864

Thus, a function such as that of our example, which exhibits two
partitions at first, will show four or three partitions after the x; column
is doubly complemented. It should be observed here that such a
situation is brought about by doubly complementing only the x; col-
umn, and not any other column. This is because all other columns
have both 0’s and 1’s in the rows of the other subpartition (non-
indicator) of a partition. Hence we must modify the previous algo-
rithm! as follows. As before, it is assumed that the function under
test is a unity-ratio function.

Step 1: Write the unity-ratio function in the ordered partitioned
tabular form. Compute the number of rows of each partition.

Step 2: Check if the number of occurrences of rows of weight «
equals Z) for all o’s. If this is not satisfied by a single «, go to Step 3.
If yes, the function is a totally symmetric function (tsf). Write its
designation with a-numbers and variables of symmetry. Stop.

Step 3: Detect column/columns having all 0 and/or all 1 entries in
one or more partitions. If such columns are detected go to Step 5. If
not go to the next step.

Step 4: Detect column/columns having all 0 and/or all 1 entries in
one or more indicator subpartitions. If such columns are detected go to
the next step. If not, the function is not a tsf. Stop.

Step 5. In case more than one partition or indicator subpartition
has indicated all 0 and/or all 1 columns, check that they are not con-
tradictory. If not, go to the next step. If yes, the function is not a tsf,
Stop.)

Step 6. Doubly complement the detected columns, calculate the
new row weights. Check that the number of occurrences of rows of
row weight a equals (Z) If this is not satisfied by even a single a,
then go to the next step. If yes, then the function is a tsf. Write its
designation with a-numbers and variables of symmetry. Stop.

Step 7: Check if the all 0 and/or all 1 columns have been detected
by partitions or subpartitions. If by partitions, then the function is not
a tsf. Stop. If by subpartitions, then go to the next step.

Step 8: Doubly complement all detected columns except that of x;.
Calculate the new row weights. Check that the number of occurrences
of rows of row weight « equals Z) for all o’s. If this is not satisfied
by even a single «, then the function is not a tsf. Stop. If yes the
function is a tsf. Write its designation with a-numbers and variables of
symmetry. Stop.

Comments on ‘“The Relationship Between Multivalued
Switching Algebra and Boolean Algebra Under
Different Definitions of Complement”

GEORGE EPSTEIN

Abstract—This correspondence identifies the definitions of the above
paperl in mathematical terms. Both algebraic and logical terms are
given.

Index Terms—Complemented pseudosupplement, involution, negated
affirmation, pseudocomplement, strong negation, weak negation.

Of the four definitions given in the above paper,l the first three
definitions have mathematical terms that are given below as representa-
tive, but not exhaustive, of those existing in the literature.

Definition 1:

Manuscript received May 31, 1972; revised March 27, 1973.

The author is with ITT Gilfillan, Van Nuys, Calif., and with the De-
partment of Mathematics, University of California, Los Angeles, Calif.
90024.

!S. Y. H. Su and A. A. Sarris, IEEE Trans. Comput., vol. C-21, pp.
479-485, May 1972.

Assistance in the selection of these headings was provided helpfully
by H. Enderton of the University of California, Los Angeles.

IEEE TRANSACTIONS ON COMPUTERS, SEPTEMBER 1973

B 0, ifx#0
x=<
p, ifx=0.

This definition in algebraic terms is that of a psesudocomplement, and
in logical terms is that of a weak negation. The pseudocomplement of
x is the largest element x* such that x - x* = 0. Since the strong rule
X = x does not hold, but the weak rule x = X does hold, this is referred
to as a weak negation. In a previous paper [1], this appears as Cg(x),
and in a recent abstract [2] and paper {3] as TIx or ~x.

Definition 2:

_ p, ifx#p
x=<
0, ifx=p.

This definition in algebraic terms is that of a complemented pseudo-
supplement, and in logical terms is that of a negated affirmation. The
pseudosupplement of x is the largest complemented element ! x such
that ! x < x. Hence this definition gives the complement of the pseudo-
supplement of x. If affirmation is the logical term corresponding to
pseudosupplement, then this is the negation of an affirmation [2],
[3]. In [1] this appears as: Cp(x) = Co(Cp (x)), and in a recent abstract
[2] and paper [3] as 7I(! x) or ~(ox).

Definition 3: X = p - x, where the minus sign represents arithmetic
subtraction.

This definition in algebraic terms is that of involution, and in logical
terms is that of strong negation. There is a wide variety of mathematical
terms for this definition, which was investigated early by Lukasiewicz.
It may be thought of as a mirror type of reflection. Since the strong
rule X = x holds, this is referred to as a strong negation. In [1] this
appears as §(x).

For reviews leading to references other than those that follow con-
cerning these mathematical terms, see the headings Boolean algebras,
generalizations of, and Many-valued logic, in the “Index of Reviews by
Subjects,” J. Symbolic Logic, vol. 35, pp. 654-708, Dec. 1970.2

REFERENCES

[1] G. Epstein, “The lattice theory of post algebras,” Trans. Amer.
Math. Soc., vol. 95, pp. 300-317, May 1960.

[2] G. Epstein and A. Horn, “A propositional calculus for affirmation
and negation with linearly ordered matrix,” J. Symbolic Logic
(Abstract), vol. 37, p. 439, June 1972.

[3] G. Epstein, “Multiple-valued signal processing with limiting,” in
Conf. Rec., 1972 Symp. Theory and Applications of Multiple-
Valued Logic Design, pp. 33-45.

’

On Efficient Computation of Matrix Chain Products
SADASHIVA S. GODBOLE

Abstract-It is pointed out that the number of scalar multiplications
(additions) required to evaluate a matrix chain product depends on the
sequence in which the associative law of matrix multiplication is applied.
An algorithm is developed to find the optimum sequence that mini-
mizes the number of scalar multiplications. A program is written for
use on the CDC 6600 computer to implement this algorithm and also to
carry out the chain product according to the optimum sequence. Sev-
eral examples are included to illustrate the algorithm. The saving in
computation and improvement in accuracy that can result from the use

Manuscript received August 1, 1972; revised April 2, 1973.
The author is with Babcock & Wilcox Company, Lynchburg Research
Center, Lynchburg, Va. 24505.

CORRESPONDENCE 865
TABLE I
Ay A, As Ag As
Ro ny Hay ni ng ns
5 10 15 8 4 10 Cost Sequence

1 0 0 0 750 ny

0 1 0 0 1200 ny
Step 1 o 0 1 0 480 15

0 0 0 1 320 ng

1 1 0 0 1350 ny,n,

1 0 1 0 1230 ny,n3

0 1 1 0 1080 n3,n,
Step 2 1 0 0 1 1070 ny.ng

0 1 0 1 1520 n,,n4

0 0 1 1 1080 n3,ng4

1 1 1 0 1280 n3,ny, Ny

1 1 0 1 1670 ny.ns,na
Step 3 1 0 1 1 1830 ny,n3.1a

0 1 1 1 1480 n3,ny,n4
Step 4 1 1 1 1 1480 n3,n,,nq,n4

of this algorithm can be quite significant for chain products of large
arrays and in iterative solutions of matrix equations involving chain
products.

Index Terms—Associative law of matrix multiplication, dynamic pro-
gramming, finite-word-length computation, matrix chain product, truth
table.

I. INTRODUCTION
This correspondence is addressed to the following questions arising in
connection with the evaluation of matrix chain products of the form

Ay X Ay X Az X-.-
nOan nIan n2)<n3

X Agey -)
ng X Ny

1) Does the sequence in which this product is evaluated affect the
amount of total computation required?

2) If the answer to 1) is yes, which is the optimum sequence for
evaluating such a product with a minimum computation?

As it turns out, the answer to 1) is yes, while the answer to 2) can be
found by using the algorithm developed in the next section.

II. ALGORITHM

Suppose the product to be evaluated is

Al X A,
5X 10 10X 10

X As .
10X 2

If the product is computed as (4(4,43)), 300 scalar multiplications
(additions) are needed, while if the same is done as ((4;4,)A43), 600
such operations are required. The following algorithm determines the
most efficient way of computing a given product of the form (1).

Algorithm

The given chain product (1) is evaluated by k matrix multiplications.
Each such operation (n Xm m)may be considered as elimination
of vertex m from the set {n, m, rﬁ by nmr scalar multiplications (addi-
tions), later referred to as the cost of eliminating m. Thus the problem
can be restated as an equivalent problem of eliminating vertices n,,
n,, -+, ng from the set {no, Ry, N, , N, nkﬂ} at minimum cost.
The algorithm described next can be better understood by reading it in
conjunction with Example 1.

The algorithm consists of generating a truth table for k variables (like
Table I for £k = 4) and then going through Steps 1 through %, the ith
step, 1 < i<k, being described as follows.

ith Step: The object of this step is to examine various ways of elimi-

nating i vertices and to obtain the corresponding costs and sequences.
This amounts to processing all the rows of the truth table having i 1’s
and (k - i) 0’s. More specifically, there are () k!/il(k - D! such
rows whose processing involves mapping from the set of / 1’s in a given
row to the minimum cost and the sequence of vertex elimination
(matrix multiples) that achieves this minimum cost. Another way of
viewing this processing is optimally inserting i parenthesis pairs in the
given matrix chain product. For example, row 4 in Step 3 of Table 1
corresponds to the three matrix multiplies indicated by the parentheses
in 41((4,(4344))A5) and the cost (number of scalar multiplications)
given by cost = nynzng + nynong + nyngns = 1480.

The rows processed in this step are of two types, namely: Type 1,
characterized by two or more groups of consecutive 1’s separated by
one or more 0’s (e.g., row 2 of Step 3 in Table I) and Type 2, character-
ized by i consecutive 1’s (e.g., row 4 of Step 3 in Table I). The
processing of these two types of rows is described next.

Type 1: Such a row is decomposed into a minimum number of rows
of Type 2 encountered in the earlier steps. The cost of the row under
consideration is then calculated as the sum of the costs of the rows in
the decomposition.! Likewise, the optimum sequence of the row under
consideration is formed by adjoining the sequences of the rows in the
decomposition. For example, the cost and optimum sequence of row 2
of Step 3 in Table I is based on the costs and optimum sequences of
row 1 of Step 2 and row 4 of Step 1.

Type 2: One of the 1’s in this row, say that corresponding to the
vertex j, is replaced by a 0. The resulting row is one of the Type 1
rows, say 7j, processed in the previous step. Let the cost and sequence
of row rj be C, and S,-, respectively. The cost of eliminating vertex /,
after all the vertices in row r; have been eliminated, is added to Cj to
obtain a new cost Cj. Similarly S; is extended by adjoiningj at the end
to obtain a new sequence SJ G and S are possible candidates for the
cost and sequence of the row under consrderat)on j is given all the
possible values and the minimum €; f] and S] are assigned to the row being
considered. For example, row 4 of Step 3 in Table I is processed by
considering rows 3(rn4), 5(r,,3), and 6(r,) of Step 2, calculating
the corresponding C’s and §’s (@n = 1480, =[n3,n2,14],Cp, =
2320, S,, [n,, ngq,n3], @n = 2580 Sp. = [n3, ng,n,]) and assrgn-
ing the minimum cost G,, and 8, torow 4 of Step 3.

The cost and sequence found in the kth step is the desired
information.

This algorithm represents an application of Bellman’s method of
dynamic programming in which the optimum procedure at Step i (the

!The cost of a row means the minimum cost of eliminating the
vertices represented by 1’s in the row.

866

ith matrix multiply) are calculated recursively from the optimum pro-
cedures for Steps 1,2, --+,i- 1> 2) [1], [2].

[II. SOFTWARE

The above algorithm is programmed for use on the CDC 6600 com-
puter. If desired, the program can also compute the chain product
according to the optimum sequence. The program can handle chain
products of up to 11 matrices whose combined total number of ele-
ments is about 5000 or less. It takes about 42 000 (octal) core to com-
pile and about 38 000 (octal) core to execute. The CP time required
for compiling is about 1.85 s, while that required to execute the case
k = 3 and matrix sizes 5 X 10, 10 X 15, 15 X 8,8 X 10isabout 2.1s
(includes computation of the product).

IV. EXAMPLES

The following examples illustrate the algorithm and bring out a few
interesting facts noted in the next section.
Example 1: Suppose the following matrix product is to be computed.

Al X A,
5X 10 10X 15

X A,
15X 8

X As X As
8X 4 4 X 10

Table I shows the various steps of the algorithm. Thus the optimum
sequence for evaluating the given product is ((4,(4,(4344)))A5) and
the corresponding (minimum) number of scalar multiplications (addi-
tions) is 1480. The computer solution is shown as follows.

OIMENSIONS OF MATRICES ENTERING THE PRODUCT

N O N1 N 2 N 3 N &
5 10 15 8 4 10

OPTIMUM ELIMINATION SEQUENCES N 34N 24N 14N 4
CORRESPONDING NOs OF SCALAR MULTIPLICATIONS=

1480

Example 2: Given the same matrices as in the above example (this
will be assumed in the other examples also) and the desired product
A1A4,A344, the optimum sequence and cost are, respectively, (41(4, *
(4344))) and 1280. ‘

Example 3. If the desired product'is 414,43, the optimum sequence
and cost are ((414,)A43) and 1350, respectively.

Example 4: If the desired product is 4,4,A43P where Pisan 8 X 10
matrix, the optimum sequence and cost are (((4,4,)43)P) and 1750,
respectively.

V. SOME OBSERVATIONS

Based on the preceding examples, the following interesting observa-
tions can be made.

Observation 1: The minimum cost of computing product (1) may be
lesser than that of computing 4,4, - - - Ay (see Examples 2 and 3).

Observation 2: If the product (1) and its proper subproduct
AjAjey »- - Aj (call it P), k + 1 =7 > i> 1, are to be evaluated, it may
sometimes be more efficient to compute the two separately rather than
evaluating P and AyAy -+ A;-1PAjyy * - Agsy- Suppose both P =
AgAs and A, 4,4344A45 are to be evaluated. The total cost based on
evaluating P and A;4,A43P is 320 + 1750 = 2070 (see Example 4),
while that based on evaluating P and 4,4,4344A45 is 320 + 1480 =
1800 (see Example 1).

VI. CONCLUSION

It has been pointed out that the number of scalar multiplications
(additions) required to evaluate a matrix chain product like (1) depends
on the sequence in which the associative law of matrix multiplication is
applied. An algorithm is developed and programmed on the CDC 6600
computer to find out the optimum sequence of matrix multiplications.
The program can also evaluate the product accordingly. In addition to
computing products like (1) at minimum cost, the algorithm can give
most accurate results in the case of finite-word-length computations.

IEEE TRANSACTIONS ON COMPUTERS, SEPTEMBER 1973

These advantages can be more significant for chain products of large
arrays and in iterative solution of matrix equations involving chain
products. The examples included illustrate the algorithm and bring out
some interesting facts.

REFERENCES

[1] R. Bellman, Ed., Mathematical Optimization Techniques. Berke-

ley, Calif.: Univ. California Press, 1963.
[2] S. E. Dreyfus, Dynamic Programming and the Calculus of Varia-
tions. New York: Academic, 1965.

A Simply Solvable Class of Simultaneous Linear Equations
JOSEPH C. HASSAB

Abstract— A solution is presented for a class of a very large system of
linear algebraic equations. The given set of simultaneous equations is
initially transformed to yield an equivalent system of equations in tri-
angular form whose solution is straightforward. With the present tech-
nique, the number of operations on the computer is minimized while
the convergence to a unique solution is guaranteed.

Index Terms—Linear transformation, minimized computer operations,
simply solvable equations, triangular matrices.

INTRODUCTION

In this correspondence, a solution is presented for a class of a large
system of simultaneous linear equations. This class of equations may
arise from the algebraization of elliptic partial differential equations
[1, p. 6] or from their conversion into equivalent integral equations and
their subsequent numerical treatment [2, p. 89]. The obtained set of
simultaneous equations is transformed into an equivalent triangular set
where recursive calculation yields the solution.

SIMPLY SOLVABLE SYSTEM OF EQUATIONS

Suppose we wish to solve an # X n linear system that has been con-
verted to the form [1], [2]:

x=Ax+y 1)

where x and y are n X 1 column matrices. If we can express the matrix
A as the matrix sum

A=yC+D)

where y, C, and D are given, Cisa 1 X n row matrix, and D is an upper
triangular # X n matrix, then the algebraic equation (1) is shown to be
simply solvable.

Letting v = Cx + 1 and setting x =Z in (1) and (2), we get x = yy +
DxorZ=y+DZ.

Since D is a triangular matrix, Z is determined recursively with only
n(n+1)/2 operations. Solving for v in terms of Z, we have y = CyZ + 1,
or y=1/(1 -CZ) and the unknown x(x = yZ) has been determined
finally. If the Z system is not solvable or CZ = 1, then the method must
be modified.! Otherwise, the original problem has been solved in about
n*2 operations as contrasted [3, p. 245] with the usual n®/3 opera-
tions used in Gauss elimination, (2/ 3)n3 multiplications plus n square
roots in Householder triangularization (4/ 3)n3 multiplications plus
—;-nz square roots in Givens triangularization, and »° operations for
each iteration in a Gauss-Seidel solution.

Manuscript received May 31, 1972;revised April 2, 1973.
The author is with the Naval Underwater Systems Center, Newport,

L
! Pointed out by the referees.

