programs to be used in queries of these databases. In a typical appli-
cation, one has a query sequence that must be compared to all those already in
the database, in search of local similarities. This means hundreds of thousands
of sequence comparisons.

The quadratic complexity of exact methods, such as dynamic programming,
for computing similarities and optimal alignments between two sequences makes
them unsuitable for searching large databases. To speed the search, novel and
faster methods have been developed. In general, these methods are based on
heuristics and it is hard to establish their theoretical time and space complexity.
Nevertheless, the programs based on them have become very important tools
and these techniques deserve very careful study.

In this poster we introduce basics of BLAST search algorithm. BLAST
heuristics is one of the most popular nowadays. In order to understand BLAST,
we introduce PAM scoring matrix for amino acids, which is very important in
database search and in protein sequence comparison in general.
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1 PAM

Amino acids, the residues that make up protein sequence, have biochemical
properties that influence their relative replaceability in an evolutionary scenario.
For instance, it is more likely that amino acids of similar sizes get substituted
for one another than those of different sizes.

The acronym PAM stands for Point Accepted Mutation. PAM is a substitu-
tion of one amino acid of a protein by another that is ”accepted” by evolution,
in the sense that within some given species, the mutation has not only arisen
but has, over time, spread to essentially the entire species. A PAM1 transition
matrix is the Markov chain matrix applying for a time period over which we
expect 1% of the amino acids to undergo accepted point mutations within the
species of interest.

Definition 1 An accepted mutation is a mutation that occurred and was pos-
itively selected by the environment; that is, it did not cause the demise of the
particular organism where it occurred.

It is important for the basic 1-PAM matrix that we consider immediate
mutations, a → b, not mediated ones like a → c → b

The necessary ingredients to build the 1-PAM matrix M are the following:

• A list of accepted mutations

• The probability of occurrence pa for each amino acid a

The probabilities of occurrence can be estimated simply by computing the
relative frequency of occurrence of amino acids over a large, sufficiently varied
protein sequence set. These numbers satisfy

∑
a

pa = 1

From the list of accepted mutations we can compute the quantities fab, the
number of times the mutation a ↔ b was observed to occur. Recall that we
are dealing with undirected mutations here, so fab = fba. We will also need the
sums

fa =
∑

b6=a

fab
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the total number of mutations in which a was involved, and

f =
∑

a

fa

the total number of amino acid occurrences involved in mutations. The
number f is also twice the total number of mutations.

PAM is 20 × 20 matrix with Mab being the probability of amino acid a

changing into amino acid b. Maa is probability to be unchanged for certain
amino acid a during the evolutionary interval.

Relative mutability of amino acid a defined as

ma =
fa

100 f pa

Example of Calculating of mutability

Aligned A D A
Sequences A D B
Amino Acids A B D
Observed Changes 1 1 0
Frequency of Occurence 3 1 2
(Total Composition)
Relative Mutability .33 1 0

Figure 1: Sample computation of relative mutability

Mutabilities are scaled to the number of replacements per occurrence of the
given amino acid per 100 residues in each alignment. Mutabilities for real
homologous proteins are presented in Table. 1.

Relative mutability is the probability that the given amino acid will change
in the evolutionary period of interest.

Hence, the probability of a remaining unchanged is the complementary prob-
ability

Maa = 1−ma

On the other hand, the probability of a changing into b can be computed as
the product of the conditional probability that a will change into b, given that
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Ala A 0.096
Arg R 0.034
Asn N 0.042
Asp D 0.053
Cys C 0.025
Gln Q 0.032
Glu E 0.053
Gly G 0.090
His H 0.034
Ile I 0.035
Leu L 0.085
Lys K 0.085
Met M 0.012
Phe F 0.045
Pro P 0.041
Ser S 0.057
Thr T 0.062
Trp W 0.012
Tyr Y 0.030
Val V 0.078

Table 1: Relative Mutabilities (Dayhoff)

a changed, times the probability of a changing

Mab = P (a → b)

= P (a → b| a changed)P (a changed)

=
fab

fa
ma

The independence from past history in particular leads to a Markov-type model
of evolution, which has good mathematical properties.

It is easy to verify that M has the following properties
∑

b

Mab = 1 (1)

∑
a

paMaa = 0.99 (2)

Equation (1) is merely saying that by adding up the probability of a staying
the same and probabilities of it changing to every other amino acid we get 1.
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The transition probability matrix has been normalized to reflect the fact
that the amount of evolution will change 1 out of 100 amino acids on average.
We can see this fact from Equation 2). Sample matrix M is shown in Table 2.

A R N D C Q E G H I L K M F P S T W Y V

A 9867 2 9 10 3 8 17 21 2 6 4 2 6 2 22 35 32 0 2 18

R 1 9913 1 0 1 10 0 0 10 3 1 19 4 1 4 6 1 8 0 1

N 4 1 9822 36 0 4 6 6 21 3 1 13 0 1 2 20 9 1 4 1

D 6 0 42 9859 0 6 53 6 4 1 0 3 0 0 1 5 3 0 0 1

C 1 1 0 0 9973 0 0 0 1 1 0 0 0 0 1 5 1 0 3 2

Q 3 9 4 5 0 9876 27 1 23 1 3 6 4 0 6 2 2 0 0 1

E 10 0 7 56 0 35 9865 4 2 3 1 4 1 0 3 4 2 0 1 2

G 21 1 12 11 1 3 7 9935 1 0 1 2 1 1 3 21 3 0 0 5

H 1 8 18 3 1 20 1 0 9912 0 1 1 0 2 3 1 1 1 4 1

I 2 2 3 1 2 1 2 0 0 9872 9 2 12 7 0 1 7 0 1 33

L 3 1 3 0 0 6 1 1 4 22 9947 2 45 13 3 1 3 4 2 15

K 2 37 25 6 0 12 7 2 2 4 1 9926 20 0 3 8 11 0 1 1

M 1 1 0 0 0 2 0 0 0 5 8 4 9874 1 0 1 2 0 0 4

F 1 1 1 0 0 0 0 1 2 8 6 0 4 9946 0 2 1 3 28 0

P 13 5 2 1 1 8 3 2 5 1 2 2 1 1 9926 12 4 0 0 2

S 28 11 34 7 11 4 6 16 2 2 1 7 4 3 17 9840 38 5 2 2

T 22 2 13 4 1 3 2 2 1 11 2 8 6 1 5 32 9871 0 2 9

W 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 9976 1 0

Y 1 0 3 0 3 0 1 0 4 1 1 0 0 21 0 1 1 2 9945 1

V 13 2 1 1 3 2 2 3 3 57 11 1 17 1 3 2 10 0 2 9901

Table 2: M matrix

Once we have the basic matrix M we can derive transition probabilities for
larger amounts of evolution. Mk is the transition probability matrix for period
of k units of evolution. Sample matrix M 250 is shown in Table 3.

We are now ready to define the scoring matrixs. The entries in these matrixs
are related to the ratio between two probabilities, namely, the probability that
a pair of mutations as opposed to being a random occurrence. This is called
likelihood or odds ratio Mab

pb
.

Each entry in lod (logarithm of odds) matrix S is calculated

Skab = 10 log10
Mk

ab

pb

Sample S250 matrix is shown in Table 4.
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A R N D C Q E G H I L K M F P S T W Y V
A 13 6 9 9 5 8 9 12 6 8 6 7 7 4 11 11 11 2 4 9
R 3 17 4 3 2 5 3 2 6 3 2 9 4 1 4 4 3 7 2 2
N 4 4 6 7 2 5 6 4 6 3 2 5 3 2 4 5 4 2 3 3
D 5 4 8 11 1 7 10 5 6 3 2 5 3 1 4 5 5 1 2 3
C 2 1 1 1 52 1 1 2 2 2 1 1 1 1 2 3 2 1 4 2
Q 3 5 5 6 1 10 7 3 7 2 3 5 3 1 4 3 3 1 2 3
E 5 4 7 11 1 9 12 5 6 3 2 5 3 1 4 5 5 1 2 3
G 12 5 10 10 4 7 9 27 5 5 4 6 5 3 8 11 9 2 3 7
H 2 5 5 4 2 7 4 2 15 2 2 3 2 2 3 3 2 2 3 2
I 3 2 2 2 2 2 2 2 2 10 6 2 6 5 2 3 4 1 3 9
L 6 4 4 3 2 6 4 3 5 15 34 4 20 13 5 4 6 6 7 13
K 6 18 10 8 2 10 8 5 8 5 4 24 9 2 6 8 8 4 3 5
M 1 1 1 1 0 1 1 1 1 2 3 2 6 2 1 1 1 1 1 2
F 2 1 2 1 1 1 1 1 3 5 6 1 4 32 1 2 2 4 20 3
P 7 5 5 4 3 5 4 5 5 3 3 4 3 2 20 6 5 1 2 4
S 9 6 8 7 7 6 7 9 6 5 4 7 5 3 9 10 9 4 4 6
T 8 5 6 6 4 5 5 6 4 6 4 6 5 3 6 8 11 2 3 6
W 0 2 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 55 1 0
Y 1 1 2 1 3 1 1 1 3 2 2 1 2 15 1 2 2 3 31 2
V 7 4 4 4 4 4 4 4 5 4 15 10 4 10 5 5 5 72 4 17

Table 3: M250 matrix

2 BLAST

The BLAST programs are among the most frequently used to search sequence
databases worldwide. BLAST returns a list of high-scoring segment pairs be-
tween the query sequence and sequence in the database.

BLAST finds certain ”seeds”, which are very short segment pairs between
the query and the database sequence. These seeds are then extended in both
directions, without including gaps, until the maximum possible score for ex-
tensions of this particular seed is reached. Not all extensions are looked at.
The program has a criterion to stop extensions when the score falls below a
carefully computed limit. There is a very small chance of the right extension
not being found due to this time optimization, but in practice this tradeoff is
highly acceptable.
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C 12
S 0 2
T -2 1 3
P -3 1 0 6
A -2 1 1 1 2
G -3 1 0 -1 1 5
N -4 1 0 -1 0 0 2
D -5 0 0 -1 0 1 2 4
E -5 0 0 -1 0 0 1 3 4
Q -5 -1 -1 0 0 -1 1 2 2 4
H -3 -1 -1 0 -1 -2 2 1 1 3 6
R -4 0 -1 0 -2 -3 0 -1 -1 1 2 8
K -5 0 0 -1 -1 -2 1 0 0 1 0 3 5
M -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 -2 0 0 6
I -2 -1 0 -2 -1 -3 -2 -2 -2 -2 -2 -2 -2 2 5
L -8 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -3 -3 4 2 8
V -2 -1 0 -1 0 -1 -2 -2 -2 -2 -2 -2 -2 2 4 2 4
F -4 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0 1 2 -1 9
Y 0 -3 -3 -5 -3 -5 -2 -4 -4 -4 0 -4 -4 -2 -1 -1 -2 7 10
W -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17

C S T P A G N D E Q H R K M I L V F Y W

Table 4: PAM 250 logarithm of odds matrix (S250 matrix)

BLAST undertakes the following steps

1. Compile list of high-scoring strings (or words, in BLAST jargon)

2. Search for hits - each hit gives a seed

3. Extend seeds

For protein sequence, the list of high-scoring words consists of of all words
with w characters (called w-mers) that score at least T with some w-mer of the
query. The recommended value for w, the seed size, is 4 for protein searches.

K A L M R
V A K N S
−4 3 −4 −3 −1 → Total:−9

Figure 2: Segment pair and its score under PAM120

For DNA searches, the initial list contains only the query w-mers (usually
of length 11). Because scoring of DNA sequences is easier, this is enough for
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all practical purposes. The scanning strategy is radically different from protein
case. Taking advantage of the fact that the alphabet size is 4, the database
is first compressed so that each nucleotide is represented using 2 bits. Four
nucleotides fit in a byte, so we can compare bytes in our search.

The extension is based on well-founded statistical theory that gives exact
distribution of gapless local maximum score for random sequences, and permits
a very accurate computation of the probability that the segment pair found
could be possible due to chance alone. The smaller the probability, he more
significant is the match.

The distribution of Maximum segment pair (pair with the maximum score)
for random sequences s and t of lengths m and n, respectively, can be accurately
approximated as described next. The approximation gets better as m and n
increase.

Given matrix of replacement costs sij for the pairs of characters in the al-
phabet, and probability pi of occurrence of each aminoacid in the sequence, we
first compute value λ solving the equation

∑
i,j

pipje
λsij = 1.

The parameter λ is the unique positive solution to the equation can be
obtained by Newton’s method. Once λ is known, the expected number of
distinct segment pairs between s and t with score above S is

Kmne−λS

where K is calculatable constant. Actually, the distribution of the number of
segment pairs scoring above S is a Poisson distribution with mean given by the
previous formula. From this, it is easy to derive expressions for useful quantities
like the average score, intervals where the score will fall 90% of the time, and
so on.
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