
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CS711008Z Algorithm Design and Analysis
Lecture 6. Hidden Markov model and Viterbi’s decoding

algorithm

Dongbo Bu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

Dongbo Bu CS711008Z Algorithm Design and Analysis



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

The occasionally dishonest casino: an example of HMM
Formal definition of HMM
Finding the most probable state path: Viterbi algorithm

Dongbo Bu CS711008Z Algorithm Design and Analysis



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The occasionally dishonest casino: an example of HMM

Dongbo Bu CS711008Z Algorithm Design and Analysis



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The occasionally dishonest casino

A casino have a fair dice and a loaded dice. The fair dice
has identical probability 1

6 for all numbers one to six while the
loaded dice has probability 0.3 of a five, 0.3 of a six, and 0.1
for the numbers one to four.
For the first roll, the casino uses the fair dice with probability
3
5 and uses the loaded one with probability 2

5 . In the
subsequent rolls, the casino switches from a fair to a loaded
dice with probability 0.2 and switches back with probability
0.1. Thus the switch between dice forms a Markov process.

F L0.8

0.2

0.9

0.1

Fair dice
1 : 1/6
2 : 1/6
3 : 1/6
4 : 1/6
5 : 1/6
6 : 1/6

Loaded dice
1 : 1/10
2 : 1/10
3 : 1/10
4 : 1/10
5 : 3/10
6 : 3/10

Dongbo Bu CS711008Z Algorithm Design and Analysis



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The occasionally dishonest casino cont‘d

F L0.8

0.2

0.9

0.1

Fair dice
1 : 1/6
2 : 1/6
3 : 1/6
4 : 1/6
5 : 1/6
6 : 1/6

Loaded dice
1 : 1/10
2 : 1/10
3 : 1/10
4 : 1/10
5 : 3/10
6 : 3/10

Question: Suppose we observed a total of 10 rolls with the
following outcomes:

Y = (1, 3, 4, 5, 5, 6, 6, 3, 2, 6)

Could we find out the most probable state sequence, i.e. the
most probable dice used for each roll?

Dongbo Bu CS711008Z Algorithm Design and Analysis



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Trial 1: Calculating log-odd score based on Markov model

For each observed symbol, we could calculate log-odd score
for a window of w rolls around it, and expect the rolls using
fair dice to stand out with positive values.
However, this is unsatisfactory since:

This solution depends heavily on the selection of the window
size w.
The rolls generated using fair dice might have sharp
boundaries and variable length.

A better idea is to build a model to describe the switch
between these two dice.

Dongbo Bu CS711008Z Algorithm Design and Analysis



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Trial 2: Calculating the most probable state path using
HMM

Observed symbol

Hidden states

y1 y2 yi yn−1 yn

x1 x2 xi xn−1 xn… …

… …

In each state of the Markov process, the outcome of a roll has
different probability. Thus, the whole process forms a hidden
Markov model. Here the state sequence, i.e. the dice used
for each roll, is hidden.
The essential difference between a Markov chain and a hidden
Markov model is that for a HMM, there is not a one-to-one
correspondence between observed symbols and states.

Dongbo Bu CS711008Z Algorithm Design and Analysis



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Formal definition of HMM

Transition probability: We now distinguish the sequence of
states (denoted as X) and the sequence of observed symbols
(denoted as Y). The state sequence follows a simple Markov
chain, so the probability of a state xi depends only on the
previous one xi−1, which is characterised using transition
probability:

akl = P(xi = l|xi−1 = k)

Begin state: To model the beginning of the process we
introduce a begin state (denoted as state 0). The transition
probability a0k represents the probability of starting in state k.
Emission probability: A state can generate a symbol from a
distribution over all possible symbols; thus, we define
emission probability:

ek(b) = P(yi = b|xi = k)

Dongbo Bu CS711008Z Algorithm Design and Analysis



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Using HMM as a generative model

A symbol sequence can be generated from HMM as follows:
Initially a state x1 is chose according the probability a0k. In
this state xi, a symbol is emitted according to the emission
probability exi .
Then a new state x2 is generated according to the transition
probability ax1k and so on. This way a symbol sequence
Y = (y1, y2, ..., yn) is generated. Here we assume n is a fixed
number and thus avoid defining an “end state” for simplicity.

The joint probability of an observed symbol sequence Y and
state sequence X is:

P(X,Y) = P(x1x2 . . . xn, y1y2 · · · yn) =
n∏

i=1

(
axi−1xiexi(yi)

)

Dongbo Bu CS711008Z Algorithm Design and Analysis



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example

For example, given an observed outcome of 10 rolls
Y = (1, 3, 4, 5, 5, 6, 6, 3, 2, 6), if X = (F, F, F, F, F, L, L, L, L, L),
we have:

P(X,Y) =
3
5 × (

1
6)

5 × (0.8)4 × 0.2 × (
3
10)

3 × (
1
10)

2 × 0.94

There are a total of 2n possible state sequence. If we are to
choose just one sequence, perhaps the one with the highest
joint probability should be chosen,

X∗ = argmaxXP(X,Y)

Dongbo Bu CS711008Z Algorithm Design and Analysis



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Viterbi’s decoding algorithm [1967]

In 1967, Andrew Viterbi proposed a dynamic programming
algorithm for decoding over noisy communication links.
The idea can be extended for decoding in general graphical
models, including Bayesian networks, Markov random fields
and CRF. The extension is usually termed as max-sum
algorithm, which aims to finding the most probable latent
variables in graphical models. In these models, the
forward-backward algorithm was generalized to message
passing or belief propagation.
A faster implementation of Viterbi’s algorithm is
LazyViterbi (J. Feldman, et al, 2002). The algorithm
algorithm was built upon A∗ algorithm, and it does not
expand any nodes until it really needs to do so.

Dongbo Bu CS711008Z Algorithm Design and Analysis



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Viterbi’s decoding algorithm: recursion
First we rewrite maxX P(X,Y) as:

max
xn

max
xn−1

...max
x1

exn(yn)axn−1xnexn−1(yn−1)...ax1x2ex1(y1)a0x1

Note that we cannot build a direct recursion between
P(x1x2 . . . xn, y1y2 · · · yn) and P(x2x3 . . . xn, y2y3 · · · yn).
Let’s consider a smaller subproblem: define vi(k) as

max
xi−1

...max
x1

ek(yi)axi−1kexi−1(yi−1)...ax1x2ex1(y1)a0x1

We can observe the following recursion:

vi(k) = ek(yi)max
l

(alkvi−1(l))

We also have
max

X
P(X,Y) = max

k
vn(k)

Dongbo Bu CS711008Z Algorithm Design and Analysis



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Viterbi’s decoding algorithm
ViterbiDecoding(Y, a, e)

1: Initialize v1(k) = a0kek(y1) for all state k;
2: for i = 2 to n do
3: for each state k do
4: vi(k) = ek(yi)maxl(alkvi−1(l));
5: ptri(k) = argmaxl(alkvi−1(l));
6: end for
7: end for
8: P(X∗,Y) = maxk(vn(k));
9: x∗n = argmaxk(vn(k));

10: for i = n − 1 to 1 do
11: x∗i = ptri−1(x∗i+1);
12: end for
13: return X;
Time complexity: O(nK2), where K denotes the number of
possible states

Dongbo Bu CS711008Z Algorithm Design and Analysis



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example
yi vi(F) ptri(F) vi(L) ptri(L)

i = 1 1 1.000 ∗ 10−1 - 4.000 ∗ 10−2 -
i = 2 3 1.333 ∗ 10−2 F 3.600 ∗ 10−3 L
i = 3 4 1.778 ∗ 10−3 F 3.240 ∗ 10−4 L
i = 4 5 2.370 ∗ 10−4 F 1.067 ∗ 10−4 F
i = 5 5 3.161 ∗ 10−4 F 2.880 ∗ 10−5 L
i = 6 6 4.214 ∗ 10−6 F 7.776 ∗ 10−6 L
i = 7 6 5.619 ∗ 10−7 F 2.100 ∗ 10−6 L
i = 8 3 7.492 ∗ 10−8 F 1.890 ∗ 10−7 L
i = 9 2 9.989 ∗ 10−9 F 1.701 ∗ 10−8 L
i = 10 6 1.332 ∗ 10−9 F 4.592 ∗ 10−9 L

1 3 4 5 5 6 6 3 2 6
F F F F F F F F F F

L L L L L L L L L L

Dongbo Bu CS711008Z Algorithm Design and Analysis


