Computing Partitions with Applications to the
Knapsack Problem

ELLIS HOROWITZ AND SARTAJ SAHNI

Cornell Universily, Ithaea, New York

ABSTRACT, Givenr numberss;, -+ ,s., algorithms are investigated for finding all possible combina-
tions of these numbers which sum to M. This problem is a particular instance of the 0-1 unidimen-
sional knapsack problem. All of the usual algorithms for this problem are investigated in terms of
both asymptotic computing times and storage requirements, as well as average computing times, We
develop a technique which improves all of the dynamic programming methods by a square root factor.
Empirical studies indicate this new algorithm to be generally superior to all previously known algo-
rithms. We then show how this improvement can be incorporated into the more general 0-1 knap-
sack problem obtaining a square root improvement in the asymptotic behavior. A new branch and
search algorithm that is significantly faster than the Greenberg and Hegerich algorithm is also pre-
sented. The results of extensive empirical studies comparing these knapsack algorithms are given.

KEY WORDS AND PHRASES: partitions, knapsack problem, dynamie programming, integer optimiza-
tion

CR CATEGORIES: 8.25,5.39, 5.42

1. Introduction

Given r numbers & , - - - , 8 we wish to find all possible combinations of these numbers
which sum to M. This rather simply stated problem is at the root of several interesting
problems in number theory, operations research, and polynomial factorization. In the
first case it is closely related to the classical number theory study of determining parti-
tions. Phrased in our terminology, determining partitions of M would imply that s; = ¢
and s, = M. So here we are concerned with a more general problem than partitions. In
[7, p. 273) Hardy and Wright provide generating functions but no good computational
scheme for generating such partitions. If we restrict the s; and M to be integers and in-
clude an additional st of numbers P; then we have an integer programming form of what
is usually referred to as the knapsack problem. In its simplest form one wishes to find the
most desirable set of quantities a hiker should pack in his knapsack given a measure of
the desirability of each item (p; or profit) subject to its weight (s;) and the maximum
weight that the knapsack can hold (3). The partition problem is shown to be a special
case of the 0-1 unidimensional knapsack problem and it will be shown how a method for
speeding up the partition problem can be more generally used to speed up the knapsack
problem. In (2], Bradley shows how a class of problems can be reduced to knapsack
problems. Thus, a more efficient method for knapsack solving algorithms is extremely
useful. An implementation of this method has a wide variety of applications. In one
reported case [15], the motivation arose from capital budgeting problems in which invest-

Copyright @© 1974, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM’s copyright notice is
given and that reference is made to the publieation, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.

Authors’ present addresses: E. Horowitz, Computer Science Program, University of Southern
California, Los Angeles, CA 90007; 8. Sahni, Department of CICS, University of Minnesota,
Minneapolis, MN 55455.

Journal of the Association for Computing Machinery, Vol. 21, No. 2, April 1974, pp. 277-202.

278 E. HOROWITZ AND S, SAHNI

ment projects are to be selected subject to expenditure limitations in several time periods.
After solving our original partition problem we will show how our new techniques can be
incorporated into an efficient knapsack algorithm. A survey of algorithms for the different
variations of the knapsack problem is given in [14]. Much of the early work in the knap-
sack problem was done by Gilmore and Gomory; sce [4, 5]. Finally in [12] our original
motivation for the partition problem arose as a subalgorithm for polynomial factoriza-
tion where M is the degree of the given polynomial and the s;’s are suspected degrees of
its irreducible factors.

At the moment all known methods for the partition and knapsack problems take
exponential time. In [3, 9] it is shown that both the 0-1 knapsack problem and the problem
of finding one partition are p-complete, i.e. 7f one could find a polynomial time bounded
algorithm for either of these problems then one would have polynomial algorithms for a
wide variety of problems for which there is no known polynomial algorithm. Specifically
this would lead to polynomial algorithms for the traveling salesman problem, multi-
commodity networks flows, simulation of polynomial time bounded nondeterministic
Turing machines by deterministic ones, ete. A more complete list of p-complete problems
can be found in [3, 9]. In view of this theoretical result, it is clear that finding a polynomial
algorithm for the 0-1 knapsack or partition problem would be difficult (if such an algo-
rithm exists). It is therefore of interest to obtain subexponential algorithms and to in-
vestigate the use of heuristics in an effort to improve the computing times for these
problems. This is precisely the sort of development that this paper takes, first giving
methods with reduced asymptotic bounds and then refining these algorithms with
heuristies, special data structures, and testing.

In Section 2 we will precisely formulate the problem using the convenient concept of
multisets. In Section 3 we will summarize the various algorithms that have been proposed,
present our own refinements, and then analyze the resulting computing times and storage
requirements. A new technique which substantially reduces the worst case asymptotic
computing time will be given. Also we will examine the same algorithm using different
data representations on the computer. Then in Section 4 empirical studies will be examined
so as to determine the best overall algorithm. Finally in Section 5 it will be shown how
these new techniques can be easily incorporated into the 0-1 knapsack problem so as to
maintain the same advantages of efficiency. A new branch and search algorithm for the
knapsack problem is also presented. Empirical studies indicate that it is significantly
faster than the Greenberg-Hegerich algorithm [6].

2. Problem Definition

We begin with the mathematical formulation of our problem.

Definition 1. A multiset S is a collection of elements’ s; denoted by S = {s}.

Definition 2. A sel S is a multiset whose clements satisfy s; # s;if ¢ # j.

Definition 3. The cardinality of a multiset S, denoted by | S|, is defined to be the
number of elements in S. If | S| = 7, then S will often be written as S, .

Definition 4. An M-partition of a multiset S, = (s, -+, s,) of cardinality r is an
r-tuple 6 = (81, 62, -+, 6,), where

85 €(0,1), 1<i<r and Y &s; = M. (1)
i=1

Example. S1 = {1, 9, 1, 5, 4} is a multiset but not a set. S2 = {1, 9, 5} is both a set
and a multiset. | S1| = 5and | 82| = 3. § = 11010 is a 15-partition of SI. The 15-
partitions of S1 are 11010, 01110, and 11101.

Definition 5. An algorithm will be said to enumerate the M -partitions of S, iff it gen-
erates all r-tuples 8 satisfying (1) and no other &’s.

1 Without loss of generality we shall restrict ourselves to the case where the s; are positive integers.

Computing Partitions with Applications to the Knapsack Problem 279

Lemma 1. There exist mullisels and an M for which the number of M-partitions 1is
exponential in the cardinality of the multiset.

Proor. Consider S, = (1, 1, -+, 1), 7 even, and M = r/2. Then the number of
r-tuples 6 which satisfy (1) is ;{) = 1";2) = rl/ (r/2)!(r/2)!. Using Stirling’s ap-

proximation for r! we get
rlf (1/2)1(r/2)! > (nr)} (/)] (xr/2) (r/2e)" = 277/ (ar)?

CoROLLARY. Any algorithm which enumerates the M-partitions of a multiset S, must
have a worst case computing time that is exponential in r.

TemMma 2. The mavimum number of distinet sums oblainable from a multiset S, is 2.
This number is in fact achieved by some S, .

Proor. (i) 3 only 2" distinct r-tuples 6 for which 6; € (0, 1), 1 < ¢ < r. (ii) Let
8 =@ 2, ...,27. _

Each of the 8'sin (i) is now the binary representation of the sum, > 52" and so repre-
sents a distinet sum from the other é’s.

3. The Algorithms

We shall now look at several classical algorithms for enumerating M -partitions. Starting
with the simple enumeration and branch and bound type algorithms, 1(a) and (b), we
shall go to the dynamic programming type algorithms, 2(a),-3(a), and 4(a). We shall
then show that by “splitting” the multiset S we can obtain algorithms that have a worst
case computing time a square root of that for the dynamic programming algorithms.
This is represented in Algorithms 2(b), 3 (b), and 4 (b). Improvements in the average be-
havior of the algorithms are obtained through the use of heuristics. In Section 4 empirical
results are given to allow for comparing the usefulness of the heuristics used. The empirical
results will show that the new algorithms are significantly better than the ones without
gplitting over a wide range of input data.

Defindtion 6. Union. U*, S,, U* S, is a multiset such that z € S,, U* 8,,with n oc-
currences iff the number of occurrences of x in S, plus the number of occurrences in
8,, is n.

Definition 7. Ordered Union. *U*, S,, *U* §,, is a multiset such that z € S, *U* S,
under the same conditions as in Definition 6 and in addition the elements of S,, *U* S,
are ordered.

Example. If S; = {1,2,1} and 8, = {1,2,2,3}, then S U* 8, = & = {1,2,1,1, 2,
2, 81.If S = {1, 3,5} and Sy = {2, 3, 4,4}, then S; *U* 8, = 8 = {1,2,3,3,4,4, 5}

Algorithm 1(a). Here we generate all 27 possible 8’s and determine which ones satisfy
eq. (1).

1. [Initialize] &, « (0, ---,0); DO step 2: 2" — 1 times;

2. [Find new 8] &« 6 + 1; (binary addition)

If 1<Z< 5;8; = M then output § = (8, +-+,).

Storage required: O (r).

Computation time: O (r27).

As we shall see from the empirical studies in Section 4, this method works extremely
slowly for even small values of r. So despite the fact that its storage requirements are
linear in the cardinality of the input set, its real effectiveness is severely limited because
of time. We note that this algorithm could be somewhat speeded up through the use of
heuristics as explained in [11]. However, we next give a backtracking or branch and
bound algorithm, 1 (b) below, which is considerably superior to 1(a), and so we shall not
concern ourselves with further variations of 1(a).

Now we give a recursive algorithm which maintains the linear storage requirement

280 E. HOROWITZ AND S. SAHNI

and reduces the bound on the computation time from 72" to 27, This method is well known
and is perhaps the one most commonly employed for solving knapsack problems. A non-
recursive version without heuristics can be found in Beckenbach, [1, pp. 25-27]. In the
version we give here we have added several heuristics in steps (1) and (2). These do not
change the order of the method, but do aid considerably in improving its overall per-
formance. Similar heuristies have been used by Weingartner and Ness in [15].

Algorithm 1(b). PARTS (s, 4, rem, 6) [Backtracking or Branch and Search]. The
generation of certain &’s is aborted by using heuristics in steps 1 and 2. It is assumed that
elements of S, = (s, -+, 5 are initially ordered (s; < & <, -+, <). (The choice
of ordering is somewhat arhitrary. Had we ordered the s,’s in decreasing order then we
would not have been able to use the heuristic of step 2 below.)

The specific heuristics used are:

1. Step 1. If the partial sum (s) plus the total sum left (rem) is not enough to reach
M then abort.

2. Step 2. If the partial sum (s) added to the next number s; exceeds M then abort as
all other s;’s are at least as large as this one (because s is ordered).

Let

s the present partial sum;

i = index of the next s, to be processed;
rem = the remaining sum,) 11<j< 85}
5 = the set of j such that D _jes 8; = s.

The algorithm is recursive and is initially invoked as PARTS (0, 1, D a<i<r 8¢, NULL).

1. [Test heuristies] If s 4+ rem < M then return.
If s + rem = M then output § U{s, 7 4+ 1, -+, r} return.
2. [Try next s;] If s 4+ s; > M then return.
If s + s; = M then DO;
output 7 U §;
If : < 7 go to step 4;
else return;

END;
3. [Recursion] If i < r then CALL PARTS (s + s;,¢ + 1, rem — s;, 1 U 8);
else return.
4. [Recursion] CALL PARTS (s, 7 + 1, rem — s:, 0);
5. [All done] Return.

Storage required: O (r).

Computation time: O (27).

For each partition, this algorithm produces an r-tuple 5. Thus an additional time of Q
is required to print all the partitions, where @ is the total number of partitions. Though
this method is much better than 1 (a) in terms of the time requirements, let us now look
at even faster methods.

In the next algorithm we compute the sums obtainable from all possible submultisets of
S. Along with each sum is kept an encoding of the indices used to obtain that sum.
Multiple copies of sums are retained.

Algorithm 2(a). S, = (81, ---,8). A isamultiset of 2-tuples (a1, a2) where ayis a
partial sum, a, is an encoding of the j’s such that > Glisteay S; = a1 . The encoding used
isa = 'Z(ﬂs,‘ﬂl) 2L,

1. [Initialize] ¢ «— 0; A « {(0, 0)}; IC < 1; DO step 2 for i 1, --- , 1.

2. Ae—AU {4+ (s,IC)); IC < IC + IC;

Note. In step 2 only those (a1, @) for which a1 < M are retained. If a1 = M, @ is
output. (Strictly speaking we shall have to output decode (az).)

Storage required: 0(2").

Computing Partitions with Applications to the Knapsack Problem 281

Computation time: O (max {27, r@}).
To see how Algorithm 2 (a) works, consider finding all 8 partitions of S; = {1, 3, 4}:

Value of ¢ A
0 1(0, 0)}
1 100, 0), (1, 2)}
2 1(0,0), (1,29, (3,2, (42" + 2"}
8 ((0,0), (1,29, 3,2", @ 2"+ 29, 4,29, 6,2" + 29, (7,2' + 2%}

and the vector (111) is output corresponding to the partition (1 + 3 4+ 4).

We note that while implementing the encoding scheme, above, one would use bit strings
to represent the second component of the 2-tuples of A, with the jth bit set to 1 iff s; was
used in obtaining the corresponding sum. This has the advantage that no decoding is
needed at the end to obtain the partition.

THEOREM 1. In the worst case the computing time for Algorithm (2a) vs O (max{2', rQ})
and its storage requirements are 0 (2").

Proor. Let|A | = kwhen i = j. Then the cardinality of A for ¢ = j + 1is less than
or equal to 2k. The time taken for step 2 when ¢ = jis kand fori = 1, k = 1. Therefore
the total time is less than or equal to S i 2" = 0(2) and the decode time per partition
is O(r).

Though Algorithm 2(a) has a much worse storage requirement than 1(b), it actually
remains fairly competitive with 1(b) in terms of time. However, it is possible to make a
significant improvement in method 2 by splitting the input into two sets as will be done
in Algorithm 2 (b). The procedure of “splitting” is that rather than generate all possible
sums for the given multiset S, of cardinality », we consider two smaller multisets 7' and
U such that the union of the two gives S, . Algorithm 2 (a) is now applied to both T and
U. However now the multiset of obtainable sums is maintained in increasing order in
terms of the first component of the 2-tuples. It is now possible to combine the results of
the two applications of method 2(a) to T and {J to obtain all M-partitions, and in such
a way that the entire process requires only a square root of the ¢ime and space required
(in the worst case) if 2(a) were directly used on S, .

Algorithm 2(b). The multiset S, is divided into two submultisets 7', U such that®

| T|=t=p/2,T= (81, - -,8); |Ul=u=r—4U= (st3a, " ,5).

Asin 2(a), A and B are multiscts of 2-tuples. However now A4 and B are kept ordered,
ie.if (ai, ,a:) € 4 and (a;,,a;,) € A thena;, < a;, implics &1 < j» , and similarly for B.
1.1 0; A —{(0,0)}; IC «1;
DO step 2 ¢ times for e «— 1, -+, ¢;
2 A—ATUA + @4, IO)}, IC—IC + IC,
3.1—0; B {(0,0)}; IC « 1;
DO step 4 » — ¢ times foré e— ¢ + 1, -+, 7}

4. B—B*"W B+ (u:, ICY}; IC = IC + IC;

5. Pick off pairs (a:,, a.,) € A, (by,, b;,) € B such that (a; + b;) = M. Then

output partition (as,, bj,).

As an example for 2(b) consider Sy = {1,2, 4,8}, M = 14. Then T = {1, 2}, U =
(4,8, 4 = {(0,0), (1,2),(2,2"), 3,2'+ 2)}, B={(0,0), 4,2), (8,2), (12, 2"+
2}, A search of A and B shows that the only M-partition of S, is 0111.

Storage required: 0 (2").

Proor. The multisets A and B cannot become larger than this by Lemma 2.

Computation time: O (max{2"", r@}), where @ is the number of partitions.

Proor. Since in steps 2 and 4, A and B are ordered and hence A 4 (¢, /C) and
B + (u;, IC) are ordered, the merging necessary to keep A *U*{A 4+ (&, IC)} and

7/2) = largest integer less than or equal to r/2; Ir/2] = smallest integer greater than or equal to r/2.

282 E. HOROWITZ AND S. SAHNI

B*U* (B + (u:, IC)} ordered ean be done in time proportional to | A | and | B | respee-
tively. Therefore from Algorithm 2 (a) the time for steps 1-4 is O(2 + 2*) = 0(2""™).
Step 5 requires time O (max{2™* rQ}). To see this consider the algorithm below, which
realizes this step:
Let|A| =a, |B|=b 4 ={(a:;,p:)1 <1< a}, B={(b:,q:) 1 <7< b}, where
P: , ¢i contain encodings of all combinations of elements that sum to a;, b; . Then
l.ie—1;7<0b;
2. DO WHILE (i < aandj > 1);
Ifa; + b; < mtheni«1 4 1; go to (L);
Ifa; + b; > mthenj «—j — 1; go to (L);
Output all combinations of p;, q;; 7 «— 7 + 1;
L: END;
3. END.
Thus the time required is O (max{a, b, 7Q}). Now a, b < 2" so the time for step 5 is
0 (max{2"™ rQ}) and similarly for the entire algorithm.
TuroreM 2. Algorithm 2 (b) enumerates all the M-partitions of S, .

Proor. Let 6§ = (51 3 2 5,-/2 s Orpg1, v, 5,-) be an Zlf—partition of S,.
8= (81, 0,8 = (Bjasr, -+, 8).Then Dicicrp 8:8; < M and) piacicr 48: < M.
Since all partitions less than or equal to M of sets T = {8, -, 8. and
U= {8241, -+, s} are produced by steps 2 and 4, then for any M-partition § of S, there

must exist a § from A and § from B such that § = & U 5. Therefore we must show that
in step 5 every possible combination of § € A and § € B :6 = § U § and § is an M -parti-
tion, is found. By the previous proof, the a; and b; are ordered, and suppose they are
distinet. Associated with each a. is the set of 3: 2 1<j<s §8; = a; . Similarly for § in B.
It is sufficient to show that if we are looking at a; , b; then every other § associated with
@, k < isuch that § U § is an M-partition has already been output. If a; + b; < m then
@, < a;implies a; 4 b; < m and hence there are no previous M-partitions. If a; + b; > m
then by the above algorithm either for all @y, ax + b; < m or 3k :ax + b; = m. In this
case all combinations of p;, ¢; = (8, &) are output. Thus all previous M-partitions have
been found and Algorithm 2 (b) produces them all.

The improvement in computing time exhibited by Algorithm 2 (b), naturally, leads to
the question of whether further improvements can be achieved by dividing the original
set into more than two parts. If we divide the multiset into k parts then all the partial
sums can be computed in O (k 27*) time. However, there appears to be no way of com-
bining the results of the k-parts in time less than 0 (27%) to get the partitions. For example
if we chose k = 4 then we would obtain four lists of partial sums of maximum length 2/*
each. To obtain a partition of M we would choose one element from list 1, say 1, and
then determine all partitions of M/ — a3 from the remaining three lists. Such a process
requires more than 0 (2”%) time. Alternatively we could combine pairs of lists obtaining
two lists of size O (2"%), but this just reduces to method 2 (b).

We have previously noted that a polynomially bounded algorithm for the partition
problem would have important consequences on the existence of polynomially bounded
algorithms for many other problems. Though the splitting technique cannot be iterated
any further with a subsequent improvement it ean be successfully applied to other p-
complete problems. Thus, O (2"%) algorithms can be given for problems such as (1)
finding an exact cover of a graph, (2) finding the hitting set of a graph.

Now we study an entirely different approach to this problem which avoids the genera-
tion of all partitions as in 2(a) and 2(b). Instead it first produces r sets SY .o 8™ g0
that S*” contains all possible combinations of s, - - - , s; . Then a retracing procedure is
used to find those combinations which give M in 8.

Definition 8. The sumset of S, , denoted by S, is the set of all sums 2 e, s; where
J CHL, o0

Definition 9. Ordered Union on Sets. S, *U* S,, is a set such that 2 € S,, *U* 8.,
iff € S, or & € 8;, and the elements are ordered.

Computing Partitions with Applications to the Knapsack Problem 283

Example. S; = {1, 1, 2, 2}. The sumsets are:
S = {0}, S8Y = 10,14, S =1{0,1,2},
89 =10,1,2,3,4, 8 =1{0,1,23,4,5,86).

Algorithm 3 (a) (Musser [12]). This works in essentially two stages:

(a) Compute the sumsets of the sets, 8; = {s1, -+, 8}, 1 <4 < r

(b) Whei"e I)I/I appears in 87 generate all partitions creating M by using the sumsets
B ¢ GBI,

Generate sumsets

1. 89 «{0};

2.Forj=1,---,1 S — SU™*U (87 4 [s,}). Generation of partitions, using

SY. This is a recursive procedure (4, n, J) initially invoked as (1, M, NULL).

3. If n = 0, output J; return.

4. Yn—mn;€ S5V CalG(G — 1, n — ny, (7} UJ).

5 Ifn e 89 Call G(j — 1, n, J). END.

This algorithm differs from 2(a) chiefly in the scheme used for obtaining the indices
that sum to a particular number (binary encoding in the ease of 2(a) and trace back
involving search in 3 (a)). It should be clear that the binary encoding scheme would be
superior when the number of partitions is large.

TuroreM 3. Algorithm 3 (a) enumerates the M-partitions of S.

Proor. See [12, p. 33].

Storage requirements: O (min{2', rM}).

Proor. | 8@ | = 1. 1f | 8| = k then | 8% | < 2k. Thercfore the total space =
302" = 0(27). Note however that the maximum sum in any of the 89 is M (or D_s,if
no heuristics are used). So we get another bound on the storage, i.e. O(rM). Thus the
storage required is O (min{2’, #2}).

Computation time: steps 1 and 2: O (min{2’, rM}); steps 3 through 5: 06°Q), Q =
numbcr of partitions. '

Algorithm 3(b). This is essentially 3 (a) with S, split into two parts as in 2(b). The
\‘;'orst case storage space is now O(min (2", 7)) and the computation time is O(max ikl
rQ}). :

There are two strategies that ean be employed for implementing method 3. Musser’s
implementation of algorithm 3 (a) uses bit strings. The sets S are bit strings in which
the jth bit is a 1 iff j has a partition from the first ¢ clements of the multiset. Such an
implementation has a space requirement of O(rM) and also an asymptotic computing
time bound of O(rM), This implementation is good when M is guaranteed to be small.
However, the following example illustrates the drawbacks of this technique for large M.

Example. S = {1,10°, 10°}, M = 10° + 10°.

The storage needed to handle this problem by the bit string technique is about 3 X 10°
bits (careful programming could reduce this to around 10° bits). The computing time
would be around 10° basic operations. However the implementation suggested by 3 (a)
needs only 8 machine words and about 8 units of time. Thus the dependency of the bit
approach on the magnitude of the number can severely affect its general usefulness.

Naturally, if we were writing an algorithm for general use we would avoid bit strings.
The maximum storage gain that can be expected, for small M, through the use of bit
strings is only a factor of 8 where § equals the number of bits/word in the machine.
Finally, it is often the case that the number of combinations which are generated is con-
siderably less than 2", This will be reflected in our implementation by a decrease in storage
needs whereas the bit approach is still dependent upon the magnitude of the number.

Now we present the last pair of algorithms. Later we shall see that their asymptotic
bounds will be at least as good as all of the previously described methods and actual tests
indicate that they are far superior.

Algorithms 4 (a), 4(b). These are the same as 2(a) and 2(b), respectively, with the

284 E. HOROWITZ AND S. SAHNI

TABLE I. Asymproric Bounps rFOR PARTITION ALGORITHMS
Q = the number of partitions; M = the desired sum; r = the number of elements

Algorithm 1fa) 1(b) 2(a) 2(b) 3(a) 3(b) 4(a) 4(b)
"
Time 27" 2r max{fo} rnax{2r"m, 7)) max {8, 27) max (rzf), arf?) max (27, rQ) max (272, r()
Storage r ” ar gfri2l min{27, rM} min{27?, rM} 27 ori?
Actual 2r 2r (23)27 (43)2m? min(rM, 27) min(rM, 271%) (33)27 (63)277%
storage
used

exception that A and B are now sets rather than multisets. Eliminating multiple oc-
currences of the same sum at each stage easily overcomes the extra bookkeeping needed.
Thus, encodings of all possible vectors resulting in a sum in A or B are kept in an auxiliary
array with only one pointer, a pointer to the first partition of that sum. As for algorithms
2(a) and 2(b), the worst case storage and computing time bounds remain the same.
However, in the next section we shall examine the extent to which these algorithms are an
improvement.

Storage required: 0 (27",

Computing time: O (max{2"™"™, »Q}).

Table I summarizes the upper bounds on the computing time and the storage require-
ments of Algorithms 1 through 4. Estimates of the storage constants involved are also
given.

4. Empurical Results

Algorithms 1 through 4 were programmed and tested extensively to determine their
average relative performance as opposed to the theoretically obtained “worst case” com-
puting time and storage requirements. The programs were written in ForTtran G and
tested on an IBM 360/65.

Tests were performed using the following data sets for S = {s;, -+, s} and M:

I.s; =4 1<¢:<R.M=R,2R, 3R, R(R 4+ 1)/4.
II. s; = random numbers in [1,100]. Let m = max{s}. M = m, 2m, 3m, 2 s/3,
ZS{/?.

III. s; = random numbers in [1,1000]. M = m, 2m, 3m, 2 s:/3, > s:/2.

It should be noted that because of the heuristics used, the time to compute M -partitions
for M = 2 1<i<r s, is essentially zero for algorithms 1(b), 2(a), 2(b), 4(a), and 4(b).
The computing times reported for the cases where the s; were random numbers is the
mean of times obtained for five such tests.

The computing times are reported in Tables TT-TV.

Despite the simplicity of 1(a) and the fact that it requires only linear storage, this
method is far too slow for even small values of ». As Tables II-IV show, an r of 15 took
more than 21 seconds and higher values of 7 were subsequently much worse. Method 1 (b)
is a considerable improvement over 1(a), retaining the linear storage feature while its
performance is superior to 1 (a) by a factor of 10 or more. The combination of the heuris-
tics helps to account for its dramatic improvement over 1(a). In the cases 2(a) versus
2(b), 3(a) versus 3(b), and 4(a) versus 4(b) the (b) version with the multisets split
was always superior. Thus let us compare 2(b), 3(b), and 4(b).

Fxamining all three tables we see that method 2 (b) was faster than 3 (b) in almost all
circumstances showing the superiority of the binary encoding scheme. However, the ratio
of improvement Is not a constant but varies considerably with the input data. For
instance, in Table IIT method 2 (b) is 10 times faster than 3 (b) for M = max, but both
methods are about equal for M = sum/2. In any case method 2(b) is overall the more
efficient, but its real difficulty is in storage. Note that in Table IT method 2(b) runs out
of storage on all the data sets whereas 3 (b) is able to continue. Therefore method 2 (b)

Computing Partitions with Applications to the Knapsack Problem 285

TABLE II. SeqQUENTIAL NUMBERS
Times in milliseconds

M R 1(a) 1(b) 2(b) 3(b) 4(a) 4(b)
Max 15 21099.5 16.6 = 66.5 49.9 i
20 49.9 33.5 216.3 83.2 33.2
2% 116.4 100.2 582.4 2496 83.2
266.2 300.7 1098.2 648.9 216.3
35 615.6 1015.9 2080.0 1480.9 416.0
40 1464 .3 2396.6 3010.4 3694.1 1015.0
45 2462.7 s 6506 (44)b 1847 (44)
. 2163.0
2 max 10 499.2 33.2 99.8 33.2 16.6
15 21099.5 166.4 16.0(15) 382.7 216.3 49.9
20 981.7 166.0 1397.7 965.4 116.4
25 2912 599.0 6472.9 2645 (23) 216(23)
28 5890 & 14327 ¢ 349.4
30 11080.8 798.7
3 max 10 499.2 66.5 16.6(10) 149.7 33.2 40.9
15 21099.5 732.1 66.5 815.3 416.3 83.2
20 6223.3 299.5 4103.2 665.6(16) 199.6
25 13495 (22) s 7720 (22) s 698.8
27 — 15125 (24) 1198
Sum/2 10 499.2 49.9 ’ 116.4 33.2
15 21099.5 1564.1 83.2 1031.6 599.2 66.5
20 45643.5 732.1 7371.5 L] 432.6
25 L3 L] 49687 3111.6(24)

» More than 30K words required.
b Parentheses indicate actual value of R.
¢ Exceeded time limit.

was modified to produce method 4 (b) by changing the multisets into sets. Not only did
this improvement allow 4 (b) to continue for much greater r but also decreased the com-
puting time, so that 4(b) is at least as good and often better than 2(b). The empirical
results also show that 4 (b) is considerably better than 3 (b) even in cases where there are
only a polynomial number of partitions.

Finally then we are left with Algorithms 1(b) and 4 (b). Looking at the tables we see
that the computing time becomes prohibitive much earlier in 1(b) than in 4(b). In fact
for r = 60, the maximum r that was tested, 4(b) was able to obtain the answers in 1.4
seconds and needed no more than 30K words. 8o despite the fact that 27* is an upper
hound on the number of partitions which may exist, empirical tests indicate that this
limit is often not achieved. (Note that Lemma 1 in Section 2 shows when this limit will
be reached.) Therefore an outright “best method” would probably be 4(b) although
method 1(b) has the virtue of guaranteed linear storage.

5. The Knapsack Problem

The general knapsack problem may be stated as the following integer optimization
problem: let p; be the profits or returns gained by including project ¢; s the amount of
resource required for project 4; M the total amount of resource that can be allocated; and
3. the fraction of project ¢ that is accepted. Then we wish to solve:

max D, pd;
15isr @)
subject to Z 8:6; < M,
1

<i<i

286 E. HOROWITZ AND 8. SAHNI

TABLE III. Ranpom Numsers (1-100)
Times in milliseconds

M R 1(a) 1(h) 2(b) 3(b) 4(a) 4(b)
Max 15 21099.5 39.9 36.6 33.2 23.2
20 76.5 123.1 80.0 29.9
25 186.3 485.8 176.3 56.5
30 302.6 1158.9 402.7 96.5
35 818.6 106.5 2103.7 755.4 163.0
40 1720.5 123.1 4962.6 1428 216.1
45 = 252.9 — . 373.6
2 max 15 21009.5 216.2 20 173 180 49.9
20 1171.4 150 805.3 609 153.1
25 3120(24)> 316.2 2021.7(24) 1320(23) 579.0
30 858.6 . 0 1484.2
35 . 1787.2
3 max 15 21099.5 §38.6 76.5 320.5 346 76.5
20 6951.3 472.6 2489.3 812(17) 236.3
25 . 13367.5 s 898.5
30 o 1327.8(28)
Sum/2 15 21000.5 1311.2 552.1 552.1 462.6 83.2
16 455275 1802.4 885 110
20 o 6133.5 6133.5 . 372.7
25 o o 2506.2
Sum/3 15 21009.5 572.4 56.6 426 279.5 69.8
20 13961.9 286.2 3404.3 825.3 266.2
2% s . 1654.0
2083 (26)

s More than 30K words required.
b Parentheses indicate actual value of E.
¢ Iixceeded time limit.

where 6; is a nonnegative integer. If we restrict 8; to be the integer 0 or 1 this is called the
0-1 knapsack problem. In this paper we shall be concerned only with this form of the
problem. In particular we shall consider applying the methods of the previous sections
for computing partitions to produce more cfficient knapsack methods, In terms of the
knapsack problem we may formulate the partition problem as

max 8:0; subjeet to > sdi <M, 8 =01.

1<isr 1<i<r

Clearly, there is a partition of M in 8 = {s;, - -, s} iff max D icicr 8:6; = M. If we
want all the partitions then we look for all § for which 2 8, attains its maximum of M.
Thus we sce that the partitions problem discussed carlier is really a very important
instance of the 0-1 knapsack problem.

Let us briefly examine the new complications produced by the knapsack. We now have
a profit associated not only with cach s;, but subsequently with cach partial sum. If we
adopt Algorithm 4 (b), then at cach iteration for every multiple oceurrence of a partial
sum we need only retain that one partition which yields the maximum profit. At least
this climinates having to keep multiple copies of cither the partial sums or the profits.
But in Algorithm 3 (b) the approach of generating the sumsets and then tracing back to
find all existing partitions now seems more attractive, Since we want only one solution to
the knapsack problem we can entirely climinate the overhead of maintaining all possible
partitions as we generate sums (as in 4(b)) and instead use 3(b) where we need only

Computing Partitions with Applications to the Knapsack Problem 287

TABLE IV. Ranpom Numsers (1-1000)
Times in milliseconds

M R 1{a) 1(b) 2(h) 3(b) 4(a) 4(b)
Max 15 21099.5 26.6 16.6 32.2 36.5 16.6
20 59.9 26.6 37.2 83.2 36.5
25 116.5 36.6 53.3 183 73.2
30 292.9 43.2 129.8 466 99.8
35 639.0 136.2 176.4 832 196.3
40 1484.3 136.4 512.5 1534 229.5
45 269.0 1864 (42)8 386
5 469.0 2612 (43) 622.3
55 715.5 725.5
0 1239.1 1414.6
2 max 15 21099.5 871.4 43.3 33.3 186.3 46.6
20 3511 89.9 79.9 642 123
25 12070.7 — 183 1371(23) 259.6
30 B 266.2 1357.8 1431(24) 539.1
35 678.9 3630.9 9 1111.5
40 8 8186.9 1244.6(36)
3 max 15 21099.5 582.2 49.9 39.9 376 86.5
20 5544 .4 213.0 269.6 1126(18) 253
25 39137.2 758.8 386.1 ° 662.2
30 b ° 6659.3 1138.2(28)
© Bum/2 15 21099.5 1364.5 63.2 36.6 502.5 96.5
20 38022 .4 322.8 2539.3 941.8(16) 382.7
25 L ° 13023.6 o 1284 .6 (24)
Sum/3 15 21099.5 525.8 53.2 176.4 326.1 66.5
20 12625.6 239.6 133.1 772(17) 282.8
25 b ° 499.2 o 1045
30 49770 14144 (26)

Parentheses indicate actual value of .
b Exceeded time limit.
¢ More than 30K words required.

trace back once. Furthermore, in order to assure that the splitting procedure takes no
longer than 0 (27%) we must now keep not only the sums but their associated profits in
increasing order. This can clearly be done, for suppose that for some ¢ we have sums
a; < a;y1 but profits p; = piy. Then we can reject the pair (@41, piyr) as not yielding
a maximum profit. For, every further possible combination of s;, ¢ + 2 < j < r which
would be added to a1y giving a sum less than or equal to M can just as well be added
to a. yielding as much profit at less expense. Therefore, the method we first suggest is an
adaptation of Algorithm 3 (b), the dynamic programming approach where we initially
split the set of weights and profits. This method is now given:

Algorithm IXNADP (1) [Splitting].

Step 1. Divide the multiset S, of weights, into two multisets 7" and U as in 2 (b). Let
the associated profit sets be PT and PU respectively. Set Fo(i) = 0, 0 < 7 < M, and
Go(i) = 0,0 <7< M.

Step 2. Compute Fi(x) = max{Fr(x), Fia(x — &) + PTW, 1 < k < [r/2];
(p(r) = max|(hoa (@), Geor (v — we) + PUL, 1 < k< v — /2]

Step 3. [Find an optimal solution]. Scarch Fy,2, and ¢,_ |,z in a manner similar to
Algorithm 2(b) to find an optimal pair @, y such that « 4+ y < M and

Y (x) + G‘T*lrf'll (y)
is a maximum.

288 E. HOROWITZ AND §. SAHNI

While actually implementing step 2 we do not compute F and (7 for all @ € [0, M] but
only at those points 2 for which there is an a-partition in the weights currently con-
sidered; i.e. Fy(a) is computed only at those @ which can be represented as the sum of a
submultiset of the weights &, &, &3, and ¢, .

It follows immediately from the previous sections that the worst case time and storage
requirements for IKNAP (1) are O (min{2"% »M}). We note that previous dynamic pro-
gramming algorithms for the I{napsack problem (sce [5, 13-15]) require O (min{2', rM})
time and space. Thus for large M our algorithm again represents a square root improve-
ment.

For comparison purposes let us now consider the branch and scarch algorithms. We will
see that their storage requirement. will be guaranteed to be lincar. This may prove to be
the deciding factor, especially for a problem which gencrates a large number of inter-
mediate possibilitics using KNAP (1). We now present two branch and scarch algorithms
that differ only in the heuristic employed by cach. KNAP (2) is a new modification of
of I{olesar’s [10] Branch and Bound Algorithm so that it now requires only lincar storage.
Iolesar’s original algorithm is a mixed breadth-wise and depth-wise trec scarch requiring
exponential storage while IKNAP(2) is a depth-first scarch. IKNAP (3) is the popular
Greenberg and Hegerich branch and search algorithm. The only difference between
KNAP(2) and KNAP(3) is that in KNADP(2) branching is done in order of deercasing
profit densities (i.c. decreasing p,/s:) while in KNAT?(3) the noninteger variable, in the
linear program solution to (2) with added constraints, is chosen as the next variable to
branch on. In [6] Greenberg and Hegerich presented empirical results indicating that
KNAP (3) was better than the Tolesar algorithm by a factor of two or three.

We now present these two branch and search algorithms. It is assumed that s; < M,
1 <4 < rand that ZI s; > M (if this is not the case then we either have a trivial solu-
tion or objeets can be trivially deleted to obtain an equivalent problem in this form). It
is also assumed that p;, 8, > 0, 1 <@ < 7.

Algorithm KNAP (2) [Branch and Scarch].
= profit associated with this sum,
= index of next s; to be processed,
maximum profit obtainable,
sct of 7 that yield this profit.
1. [Initialize] Order the s; in decreasing order of pi/s; . Set P, p, A, = Oand ¢ = 1.
2. [Test heuristie] Solve the corresponding linear programming problem:
max Z = 2 =1 Pids
subject to D opmisd <M, 0< 6 <1, 1<k <r
IfP>|Z + pgotobd;
3. [Put in items until next one that does not fit]
DO WHILE (s < M and ¢ < r);

[P
I

M=M — s;
p=p+pi
6i=1;
=14+ 1,
END;

[set index of object that does not fit to 0]
If 7 < r then DO;

5{50;
=14+ 1;
END;

[any objects left?]
If 7 < r then go to 2;
If ¢ = r then go to 3;

Computing Partitions with Applications to the Knapsack Problem 289

4, [Save new solution]
If P > p then DO;

£
A= §;
END;

P =r;
5. [Backtrack]

Find largest & < ¢ for which & = 1.

If no such & we are done with optimal solution A

Else M =M+ s, p=p— D, =0,1=k+ 1, goto?2.
The linear program of step 2 is simply solved by setting

iy biqr, o, =1, dipn = (M— Z‘%)/mﬂ

where [is the largest index for which > P& < M (if I = r then just use §;, +++, 8 = 1
with Z = 7 px as the solution).

Algorithm IKNAP(3) [Greenberg and Hegerich]. The exact specification of their
procedure can be found in [6, pp. 329-330].

Empirical tests to determine the relative cfficiencies of KNAP (2) and KNAD (3) were
carried out using random p. , s: in the range [1, 100] and 3/ = 100. This corresponds to
the data used by Greenberg and Hegerich [6, p. 331]. The relevant section of the table in
[6] together with our ecomputing times for their method on our machine plus our times for
KNAP (2) are presented in Table V.

Table V indicates that KNAP (2) is uniformly better than IXNAP (3) on this data set.
Further results reported later in Table VI will show that IXNAP (2) performs several
times better than KXNAP (3) on the other data sets tested as well.

We note that Algorithms KNAP (2) and IXNAP (3) take at most O (r2") in computing
time and so asymptotically JXNAP (1) is certainly superior.

A variety of data sets were constructed to reflect the several degrees of freedom which
are possible, i.c. we can choose the weights, the profits, and the size of the knapsack. The
data sets considered are as follows:

I(a): random weights s; and random profits p;; 1 < s;, p; < 100,
I(b): random weights s; and random profits p; ; 1 < s;, ps < 1000.
II(a): random weightss;, 1 < s < 100, p; = s; + 10.

II(b): random weightss;, 1 < s < 1000, p; = s; + 100.

III(a): random profits p;, 1 g_p,- < 100, s; = p; + 10.
III(b): random profits p;, 1 < p: < 1000, s; = p; + 100.
IV: random p, , 8; = p;, 1 <1 < r, and size M such that there is no M-partition
in s but 2s; > M.
For each of the data sets I, II, and III, five problems for each r = 15, 20, 25, - - -, 60

were solved. The knapsack sizes considered were (1) M = 2« > s;and (2) M = 3 52,

Table VI gives the total time needed to solve the fifty problems as described above for
each data set. From this table it is clear that for cach of the data scts KNAP (2) is sig-
nificantly better than IXNAP (3). KNAP (1) and KNAT (2) arc highly competitive, with
KNAP(1) generally being superior for M = >-/2. Tables VII-IX expand the com-
puting times given in Table VI for data sets I(a), II(a), and III{a) with M = >./2
Results are reported only for KNAP (1) and KNAP (2) since from Table VI it is clear
that KNAP (3) is comparatively very poor on all the data sets tested, From these tables
it becomes evident that KNAP (1) is relatively insensitive to the data and is thus a more
stable algorithm. However, it suffers from large storage requirements and so while it may
be expected to perform better than KNAP(2), as far as time required is conecrned,
storage limitations leave KNAP (2) as the only algorithm that may be feasible for certain
problems.

290 E. HOROWITZ AND 8. SAHNI

TABLE V. Meax CompuTing TiMES
Random p;, s; € [1,100); M = 100; times in milliseconds

r

15 20 25 0 35 40 45 50 55 60
IBM 360/67 times from s 36.0 s 97 L 181 L 163 . »
6]
IBM 360/65 times 36.4 | 49.8 | 49.8 | 119.8 | 179.6 | 156.2 | 169.8 | 163.4 | 269.6 | 226.4
KNAP(3)
IBM 360/65 times 22,8 |46.4 | 43.2 | 66.6 | 99.6 | 80.0 | 76.4| 80.0 | 83.2| 86.8
KNAP(2)

* Times not given in [6].

TABLE VI. ToraL Times ror 50 PROBLEMS
Times in seconds

Data set M KNAP(1) KNAP(2) KNAP(3)
I (a) 2 max 6.8 10.45 22.53
> /2 17.7 16.91 271
I (b) 2 max 9.45 10.58 43.13
/2 15.94» 10.22 109.12
11 (a) 2 max 8.37 9.2 157.93
3T /o 27.94 164.04 >653.2b
1I (b) 2 max 8.15 13.53 338.57
> /2 29.5 305.11 >600°
III (a) 2 max 8.04 5.42 10.13
> 12 27.22 46.8 >1021.5
III (b) 2 max 8.6 7.6 23.85
> /2 32.38 71.1 > 0004

s Time for 49 problems. Last problem could not be solved
because of excessive storage required.

b First 34 problems solved in this time.

° First 28 problems solved in 230 seconds.

d First 37 problems solved in 775 seconds.

TABLE VII. Max TiMmes
M = 3 /2; times in milliseconds

r KNAP(1) KNAP(2) KNAP(1) KNAP{2) KNAP(1) KNAP(2)
15 33 33 33 83 50 50
20 50 33 83 465 66 83
25 99 99 116 233 133 116
30 169 100 199 3,361 233 150
35 200 216 316 1,564 316 882
40 299 433 499 217 466 166
45 383 615 715 13,063 715 1,397
50 532 616 915 566 1,015 549
bo 782 899 1,148 62,699 1,215 032
60 882e 2,446 1,464 3,727 1,631 14,643
Data set I(a) II(a) 11I(a)

s Max of the four problems solved.

Computing Partitions with Applications to the Knapsack Problem 291

Finally in Table X we show what can happen if one tries to use KNAP(2) to solve
partition problems. When several partitions exist, one may be found early and KNAP (2)
terminates quickly. However, in case there is no partition KNAT (2) gets bogged down.
This phenomenon may be expected to oceur when the profit densities are equal or nearly
equal and the optimal solution does not fill the knapsack. Thus KNAP (1) becomes the
more attractive method for this sort of data.

Finally we should like to mention that Ingargiola and IKorsh in [8] have developed a
clever way to preprocess the input of a knapsack problem before applying the actual
algorithm, Given r inputs which are alrcady ordered according to decrcasing profit
densities (pi/s; = piya/siz1), their method splits the variables into three groups: (a)
those which must be contained in the optimal solution, (b) those which cannot be con-
tained in the optimal solution, and (¢) those which may or may not end up in the optimal
solution. The method takes no more than O (*) time and can generally reduce an r-
quantity problem to a k-quantity problem where k is significantly smaller than r. After
using the Ingargiola-IKorsh preprocessor one can then use either a branch and search or a
dynamic programming method to solve the remaining knapsack problem.

TABLE VIII. Mean Compuring TiMEs
M = 3 /2; times in milliseconds

v KNAP(1) KNAP(2) KNAP(1) KNAP(2) KNAP(1) KNAP(2)
15 19.4 16.6 26.2 56.4 36.2 26.6
20 33.2 19.8 65.0 202.8 62.6 53.4
25 69.9 63.0 106.0 196.6 119.4 86.2
30 129.7 76.6 189.2 742.0 199.4 76.6
35 169.7 162.8 295.6 088.6 309.2 665.6
40 282.8 319.6 475.4 133.2 448.6 93.2
45 356.0 366.0 645.2 6,835.8 675.0 981.4
80 475.9 299.4 858.2 429.4 046.0 252.8
bb 668.9 586.0 1,104 .6 21,682.0 1,141.0 635.6
60 835.3 832.0 1,400.8 925.2 1,500.2 6,103.4
Data set I(a) 1I(a) 11I(a)

TABLE IX. StTaNpARD DEVIATION
M = E /2; times in milliseconds

r KNAP(1) KNAP(2) KNAP(1) KNAP(2) KNAP(1) KNAP(2)
15 15.3 10.5 8.3 17.0 6.5 13.4
20 10.5 6.7 10.8 201.7 6.8 21.9
25 19.5 19.2 132 37.1 12.6 30.6
30 12.5 17.2 13.2 1,309.8 20.7 37.3
35 36.5 54.8 12.7 489.5 8.3 145.6
40 32.5 80.5 25.6 b7.9 14.8 56.3
45 13.6 223.6 56.8 5,114.0 17.8 375.0
50 48.9 214 .4 38.8 140.6 47.3 241.9
55 64.9 278.2 51.1 21,508.5 50.0 291.8
60 28.6 840.5 44.9 1,601.3 8l.1 4,775.6
Data set I(a) I1(a) I1I(a)

TABLE X. Dara Ser IV

Equal densities but no M-par-
tition; times in milliseconds

r KNAP(1) KNAP(2)

15 50.0 2300
20 99.8 80438
25 200.0 >600,000

202 E. HOROWITZ AND 8. SAHNI

6. Conclusion

We have considered the problem of finding all combinations of » numbers which sum to
M and shown how to reduce the computing time and storage requirements for algorithms
which solve this problem by a square root factor. Then we have studied additional im-
provements such as heuristics and special data structures. The resulting algorithms were
then extensively tested and compared. Algorithm 4 (b) turned out to be superior in almost
every case and often far superior than all of the others, Also it is empirically established
that binary encoding as in 4 (b) is better than the conventional implicit encoding scheme
of Algorithm 3 (b). Only under special circumstances of the input will Algorithm 1(b)
even be competitive with 4 (b) and these cases are outlined.

Then we have presented the 0-1 knapsack problem and shown how the square root
improvement scen before can be directly generalized to its solution. A new branch and
search method is presented which is a modification of the Nolesar branch and bound
algorithm, but is guaranteed to require only linear storage. The branch and scarch
algorithm is shown to be superior to the Greenberg-Hegerich algorithm. Then the branch
and scarch method (IKNAP(2)) is tested against the dynamie programming method with
splitting (KNAP (1)). KNAP (1) usually ran faster, often by a factor of two or better,
Though for certain types of input KNAP (2) is extremely fast, for others it is disastrously
slow (data set IV), whercas IXNAP (1) remains stable as a funetion of the size of the
problem.

REFERENCES

1. Buckrnpacu, E. F. (IEd). Applied Combinatorial Mathematics. Wiley, New York, 1964.
2. BrapbLiy, G. H. Transformation of integer programs to knapsack problems. Discrete Math 1,
1 (May 1971), 29-45.
3. Coox,StepHEN A, The complexity of theorem proving procedures. Conf. Record of Third ACM
Symposium on Theory of Computing, 1970, pp. 151-158.
4. Giumork, P. C., anp Gomory, RR. I8, Multistage cutting stock problems of two and more
dimensions. Oper. Res. 13 (1965), 94-120.
5. Giumore, P. C., axp Gomory, R. E. The theory and computation of knapsack funetions. Oper.
Res. 14 (1966), 1045-1074.
6. GrupNpirg, H., anp Heerricr, IR. L. A branch search algorithm for the knapsack problem.
Manage. Sci. 16,5 (Jan. 1970), 327-332.
7. Harpy, G. H., ANpD WRiGHT, 8. M. An Infroduction to the Theory of Numbers, 4th ed. Clarendon
Press, Oxford, England, 1959.
8. InaamrcioLa, G. P., anp Korsz, J. F. A reduction algorithm for zero-one single knapsack
problems. Manage. Sci. (to appear).
9. Kare, R. Reducibility among combinatorial problems. In Complexily of Computer Computa-
tions, R. I. Miller and J. W. Thather, Eds., Plenum Press, N. Y., 1972, pp. 85-104.
10. Kowussar, P. J. A branch and bound algorithm for the knapsack problem. Manage. Sci. 13
(May 1967), 723-735.
11. Lawner, E. L., ANp Brrn, M.). A method for solving discrete optimisation problems. Oper.
Res. 14 (1966), 1098-1112,
12. Musskr, Davip R. Algorithms for polynomial factorization. Ph.ID. Th., T.R. #134, Computer
Sciences Dep., U. of Wisconsin, Sept. 1971.
13. Numuauser, . L., axp ULiman, Z. Discrete dynamic programming and capital allocation.
Manage. Sct. 16,9 (May 1969), 494-505.
14, NumuAvUskr, G. L., anp Garrinkrn, R, Tnteger Programming. Wiley, New York, 1972,
15. WeincGarRTNER, . MARTIN, AND Nss, Davip N, Methods for the solution of the multi-dimen-
sional 0/1 knapsack problem. Oper. Res. 15, 1 (Jan.-Feb. 1967), 83-103.

RECEIVED JuLY 1972; REVISED APRIL 1973

Journal of the Associntion for Computing Machinery, Vol. 21, No. 2, April 1874

	scan0001
	scan0002
	scan0003
	scan0004
	scan0005
	scan0006
	scan0007
	scan0008
	scan0009
	scan0010
	scan0011
	scan0012
	scan0013
	scan0014
	scan0015
	scan0016

