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1. Introduction

The knapsack or subset-sum problem is to determine, given positive integers (or weights)

a 1 , ... , a n , and s, whether there is a subset of the a j that sums to s. This is equivalent to

determining whether there are variables x 1 , ... , x n such that

j =1
Σ
n

x j a j = s , x j ∈ {0 , 1} for all j . (1.1)

If one thinks of s as the capacity of a knapsack and the a j as the sizes of various items, then the

question is whether the knapsack can be filled exactly by some collection of those items.

The knapsack problem is stated above in its feasibility recognition form, namely we ask only

whether (1.1) is solvable. However, if this problem can be solved efficiently in general, then

actual solutions can also be obtained fast. For example, if we know there is a solution, we can

find out whether there is a solution with x 1 = 1 by testing whether there is a solution to

j =2
Σ
n

x j a j = s − a 1 , x j ∈ {0 , 1} , 2 ≤ j ≤ n .

If there is no such solution, we know that x 1 = 0 for all solutions to the original problem. Once

x 1 is determined, we can go on and determine x 2 , x 3 , ..., one by one, and thus find at least one

solution to (1.1).

The general knapsack problem is known to be NP-complete [13], and so it is thought to be

quite hard. Being NP-complete means that if a polynomial time algorithm existed, there would

also be polynomial time algorithms for all problems in the computational complexity class NP.

This is thought to be unlikely, since this category includes many combinatorial optimization

problems that have been investigated intensively over several decades, and for which no fast
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algorithms are known. This is of course a very subjective evaluation, since no good lower bound

proofs are known for any of the problems that are NP-complete.

To determine whether (1.1) has a solution, and if so, to find it, one can compute all the

Σ x j a j with x j ∈ {0 , 1}, but that takes on the order of 2n steps. (We are assuming here that the

a j are not too large, and will not be too precise about counting operations.) A better method is to

compute

S 1 =


î j =1

Σ
 n /2

x j a j : x j = 0 or 1 for all j




,

S 2 =


î
s −

j >  n /2
Σ x j a j : x j = 0 or 1 for all j





,

(this takes on the order of 2n /2 operations), sort each of the sets S 1 and S 2 (in about n2n /2

operations), and then scan S 1 and S 2 , looking for a common element (about 2n /2 operations

again). An element common to S 1 and S 2 arises precisely when there is a solution to (1.1); if

y =
j =1
Σ

 n /2
x j a j

= s −
j >  n /2

Σ x j a j ,

then

s =
j =1
Σ
n

x j a j .

The entire procedure takes on the order of n2n /2 operations (but also about 2n /2 storage space,

which may sometimes be prohibitive!). Surprisingly enough, this is still the fastest algorithm

known for the general knapsack problem.

The basic idea of knapsack cryptosystems is to use a public set of weights a 1 , ... , a n

generated by A, say, to encode a message (x 1 , ... , x n ), x j ∈ {0 , 1} for 1 ≤ j ≤ n, as



- 3 -

s =
j =1
Σ
n

x j a j . (1.2)

The message that would be transmitted to A would then be s. An eavesdropper would see s, and

would know a 1 , ... , a n , since those are public, but in order to recover the message (x 1 , ... , x n ),

would have to solve the (apparently intractable) knapsack problem.

The difficulty with the basic scheme outlined above is that while the eavesdropper is faced

with having to solve a hard knapsack problem, so is the intended receiver A. That makes the

scheme impractical, unless A possesses tremendously more computing power than any possible

eavesdropper. (An assumption like that is completely unacceptable, since a basic criterion is that

the cryptosystem should be very easy to use, and the cryptanalysis of it ought to be very hard.)

Thus to use the knapsack problem for information transmission, it is necessary to make it possible

for the intended receiver A to decode messages efficiently. There are some kinds of knapsack

problems that are easy to solve. For example, if a j = 2 j −1 , 1 ≤ j ≤ n, then

s =
j =1
Σ
n

x j 2 j −1 ,

and the x j are just the digits in the binary representation of s. More generally, if the a j form a

superincreasing sequence, so that

a j >
i =1
Σ
j −1

a i , 2 ≤ j ≤ n , (1.3)

then the knapsack problem is easy to solve; x n = 1 if and only if

s >
j =1
Σ

n −1
a j .

Once we find that x n = y, say, we are faced with the smaller knapsack problem of determining

x 1 , ... , x n −1 such that
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s − y a n =
j =1
Σ

n −1
x j a j , x i ∈ {0 , 1} , 1 ≤ j ≤ n − 1 ,

and thus we can retrieve the entire message (x 1 , ... , x n ) recursively.

The use of a superincreasing sequence a 1 , ... , a n of public weights would make it easy for

the receiver A to read messages, but it would not prevent the eavesdropper from doing so as well.

The basic idea of all knapsack public key cryptosystems is to start with a knapsack b 1 , ... , b n

that is easy to solve and then transform it into the public knapsack a 1 , ... , a n by a process that

conceals the structure of the knapsack, so that the public weights a 1 , ... , a n will appear to have

no special structure and will hopefully leave the cryptanalyst baffled. At the same time, the

designer of the system will be in a position to reverse the concealing transformation and will only

have to solve the easy knapsack.

The most famous transformation of an easy secret knapsack into a seemingly more

complicated public one is the modular multiplication used by Merkle and Hellman [21] in their

basic knapsack cryptosystem. The receiver, who constructs the system to allow others to send

information to her, starts with a superincreasing knapsack b 1 , ... , b n with

b 1 ∼∼ 2n , b j >
i =1
Σ
j −1

b i , 2 ≤ j ≤ n , b n
∼∼ 22n . (1.4)

(Some of the reasons for this choice of parameters will be presented in Section 2.) She then

chooses positive integers M and W with

M >
j =1
Σ
n

b j , (M , W) = 1 , (1.5)

and computes

aj′ ≡ b j W ( mod M) , 0 < aj′ < M . (1.6)

We cannot have aj′ = 0, since (M , W) = 1 and M > b j . Then she selects a permutation π of
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{1 , ... , n } and defines

a j = aπ( j)′ , 1 ≤ j ≤ n . (1.7)

The a j form the public weights, while the b j , M , W, and the permutation πare kept secret.

A message (x 1 , ... , x n ) is encoded as

s =
j =1
Σ
n

x j a j . (1.8)

The receiver, knowing M and W, computes

c ≡ s W −1 ( mod M) , 0 ≤ c < M , (1.9)

where W−1 denotes the multiplicative inverse of W modulo M. By (1.6)-(1.8),

c ≡
j =1
Σ
n

x j a j W−1 ( mod M)

≡
j =1
Σ
n

x j aπ( j)′ W−1 ( mod M) (1.10)

≡
j =1
Σ
n

x j b π( j) ( mod M) .

Since M > Σ b j , the condition 0 ≤ c < M implies

c =
j =1
Σ
n

x j b π( j) . (1.11)

After these operations the receiver is faced with the knapsack problem (1.11), which is easy to

solve, since the b j form an increasing sequence.

The paragraphs above describe the basic, or singly-iterated Merkle-Hellman cryptosystem. A

variation on it is the multiply-iterated Merkle-Hellman cryptosystem, in which the easy (secret)

knapsack is disguised through a series of modular multiplications; we let M 1 = M, W 1 = W,

aj
( 0 ) = b j , aj

( 1 ) = aj′ , and construct a sequence of modulus, multiplier, and weight combinations
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by choosing iteratively M k , W k , to be positive integers such that (M k , W k ) = 1,

M k >
j =1
Σ
n

aj
(k −1 ) ,

and define

aj
(k) ≡ aj

(k −1 ) W k ( mod M k ) .

This kind of scrambling operation, when performed a few times, seems to conceal the original

design even more effectively than the basic (singly-iterated) scheme does.

The Merkle-Hellman knapsack cryptosystems, as well as various other ones that were

proposed, have the attractive feature that they can be run at the high speeds. Classical secret key

cryptosystems, such as the Data Encryption Standard (DES), when implemented with special

purpose chips, can be run at speeds of tens of millions of bits per second, and even in software on

modest size machines can encrypt on the order of 105 bits per second. The RSA system is very

slow by comparison. It was thought for a long time that a modulus of about 500 bits was quite

secure. (The initial challenge cipher proposed by Rivest, Shamir, and Adleman involved a

modulus of about 430 bits.) At that size, though, even the best existing special purpose chips can

only encrypt at the rate of 104 or 2 × 104 bits per second, and software implementations are

limited to something on the order of 102 bits per second. Thus the RSA system is about 100 to

1000 times slower than classical cryptosystems.

The Merkle-Hellman knapsack cryptosystems seemed to offer the possibility of much higher

speed. For n ∼∼ 100 (which seemed a reasonable parameter, since the best algorithms known for

solving the knapsack problem require on the order of 2n /2 operations), the singly-iterated

Merkle-Hellman system can be more than 100 times faster than RSA (with modulus of about 500

bits), whether hardware or software implementations were used, and thus can rival classical secret

key systems in speed. This speed advantage is due to a small extent to dealing with smaller

numbers (200 vs. 500 bits) but mostly to having to do only one modular multiplication, as
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opposed to over 500 for RSA. There is a slight disadvantage in that twice the communication

capacity is needed (m bits is encoded into ∼∼ 2m bits, as against about m bits for RSA), and the

size of the public key is larger (2n 2 bits, which is about 20,000 for n ∼∼ 100, as against 1000 bits

for 500-bit RSA).

The major question about knapsack public key systems has always concerned their security.

Some of the doubts have been very general, and apply to the RSA cryptosystem as well. What if

P = NP, and somebody discusses a wonderful new approach that solves all problems in NP

efficiently? Even if P ≠ NP, what if most instances of the knapsack problem are easy to solve?

Since the theory of NP-completeness deals with the worst-case situation, there is nothing to

forbid this from happening, and many NP-complete problems are easy to solve on average,

cf. [27]. Even if most instances of the general knapsack problem are hard, how can one be certain

that the cryptanalyst will not be able to deduce from the public knapsack what the construction

method was?

In addition to the general doubt about security of all public key systems mentioned above,

several other doubts were raised that applied specifically to knapsacks and other systems based on

NP-complete problems. On the very abstract level, there was an interesting result of Brassard [2]

which says essentially that if breaking a cryptosystem is NP-hard, then NP = Co - NP, which

would be a very surprising complexity theory result. Thus if NP ≠ Co - NP, then breaking the

Merkle-Hellman cryptosystem cannot be NP-hard, and so is likely to be easier than solving the

general knapsack problem.

More specific concerns about the security of knapsack cryptosystems were based to the

linearity of such schemes. Reading Eq. (1.1) modulo 2, one obtains an equation for the x j

modulo 2, which provides a single bit of information about them. (We can obviously assume that

not all of the a j are even, as in that case, which would correspond to a trivial equation, we could
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look at the knapsack with weights a 1 / /2 , ... , a n / /2, etc.) No one ever found a way to take

advantage of this bit, but the fact that it could be determined was felt to be suspicious. (Ideal

cryptographic systems should reveal no information at all about the plaintext message being

transmitted.)

In addition to the general suspicions mentioned above, a number of knapsack cryptosystems

were broken in the late 1970’s. The final fall of knapsack cryptosystems can be dated to Shamir’s

announcement in the spring of 1982 of a polynomial time attack on the singly-iterated Merkle-

Hellman cryptosystem [26]. This was quickly followed by a string of attacks on other knapsack

cryptosystems, culminating in Brickell’s attack on the multiply-iterated Merkle-Hellman system

[4]. These attacks relied on the fact that the modular multiplication method does not disguise

completely the easy knapsack that is the basis of the construction.

In addition to the attacks on specific knapsack systems that have been developed, there are

two attacks on so-called low-density knapsacks, namely those in which the weights a j are large.

These attacks do not assume any particular structure in the knapsack. They are due to Brickell [3]

and Lagarias and Odlyzko [18], respectively. As a result, both of the two basic fears about

knapsack cryptosystems have been borne out; their constructions can often be unraveled, and in

addition, many cases of the general knapsack problem can be solved efficiently.

A large variety of knapsack cryptosystems have been shown to be insecure, most with the use

of tools from the area of diophantine approximation. The paper [6] contains a survey of many of

the systems that have been broken as well as descriptions of some of the attacks. For full details,

the reader is advised to consult [6] and many of the references contained there, such as

[3,4,5,8,11,16,17,18,22,26]. The remainder of this paper is devoted to a description of one each

of the two kinds of basic attacks that have been used. Section 2 describes the attack on the

singly-iterated Merkle-Hellman cryptosystem. This attack allows the cryptanalyst to read
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encrypted messages just about as fast as the designer of the system can. Section 3 describes one

of the low-density attacks. It is harder to carry out, but applies to a rich variety of knapsacks, not

just the cryptographic ones.

While most knapsack cryptosystems have been broken, there are a few that so far have

resisted all attacks. One of the most attractive of these is the Chor-Rivest system [7], which

involves a combination of number theory ideas and knapsacks. It is described briefly in

Section 4. Other recent applications of knapsacks include [15]. The search for secure knapsacks

continues both because of the attractively high speed that knapsack systems offer, and because of

the desire to have a wide variety of cryptosystems available. After all, factorization and discrete

logarithm problems could turn out to be efficiently solvable, and if that happened, it would be

nice to have substitute systems available.

2. Basic Merkle-Hellman system

This section shows how to break the basic Merkle-Hellman knapsack cryptosystem. This

attack was the first serious cryptanalytic assault on knapsacks, and it led to the breaking of

numerous other knapsack systems. It is due to A. Shamir [26]. Many of the crucial observations

about the weaknesses of the basic Merkle-Hellman system had been made earlier by Eier and

Lagger [10] and by Desmedt, Vandewalle, and Govaerts [9].

Before describing the Shamir attack, we will say a few words about the choice of parameters

(1.4). If some of the b i , and therefore also M, are large, then the knapsack will be inefficient,

since n bits of information will be encoded into roughly log 2 M bits. On the other hand, it is

dangerous to let any of the b j be too small. If we had b 1 = 1, say, then a j = W for some j, and

since the knapsack can be shown to be breakable if either W or M is revealed, one could try each

of the a j as a possible W and thus compromise the system. Therefore a reasonable compromise

between efficiency and security seemed to be to select the parameters in (1.4).
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One could select b i = c2i −1 , 1 ≤ i ≤ n, for some c ∼∼ 2n . This choice would satisfy (1.4), but

it would yield a very insecure system. The reason is that for 1 ≤ j ≤ n − 1, we would have

aj +1′ = 2aj′ or 2aj′ − M ,

and each case would usually occur about n /2 times. Therefore, by computing

a i − 2a j , 1 ≤ i , j ≤ n ,

we would obtain about n /2 occurrences of − M among the n 2 differences, so we could deduce

what M is, and this would break the system. Other approaches have also been preposed. For

example, one could take b i = 2i −1 , but hide this structure by a double iteration of the modular

multiplication method [14]. This construction, however, which is more secure than what was

presented above, was shown to be insecure by the author (unpublished) by the use of continued

fractions. The moral to be drawn from the above examples is that it is easy to construct knapsack

cryptosystems that seem attractive, yet are insecure. This explains the generally high level of

suspicion that experts have had about knapsacks from the moment they were proposed.

We now proceed to the description of the Shamir attack on the basic Merkle-Hellman system.

We assume that the secret knapsack weights b 1 , ... , b n satisfy (1.4), and that they are

transformed into the public weights a 1 , ... , a n via (1.6) and (1.7). We let U ≡ W−1 ( mod M),

0 < U < M. By (1.6), we have

a j ≡ b π( j) W ( mod M) , (2.1)

or

b π( j) ≡ a j U ( mod M) , (2.2)

and this means that for some integer k j ,

a j U − k j M = b π( j) . (2.3)

Hence
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M
U_ __ −

a j

k j_ __ =
a j M

b π( j)_ ____ . (2.4)

What this means is that all of the k j / a j are close to U / M. The cryptanalyst does not know U , M,

π, the k j , or the b j , but does know the a j . The problem now is to extract some information about

all these unknowns from the above remark about (2.4).

From (1.4) we see, for example, that

b 1 , b 2 , ... , b 5 <∼ 2n . (2.5)

Therefore, if we let j i = π−1 (i), then we obtain



 M

U_ __ −
a j i

k j i_ __




<∼ 24n

2n
_ ___ = 2 −3n , 1 ≤ i ≤ 5 , (2.6)

and hence, subtracting the i = 1 term from the others,



 a j i

k j i_ __ −
a j 1

k j 1_ ___




<∼ 2 −3n , 2 ≤ i ≤ 5 . (2.7)

This, in turn, implies that

 k j i
a j 1

− k j 1
a j i

 <∼ 2n , 2 ≤ i ≤ 5 . (2.8)

The inequalities (2.8) show just how unusual the a j i
and k j i

are. After all, each of them is on the

order of 22n , so k j i
a j 1

is on the order of 24n . For the difference of two such terms to be on the

order of 2n requires some very special structure. It cannot happen often, and (in most cases) the

k j i
, 1 ≤ i ≤ 5, are determined uniquely by (2.8). (Remember that the a j i

are public.) The

question is: How do we determine the k j i
in practice? Shamir’s main contribution was to notice

that this could be done in polynomial time by invoking H. W. Lenstra’s theorem that the integer

programming problem in a fixed number of variables can be solved in polynomial time [20]. This

yields the k j i
, 1 ≤ i ≤ 5. Once the k j i

are found, one obtains an approximation to U / M from
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(2.6), and that lets one construct a pair (U ′ , M ′ ) with U ′ / M ′ close to U / M such that the weights

c j obtained by

c j ≡ a j U ′ ( mod M ′ ) , 0 < c j < M ′ , 1 ≤ j ≤ n , (2.9)

form a superincreasing sequence (after they are arranged in increasing order). Note that this

attack does not recover the U and M that were constructed by the original designer of the system.

There are infinitely many pairs U ′ , M ′ that yield a superincreasing sequence c j , and any of them

can be used to decrypt messages.

One point that was glossed over in the above discussion is that of finding j 1 , ... , j 5 . After all,

the permutation π is secret, so how can the cryptanalyst be sure she has picked out the right

indices? The answer to that is simple; the cryptanalyst considers all possible choices of

j 1 , ... , j 5 , and since there are only on the order of n 5 of them, this keeps the running time

polynomial. (In practice, one would use a different approach, choosing more than 5 weights at a

time, but not requiring that they come from the 5 smallest secret weights, but, say, from the half

of the secret weights that are smallest.)

The crucial tool that made the above attack succeed was Lenstra’s result on integer

programming in a fixed number of variables. It was applied to solve (2.6), which is a typical

problem in inhomogeneous diophantine approximation. In the case of the basic Merkle-Hellman

knapsack with parameters given by (1.4), it turns out that the attack can also be carried out using

continued fractions, a much simpler (and more effective) tool than Lenstra’s algorithm [6].

Continued fractions, while very useful, have unfortunately only limited applicability to

knapsacks. Even for the basic Merkle-Hellman knapsack with the b i larger than specified in (1.4)

(say b 1 ∼∼ 22n , b n ∼∼ 23n) the continued fraction method fails. The Lenstra result is powerful, but

is of mostly theoretical interest, since its running time is given by a high degree polynomial, and

so it has never been implemented. However, another tool, the Lova ́ sz lattice basis reduction
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algorithm, which was motivated by Lenstra’s method, was soon applied to knapsacks, and was

crucial for the development of the low-density attacks as well as for the breaking of other

systems.

3. A low-density attack

This section presents one of the two known approaches to solving general low-density

knapsacks, the one due to Lagarias and Odlyzko [18]. Compared to the Brickell low-density

attack [3], it appears to break more knapsacks, and it can be rigorously proved to work, at least

for extremely low-density knapsacks. Most important for this paper, though, is the fact that this

attack is conceptually much simpler, and so is very easy to present.

Before discussing the low-density attack of [18], we introduce lattices and lattice basis

reduction algorithms. An integer lattice L is an additive subgroup of Z n that contains n linearly

independent vectors over Rn . A basis (v 1 , ... , v n ) of L is a set of elements of L such that

L = Zv 1 ⊕ . . . ⊕ Zv n . A basis will be represented by the n × n basis matrix

V =






 v n

...

v 1 






.

Bases are not unique; if U is a unimodular n × n matrix (matrix with integer entries and

determinant ±1) then UV is another basis. A very important problem is that of finding the

shortest non-zero vector of a lattice, given its basis. This problem appears to be quite hard,

although there is no proof that it is.

An important concept related to that of the shortest non-zero vector is that of a reduced basis.

There are several definitions of reduced bases, but the one we will deal with (but will not define

precisely) is that due to Lova ́ sz [19]. What we will use is the fact that the first vector in a
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Lova ´ sz-reduced basis is not too long. The precise result is that if v 1 , ... , v n is a Lova ́ sz-reduced

basis of a lattice, then [19; Prop. 1.11]

  v 1   2 ≤ 2n −1

x ≠ 0 0
x ∈ L
min   x  2 . (3.1)

(Actually, one can get a slightly better bound by modifying the definition of Lova ́ sz reduction,

see [18, 19].) What’s most important is that Lova ́ sz found a polynomial time algorithm that,

given a basis for a lattice, produces a reduced basis. This algorithm thus has a good theoretical

running time bound, but in addition turns out to be very fast in practice [18], and usually finds a

reduced basis in which the first vector is much shorter than is guaranteed by (3.1). (In low

dimensions, it has been observed empirically that it usually finds the shortest non-zero vector in a

lattice.)

The low-density attack of [18] is very easy to describe. Suppose that we wish to find a

solution to (1.1), where the a j and s are given. We form the (n + 1 )-dimensional lattice with

basis

V =








î 0

0

0

1

0

0

1

0

0

0

0

0

. . .

. . .

...

. . .

. . .

0

1

0

0

s

− a n

− a 2

− a 1









. (3.2)

If v 1 , ... , v n +1 are the rows of V, and the x j solve (1.1), then

j =1
Σ
n

x j v j + v n +1 = (x 1 , x 2 , ... , x n , 0 ) , (3.3)

and since the x j are 0 or 1, this vector is very short. The basic attack of [18] consists of running

the Lova ́ sz lattice basis reduction algorithm on the basis (3.2) and checking whether the resulting

reduced basis contains a vector that is a solution to (1.1).
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If the a j are large, then one could expect that most vectors in the lattice generated by (3.2)

would be large, and so the vector (3.3) corresponding to a solution of (1.1) might be the shortest

one. It is possible to prove a rigorous result in this direction. If the a j are chosen at random with

a j
∼∼ 2βn , 1 ≤ j ≤ n ,

where β is any constant > 1. 54725 (the precise definition of the critical constant is complicated

and is given in [18]), then the vector (3.3) is the shortest non-zero vector in most of these lattices,

as is shown in [18]. (Frieze [11] has obtained a simplified proof of this result. Also, the claim

above is valid only for Σ x j ≤ n /2, but it is easy to reduce the general problem to this case.) Thus

if we could efficiently find shortest non-zero vectors in lattices, we could solve most low-density

knapsacks.

The rigorous analysis of [11, 18] applies only to random knapsacks. However, it appears that

this same result also applies to knapsacks that arise in cryptographic constructions. Heuristically,

there are even technical reasons to think that the above analysis would apply even more strongly

to knapsack cryptosystems, since these are less likely to have what are called small linear

relations. See [18] for a detailed discussion.

The major deficiency of the rigorous analysis mentioned above is that it applies directly only

when we have a way to compute the shortest non-zero vector in a lattice. So far no efficient way

to do this has been found. If we have to rely on the rigorous bounds that have been obtained on

the performance of the Lova ́ sz algorithm, then we can only assert that most knapsacks are

solvable whose weights are extremely large, on the order of 2n 2

. (See [18] for the precise

statement.) In practice, however, the Lova ́ sz algorithm performs much better than the worst-case

bounds that have been proved for it. Furthermore, some improvements have been suggested, both

in the way it is implemented [18, 23] and in the basic construction of the algorithm [24, 25],

which yield significant advantages in either speed or success in finding short vectors.
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Furthermore, these improvements suggest very strongly that one can obtain even better

algorithms. Thus in judging the security of knapsack cryptosystems it is probably prudent to

assume that shortest non-zero vectors in lattices can be found efficiently.

4. The Chor-Rivest knapsack

The Chor-Rivest cryptosystem [7] is one of the few knapsack systems that have not been

broken, and is among the most attractive ones. Let GF(p h ) be a finite field such that p h − 1 has

only moderate prime factors, so that it is fairly easy to compute discrete logarithms in GF(p h ).

One possible choice, suggested in [7], is p = 197, h = 24. Let f (x) be a monic irreducible

polynomial of degree h over GF(p), so that GF(p h ) can be represented as GF(p) [x]/ f (x). Let t

be the residue class of x modulo f (x), so that t is an element of GF(p h ) and f (t) = 0. Further, let

g be a generator of the multiplicative group of GF(p h ). For α ∈ GF(p), let a α be an integer

such that

g aα = t + α , (4.1)

and let π be a one-to-one map from {0 , 1 , ... , p − 1} to GF(p). We choose an integer d, and

define

c i ≡ a π(i) + d mod p h − 1 , 0 ≤ c i ≤ p h − 2 . (4.2)

Then c 0 , c 1 , ... , c p −1 are the public key. Messages to be encoded are first transformed into p-

vectors (m 0 , ... , m p −1 ) of non-negative integers such that

i =0
Σ

p −1
m i = h . (4.3)

(This transformation is easy to perform.) The ciphertext that is transmitted is then

s =
i =0
Σ

p −1
m i c i . (4.4)
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The decryption is accomplished as follows. First compute

r ≡ s − hd mod p h − 1 , 0 ≤ r ≤ p h − 2 ,

and then we have

g r =
i =0
Π
p −1

g m i aπ( i) .

Now g r is represented as a polynomial G in x of degree < h, and g aπ( i) is represented as x + π(i).

The product

i =0
Π
p −1

g m i aπ( i)

is then representable as

i =0
Π
p −1

(x + π(i) ) m i ,

and so we must have

G + f (x) =
i =0
Π
p −1

(x + π(i) ) m i ,

since the polynomial on the right side above is monic and of degree exactly h. Now one can

recover the m i by factoring G + f (x), and this can be done efficiently.

Chor and Rivest discuss several attacks on this system in this paper. So far, though, none of

them have been modified so as to break the full system when its parameters are chosen carefully.

This represents a nice challenge for future work.
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ABSTRACT

Cryptosystems based on the knapsack problem were among the first public key systems to be

invented, and for a while were considered to be among the most promising. However, essentially

all of the knapsack cryptosystems that have been proposed so far have been broken. These notes

outline the basic constructions of these cryptosystems and attacks that have been developed on

them.


