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Thus, a function such as that of our example, which exhibits two 0, if x # 0
partitions at first, will show four or three partitions after the x I column =
is doubly complemented. It should be observed here that such a P, ifx= 0.
situation is brought about by doubly complementing only the xl col- This definition in algebraic terms is that of a pseudocomplement, and
umn, and not any other column. This is because all other columns in logical terms is that of a weak negation. The pseudocomplement of
have both O's and l's in the rows of the other subpartition (non- x is the largest element x* such that x *_x* = 0. Since the strong rule
indicator) of a partition. Hence we must modify the previous algo- x = x does not hold, but the weak rule x = x does hold, this is referred
rithm as follows. As before, it is assumed that the function under to as a weak negation. In a previous paper [1], this appearsasC(x),
test is a unity-ratio function. and in a recent abstract [2] and paper [3] asAx ortrx.
Step 1: Write the unity-ratio function in the ordered partitioned Definition 2:

tabular form. Compute the number of rows of each partition.
Step 2: Check if the number of occurrences of rows of weight an p, if x # p

equals (n) for all ne's. If this is not satisfied by a single n, go to Step 3. x = <
If yes, the function is a totally symmetric function (tsf). Write its 0 p
designation with a-numbers and variables of symmetry. Stop. This definition in algebraic terms is that of a complemented pseudo-
Step 3: Detect column/columns having all 0 and/or all 1 entries in supplement, and in logical terms is that of a negated affirmation. The

one or more partitions. If such columns are detected go to Step 5. If pseudosupplement of x is the largest complemented element ! x such
not go to the next step. that ! x < x. Hence this defmition gives the complement of the pseudo-
Step 4: Detect column/columns having all 0 and/or all 1 entries in supplement of x. If affilrmation is the logical term corresponding to

one or more indicator subpartitions. If such columns are detected go to pseudosupplement, then this is the negation of an affirmation [2],
the next step. If not, the function is not a tsf. Stop. [3] . In [ 1] this appears as: Cp(x) = Co(Cp (x)), and in a recent abstract
Step 5: In case more than one partition or indicator subpartition [2] and paper [3] as 1(! x) or -(ox).

has indicated all 0 and/or all 1 columns, check that they are not con- Definition 3: x = p - x, where the minus sign represents arithmetic
tradictory. If not, go to the next step. If yes, the function is not a tsf. subtraction.
Stop. This definition in algebraic terms is that of involution, and in logical
Step 6. Doubly complement the detected columns, calculate the terms is that of strong negation. There is a wide variety of mathematical

new row weights. Check that the number of occurrences of rows of terms for this definition, which was investigated early by Lukasiewicz.
row weight a equals (n). If this is not satisfied by even a single ne, It may be thought of as a mirror type of reflection. Since the strong
then go to the next step. If yes, then the function is a tsf. Write its rule = x holds, this is referred to as a strong negation. In [1] this
designation with on-numbers and variables of symmetry. Stop. appears as ,B(x).
Step 7: Check if the all 0 and/or all 1 columns have been detected For reviews leading to references other than those that follow con-

by partitions or subpartitions. If by partitions, then the function is not cerning these mathematical terms, see the headings Boolean algebras,
a tsf. Stop. If by subpartitions, then go to the next step. generalizations of, and Many-valued logic, in the "Index of Reviews by
Step 8: Doubly complement all detected columns except that of xl . Subjects," J. Symbolic Logic, vol. 35, pp. 654-708, Dec. 1970. 2

Calculate the new row weights. Check that the number of occurrences
of rows of row weight n equals (O) for all n's. If this is not satisfied
by even a single n., then the function is not a tsf. Stop. If yes the REFERENCES
function is a tsf. Write its designation with n-numbers and variables of [11 G. Epstein, "The lattice theory of post algebras," Trans. Amer.
symmetry. Stop. Math. Soc., vol. 95, pp. 300-317, May 1960.

[21 G. Epstein and A. Horn, "A propositional calculus for affirmation
and negation with linearly ordered matrix," J. Symbolic Logic
(Abstract), vol. 37, p. 439, June 1972.

[31 G. Epstein, "Multiple-valued signal processing with limiting," in
Conf. Rec., 1972 Symp. Theory and Applications of Multiple-
Valued Logic Design, pp. 33-45.
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TABLE I

A1 A2 A3 A4 A5
nO nl n2 n3 n4 nfS
5 10 15 8 4 10 Cost Sequence

1 0 0 0 750 n1
Step 1 0 1 0 0 1200 n2

o 0 1 0 480 n3
0 0 0 1 320 n4
1 1 0 0 1350 nl,n2
1 0 1 0 1230 nl,n3

Step 2 0 1 1 0 1080 n3,n21 0 0 1 1070 nl,n4
0 1 0 1 1520 n2,n4
0 0 1 1 1080 n3,n4
1 1 1 0 1280 n3,n2,nl

Step 3 1. 1 0 1 1670 nl,n2,n4
p1 0 1 1 1830 nl,n3,n4
0 1 1 1 1480 n3,n2,n4

Step 4 1 1 1 1 1480 n3,n2,nl,n4

of this algorithm can be quite significant for chain products of large nating i vertices and to obtain the corresponding costs and sequences.
arrays and in iterative solutions of matrix equations involving chain This amounts to processing all the rows of the truth table having i l's
products. and (k - i) O's. More specifically, there are (k) k!/i! (k - i)! such

rows whose processing involves mapping from the set of i l's in a given
Index Terms-Associative law of matrix multiplication, dynamic pro- row to the minimum cost and the sequence of vertex elimination

gramming, finite-word-length computation, matrix chain product, truth (matrix multiples) that achieves this minimum cost. Another way of
table. viewing this processing is optimally inserting i parenthesis pairs in the

given matrix chain product. For example, row 4 in Step 3 of Table I
I. INTRODUCTION corresponds to the three matrix multiplies indicated by the parentheses

This correspondence is addressed to the following questions arising in in A 1 ((A 2(A 3A4 ))A 5) and the cost (number of scalar multiplications)
connection with the evaluation of matrix chain products of the form given by cost = n2n3n4 + n1n2n4 + n1n4n5 = 1480.

The rows processed in this step are of two types, namely: Type 1,

Al X A2 X A3 X ... X Ak+I (1) characterized by two or more groups of consecutive l's separated by
no X nl nl X n2 n2 X n3 nk X nk+1 one or more 0's (e.g., row 2 of Step 3 in Table I) and Type 2, character-

ized by i consecutive l's (e.g., row 4 of Step 3 in Table I). The
1) Does the sequence in which this product is evaluated affect the processing of these two types of rows is described next.

amountoftotalcoputation required?Type 1: Such a row iS decomptosed into a minimum number of rows
2) If the answer to 1) is yes, which is the optimum sequence for oType 2 encountere in teeariete T cost ofmter rowu

evauainscha rouc wih mniumcopuaton
of Type 2 encounteTed in the earlier steps. The cost of the row under

evaluating such a product with a minimum computation? consideration is then calculated as the sum of the costs of the rows in
As it turns out, the answer to 1) is yes, while the answer to 2) can be the decomposition.1 Likewise, the optimum sequence of the row under

found by using the algorithm developed in the next section. consideration is formed by adjoining the sequences of the rows in the

II. ALGORITHM decomposition. For example, the cost and optimum sequence of row 2
of Step 3 in Table I is based on the costs and optimum sequences of

Suppose the product to be evaluated is row 1 of Step 2 and row 4 of Step 1.
Type 2: One of the l's in this row, say that corresponding to the

Al X A2 X A3 . vertex f, is replaced by a 0. The resulting row is one of the Type 1

rows, say rj, processed in the previous step. Let the cost and sequence
If the product is computed as (A 1(A2A3)), 300 scalar multiplications of row rij be Cj and Si, respecthely. The cost of eliminating vertex ,

(additions) are needed, while if the same is done as ((A 1A2)A3), 600 after all the vertices in row r, have been eliminated, is added to Cj to
such operations are required. The following algorithm determines the obtain a new cost Ci. Similarly Si is extended by adjoining j at the end
most efficient way of computing a given product of the form (1). to obtain a new sequence Sj. Cj and Si are possible candidates for the

cost and sequence of the row under consideration. j is given all the
Algorithm possible values and the minimum ei and Si are assigned to the row being

considered. For example, row 4 of Step 3 in Table I is processed by
The given chainproduct (1) is evaluated by k matriconsidering rows 3(rn ), 5(rn ), and 6(rn ) of Step 2, calculating

Each such operation ( n X ,
X )may be considered as elimiation the corresponding e's and 's ( = 1480, n = [n3, n2, n41,n3 =

of vertex m from the set n, m, r bynmr scalar multiplications (addi- 232, 4
tions), later referred to as the cost of eliminating m. Thus the problem th m3iu* ' n- ,2 -2,~ n, )ad sin

' . . . . mg the mmlmum~~ingcost en~and E to row 4 of Step 3.
can be restated as an equivalent problem of eliminating vertices l Th cos an seunefudi h t tpi h eie
fl2, ,fnk from the set {fl0, fl1, fl2,.*'*,ak' fk+i} at minimum cost. information.
The algorithm described next can be better understood by reading it in Thsagrtm epsnsanplitonfBlmn'mtodf
conjunction with Example 1.
The algorithm consists of generating a truth table for k variables (like dyai_rgamn nwihteotmmpoeuea tpi(h

Table I for k = 4) and then going through Steps 1 through k, the ith
stp 1

'
,bigdscie sflos The cost of a row means the minimum cost of eliminating the

ith Step: The object of this step is to examine various ways of elimi- vertices represented by 1l's in the row.
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ith matrix multiply) are calculated recursively from the optimum pro- These advantages can be more significant for chain products of large
cedures for Steps 1, 2, , i - 1 (i > 2) [1], [2]. arrays and in iterative solution of matrix equations involving chain

products. The examples included illustrate the algorithm and bring out
III. SOFTWARE some interesting facts.

The above algorithm is programmed for use on the CDC 6600 com-
puter. If desired, the program can also compute the chain product REFERENCES
according to the optimum sequence. The program can handle chain [11 R. Bellman, Ed., Mathematical Optimization Techniques. Berke-
products of up to 11 matrices whose combined total number of ele- ley, Calif.: Univ. California Press, 1963.[21 S. E. Dreyfus, Dynamic Programming and the Calculus of Varia-
ments is about 5000 or less. It takes about 42 000 (octal) core to com- tions. New York: Academic, 1965.
pile and about 38 000 (octal) core to execute. The CP time required
for compiling is about 1.85 s, while that required to execute the case
k = 3 and matrix sizes 5 X 10, 10 X 15, 15 X 8, 8 X 10 is about 2.1 s
(includes computation of the product).

IV. EXAMPLES A Simply Solvable Class of Simultaneous Linear Equations
The following examples illustrate the algorithm and bring out a few

interesting facts noted in the next section. JOSEPH C. HASSAB
Example 1: Suppose the following matrix product is to be computed. Abstract-A solution is presented for a class of a very large system of

A1 X A2 X A3 X A4 X A5 linear algebraic equations. The given set of simultaneous equations is
5 X 10 10 X 15 15 X 8 8 X 4 4 X 10 initially transformed to yield an equivalent system of equations in tri-

Table I shows the various steps of the algorithm. Thus the optimum angular form whose solution is straightforward. With the present tech-

sequence for evaluating the given product is M (A2(A3A4)))A.5) and nique, the number of operations on the computer is minimized while

the corresponding (minimum) number of scalar multiplications (addi- the convergence to a unique solution is guaranteed.
tions) is 1480. The computer solution is shown as follows. Index Terms-Linear transformation, minimized computer operations,

simply solvable equations, triangular matrices.
DIMENSIONS OF MATRICES ENTERING THE PRODUCT

N 0 N I N 2 N 3 N 4 N 5 INTRODUCTION
5 10 15 8 4 10

In this correspondence, a solution is presented for a class of a large
OPTIMUM ELIMINATION SEQUENCEt N 3 ,N 2,N i1N 4 system of simultaneous linear equations. This class of equations may
CORRESPONDING NO, OF SCALAR MULTIPLICATIONS= 480 arise from the algebraization of elliptic partial differential equations

Example 2: Given the same matrices as in the above example (this [ 1, p. 61 or from their conversion into equivalent integral equations and
their subsequent numerical treatment [2, p. 89]. The obtained set ofwill be assumed in the other examples also) and the desired product siutnoseainsstrsfmditoneqvlntraglrst
SimUltaneOUS eqUationS iS transformed into an equivalent triangular setA 1A 2A 3A4, the optimum sequence and cost are, respectively, (A 1(A2 w

(AA4) an 120 where recursive calculation yields the solution.(A3A4))) and 1280.
Example 3: If the desired product is A 1A 2A 3, the optimum sequence SIMPLY SOLVABLE SYSTEM OF EQUATIONS

and cost are ((A 1A2)A3) and 1350, respectively.
Example 4: If the desired product is A 1A2A3P where P is an 8 X 10 Suppos we wish to solve an n X n linear system that has been con-

matrix, the optimum sequence and cost are (((A1A2)A3)P) and 1750, verted to the form [1], [2]:
respectively. x=Ax+y (1)

where x and y are n X 1 column matrices. If we can express the matrix
A as the matrix sum

Based on the preceding examples, the following interesting observa- A = yC + D (2)
tions can be made.
Observation 1: The minimum cost of computing product (1) may be where y, C, and D are given, C is a 1 X n row matrix, and D is an upper

lesser than that of computing A 1A2 - * Ak (see Examples 2 and 3). triangular n X n matrix, then the algebraic equation (1) is shown to be
Observation 2: If the product (1) and its proper subproduct simply solvable.

AiAi+l ... Aj (call it P), k + 1 > j > i > 1, are to be evaluated, it may Letting y = Cx + 1 and setting x = -yZ in (1) and (2), we get x = yy +
sometimes be more efficient to compute the two separately rather than Dx or Z = y + DZ.
evaluating P and A 1A2 ... Ai-1PAi+l ... Ak+i . Suppose both P = Since D is a triangular matrix, Z is determined recursively with only
A4A5 and A 1A2A3A4A5 are to be evaluated. The total cost based on n(n + 1)/2 operations. Solving for -y in terms of Z, we have y = CyZ + 1,
evaluating P and A1A2A3P is 320 + 1750 = 2070 (see Example 4), or y = 1/(1 - CZ) and the unknown x(x = yZ) has been determined
while that based on evaluating P and A 1A2A3A4A5 is 320 + 1480 = finally. If the Z system is not solvable or CZ = 1, then the method must
1800 (see Example 1). be modified.' Otherwise, the original problem has been solved in about

n2/2 operations as contrasted [3, p. 245] with the usual n3/3 opera-
VI. CONCLTUSION tions used in Gauss elimination, (2/)3 multiplications plus n square

It has been pointed out that the number of scalar multiplications roots in Householder triangularization (4/t3)n3 multiplications plus
(additions) required to evaluate a matrix chain product like (1) depends 2- n2 square roots in Givens triangularization, and n2 operations for
on the sequence in which the associative law of matrix multiplication is each iteration in a Gauss-Seidel solution.
applied. An algorithm is developed and programmed on the CDC 6600
computer to find out the optimum sequence of matrix multiplications.
The program can also evaluate the product accordingly. In addition to Manuscript received May 31, 1972; revised April 2, 1973.

comutigpoduts ike(1)at inium ost th alorihmcan give RThe author is with the Naval Underwater Systemns Center, Newport,
most accurate results in the case of finite-word-length computations. 1 Pointed out by the referees.


