
Public Key Cryptography

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Public Key Cryptography

• Symmetric Key:

– Same key used for encryption and decrypiton

– Same key used for message integrity and validation

• Public-Key Cryptography

– Use one key to encrypt or sign messages

– Use another key to decrypt or validate messages

• Keys

– Public key known to the world and used to send you a message

– Only your private key can decrypt the message

Encryption Decryption
Plaintext Ciphertext Plaintext

Public Key Private Key

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Public Key Cryptography

• Motivations

– In symmetric key cryptography, a key was needed between every pair

of users wishing to securely communicate

• O(n2) keys

– Problem of establishing a key with remote person with whom you wish

to communicate

• Advantages to Public Key Cryptography

– Key distribution much easier: everyone can known your public key as

long as your private key remains secret

– Fewer keys needed

• O(n) keys

• Disadvantages

– Slow, often up to 1000x slower than symmetric-key cryptography

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Cryptography and Complexity

• Three classes of complexity:

– P: solvable in polynomial time, O(nc)

– NP: nondeterministic solutions in polynomial time,

deterministic solutions in exponential time

– EXP: exponential solutions, O(cn)

• Cryptographic problems should be:

– Encryption should be P

– Decryption should be P with key

– Decryption should be NP for attacker

• Need problems where complexity of solution
depends on knowledge of a key

P

NP

EXP

increasing

difficult

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Modular Arithmetic Review

• Integers modulo prime p form an algebraic ring

• Example:

– Z (mod 7) = {0, 1, 2, 3, 4, 5, 6}

– Addition: 4 + 5 = 9 = 2 (mod 7)

– Multiplication: 4 * 5 = 20 = 6 (mod 7)

– Additive Identity: 4 + 0 = 4 (mod 7)

– Multiplicative Identity: 4 * 1 = 4 (mod 7)

– Inverse: 4 * 2 = 8 = 1 (mod 7)

• 4-1 = 2 (mod 7)

• 2-1 = 4 (mod 7)

• Can use Euclidean Algorithm to find inverses (mod p) in polynomial

time

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Knapsack Problem

• Finding subset of items that completely fill a
knapsack

• Cast mathematically, find a binary selection
vector vi such that:

• Vector ai represents the size of the items and ,
and T is the total size of the knapsack

• Example:

– a = {5, 8, 2, 9, 11, 4}

– T = 14

– Solution: v = {0, 1, 1, 0, 0, 1}

 
i

ii Tav

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Knapsack Problem

• Finding vector v for an arbitrary knapsack is an NP problem

– Deterministic exponential solution: try every vector 2n

– More efficient: recursive algorithm on sorted knapsack

• Superincreasing knapsack:

– Special case where

– Polynomial-time solution exists

• Example:

– a = {1, 3, 6, 13, 25, 51}

– T = 32

– Solution

• Can’t have 51

• Must have 25, result is 7

• Can’t have 13,

• Must have 6, result is 1, etc







1

1

n

i

in aa

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Knapsack Problem

• Use knapsack problem for cryptography

– Plaintext is vector v

– Ciphertext is target T

– Key is vector a

• Need two equivalent knapsacks

– Regular knapsack for encryption, ke (public key)

– Superincreasing knapsack for decryption kd (private key)

– Need a way to convert a superincreasing knapsack to a

regular knapsack

• Technique: use modular arithmetic

• ke = c kd (mod n)

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Knapsack Problem

• Example:

– kd = {1, 3, 6, 13, 25, 53}

– ke = 51 kd (mod 107) = {51, 46, 92, 21, 98, 28}

– Message M = {0, 1, 1, 0, 1, 1}

– Ciphertext T = 264

– Decrypt using kd

• Need to “undo” multiplication by 51 (mod 107), use Euclidean

algorithm to determine that 51 * 21 (mod 107) = 1, so 21 = 51-1

• Compute new ciphertext T’ = 264 * 21 (mod 107) = 87

• Must have 53, result is 34

• Must have 25, result is 9

• Cannot have 13

• Must have 6, 3, result is {0, 1, 1, 0, 1, 1}

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Knapsack Problem

• Proposed in 1978 as a public-key encryption
scheme

• Analysis in 1983 showed flaws

– Heuristic techniques for determining multiplier and

modulus

– Results in a polynomial-time algorithm to derive kd

from ke

– Flaw means that cryptosystems based on

transforming a superincreasing knapsack are

insecure

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

RSA

• Rivest-Shamir-Adleman

• Also introduced in 1978

• Based on the difficulty of factoring a large composite number

into two large primes

– Believed to be an exponential-time problem

– Polynomial-time algorithms exist for Quantum computers

• Relies on generalization of Fermat’s theorem:

• j(n) is the number of numbers less than n, coprime with n

– Euler’s Totient Function

– For n = p, j(n) = n-1, for any prime p

– For n = pq, j(n) = j(p) j(q) = (p-1)(q-1), for any primes p, q

)(mod1)(nx n j

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

RSA

• Uses modular arithmetic, for plaintext P, ciphertext C

• Need values d, e, n to make it work

• Using Fermat’s Theorem:

– Let n = pq for primes p, q, test for prime is polynomial

– Let d = e-1 (mod j(n)), Euclidean algorithm is polynomial

• Then:

)(mod nPC e)(mod nCP d

)(mod

)(mod

)(mod)(

)(mod

1 nP

nP

nP

nCP

ed

de

d









ENTS 689i | Network Immunity | Fall 2008 Lecture 2

RSA

• Direct Attack

– Attacker needs to be able to compute “Discrete Logarithm”

– That is,

• If C, e, n known, compute P

• logP(C) = e (mod n)

• Solving in R is easy, but in Z (mod n) is EXP

• Rather than attack directly, try to find private key

– Adversary needs to know j(n) to compute d from e

– To know j(n), attacker must know p, q used to compute n

– Attack requires factorization

)(mod nPC e

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

RSA

• Security of RSA

– Used in nearly every secure transaction over the Internet

– Originally n was 512 bits (RSA-512)

• Now crackable in under a year on a standard desktop computer

• Roughly equivalent to DES

– Most current Internet sites use RSA-1024

• Infeasible to crack given current processing power

– Most new standards and systems recommend RSA-2048

• RSA-2048 keys are as difficult to crack as AES-128

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

El Gamal Encryption

• RSA can be cracked either by:

– Solving Discrete Logarithm (DL) problem

– Factoring public key

• Factoring is easier

• Need a cryptosystem that doesn’t involve
factoring, and based solely on DL problem

• Result would be more secure

– Shorter key length for the same level of security

• Invented by El Gamal in 1984

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

El Gamal Encryption

• Use multiplicative group of integers (mod p)

– Any algebraic group will work

• Key generation

– Select prime p, integers a, x < p / private key {x}

– Compute r = ax (mod p) / public key {p, a, r}

• Encryption

– Select random integer y < p

– Compute c1 = ay, c2 = Mry / ciphertext {c1, c2}

• Decryption

– Compute plaintext = c1
-x c2

– c1
-x c2 = (ay)-x Mry = M a-xy (ax)y = M axy a-xy = M (mod p)

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

El Gamal Encryption

• Basic security provided by the discrete logarithm
problem

• Other attacks: security actually limited

– Computational Diffie-Hellman problem

– Decisional Diffie-Hellman problem

– Will discuss these in detail next week

• System is malleable

– Example: adversary can change c2’=2c2

– Adversary decrypts c1
-xc2’ = 2M

– Deterministic change to ciphertext yields deterministic

change in plaintext

– Still need integrity protection

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Elliptic Curve Cryptography

• Elliptic curves can be used to create an algebraic group

• Combined with El Gamal Encryption to perform Elliptic Curve

Cryptography

• Basic idea:

– Points on a curve are group elements

– Can be “added together” by:

• Find third point colinear with first two

• Reflect across axis

– Efficient algorithm exists for computation

– Exponentiation: Compute c * A, where c is an integer constant, as c * A

= A+A+A+…+A (c times)

– Forms an algebraic group with difficult discrete logarithm problem

A B

A+B

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Elliptic Curve Cryptography

• Advantages

– Security bounded by DL problem rather than factoring problem

– Can use significantly shorter key sizes

– ECC-160 roughly equivalent to RSA-1024

• MUCH shorter key sizes, better for storage, transmission

– Still secure even if someone finds polynomial time for factoring integers

– As RSA keys get longer, equivalently-secure ECC is more efficient in both

hardware and software

• Disadvantages

– Less institutionalized, most certificates don’t support it

• Future of ECC

– Patents by Certicom discourage use, expiring soon

– USG pushing for use within USG systems

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Digital Signatures

• Before, MIC provided message integrity

• Need a public-key equivalent

• Basic approach:

– Most public-key systems have interchangable

keys

• RSA: could use either d or e to encrypt or decrypt, one

undoes the other

– Compute a hash of the message, and “encrypt” it

with the private key

– Recipient “decrypts” with the public key, verifies

the hash

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Digital Signatures

• Overall Architecture:

Hash
message

Sign

private

key

||
signed

message

signed

message

Hash

Verify

public

key

{0, 1} depending

on whether hash

matches

message

signature

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

RSA Digital Signatures

• As mentioned before: simply “encrypt” with the
private key

– M = Message, S = Signature

– To sign:

– To verify, see if

• Relies on security of hash function

– If a collision can be found, an attacker can change M to M’

such that Hash(M)=Hash(M’)

– Same signature S would be valid for both M and M’

)(mod)(nMHashS d

)(mod)(nSMHash e

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Digital Signature Algorithm (DSA)

• DSA is NIST standard for digital signatures

• Based on El Gamal signature scheme

– Similar to El Gamal Encryption

– Relies on DL problem rather than factorization

• Key Generation:

– Select prime p, integers a, x < p / private key = {x}

– Compute y = ax (mod p) / public key = {p, a, y}

• Signature:

– Select random integer k < p-1

– Compute r = ak (mod p)

– Compute s = k-1 (Hash(M) – xr) (mod p-1)

– Signature: {r, s}

• Verify:

– Compute v = yr rs (mod p)

– Determine if v = aHash(M) (mod p)

 

 

 

)(mod

)(mod

)(mod

)(mod)(

)(mod)(

)(

)(

))((

))((

))((

1

1

1

pa

pa

pa

paa

prary

MHash

xrMHashxr

xrMHashkkxr

xrMHashkkxr

xrMHashkrxsr

























ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Digital Signature Algorithm

• DSA can also be used with Ellipitic Curve
Group rather than multiplicative integers

– Called ECDSA

– Again requires shorter key for equivalent security

– Based on El Gamal Signatures

• Most digital signature systems use DSA rather
than RSA signatures

• Very few use ECDSA

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Quantum Cryptography

• Drastically different than mathematical cryptography explored so far

• Encodes data as photons of light

• Photons can spin in different orientations: 

• Polarized filters can detect photons

– + filter: detects  correctly,  randomly

– X filter: detects  correctly,  randomly

• Sender assigns 0 to  or , 1 to  or 

• Sender’s message {0, 1, 1, 0, 1} to {, , , , }

• Receiver uses random filters to detect {+, +, X, X, X}

• Receiver detects {1, 1, 1, 0, 1} (first, last filters incorrect)

• Receiver sends filter list to sender, sender indicates which were correct

• Receiver now correctly knows {?, 1, 1, 0, ?}

• Use error-correcting code to communicate over channel

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Quantum Cryptography

• Security is based on the Heisenberg Uncertainty Principle

– If you measure the rotation of a photon, you randomly change the

rotation

– Sender/Receiver could detect statistically abnormal error rate in the

channel

• Implementation issues

– Currently difficult to send exactly one photon of light

– Approaches use a laser and attenuate the output such that statistically

the expected number of photons is 1 per bit

• Applications

– Doesn’t rely on DL or factorization, therefore immune to Quantum

Cryptanalysis; may be one of the only viable cryptosystems

– Currently geared toward satellite communications

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Public-Key Cryptosystems (PKCS)

• PKCS encapsulations

– RSA has defined proprietary encapsulations of data into encrypted,

signed blobs

– PKCS #1, #2, etc, defined different encodings

– Some offer encryption, others signatures, or both

• Transaction Layer Security (TLS)

– Fundamental basis of secure communications over the Internet

– Uses RSA, etc, for key agreement (discuss in detail next week)

• Email standards

– CMS (Cryptographic Message Syntax) used for SMIME, use RSA/DSS

– PGP and GPG are commonly used for email encryption, use El Gamal

ENTS 689i | Network Immunity | Fall 2008 Lecture 2

Public Key Infrastructure

• ANSI X.509 standards

– Define how to format public keys for exchange over networks

– Major use: definition of certificate format

• Certificates are public keys signed by an external authority

– e.g. Verisign

– Trusted third party, called Certificate Authority (CA)

• Prevents MITM attacks

– Someone sends you a public key to communicate with them securely

– How do you know it’s really the public key of the person you want to

communicate with?

– Have a trusted third party sign the key as actually being owned by someone

– Anyone can create a CA, but popular software applications only list major

companies, others have to be added manually

