
Algorithms Lecture 17: All-Pairs Shortest Paths

The tree which fills the arms grew from the tiniest sprout;
the tower of nine storeys rose from a (small) heap of earth;
the journey of a thousand li commenced with a single step.

— Lao-Tzu, Tao Te Ching, chapter 64 (6th century BC),
translated by J. Legge (1891)

And I would walk five hundred miles,
And I would walk five hundred more,
Just to be the man who walks a thousand miles
To fall down at your door.

— The Proclaimers, “Five Hundred Miles (I’m Gonna Be)”,
Sunshine on Leith (2001)

Almost there. . . Almost there. . .

— Red Leader [Drewe Henley], Star Wars (1977)

17 All-Pairs Shortest Paths

17.1 The Problem

In the previous lecture, we saw algorithms to find the shortest path from a source vertex s to a target
vertex t in a directed graph. As it turns out, the best algorithms for this problem actually find the shortest
path from s to every possible target (or from every possible source to t) by constructing a shortest path
tree. The shortest path tree specifies two pieces of information for each node v in the graph:

• dist(v) is the length of the shortest path (if any) from s to v;

• pred(v) is the second-to-last vertex (if any) the shortest path (if any) from s to v.

In this lecture, we want to generalize the shortest path problem even further. In the all pairs shortest
path problem, we want to find the shortest path from every possible source to every possible destination.
Specifically, for every pair of vertices u and v, we need to compute the following information:

• dist(u, v) is the length of the shortest path (if any) from u to v;

• pred(u, v) is the second-to-last vertex (if any) on the shortest path (if any) from u to v.

For example, for any vertex v, we have dist(v, v) = 0 and pred(v, v) = NULL. If the shortest path from u
to v is only one edge long, then dist(u, v) = w(u!v) and pred(u, v) = u. If there is no shortest path from
u to v—either because there’s no path at all, or because there’s a negative cycle—then dist(u, v) =1
and pred(v, v) = NULL.

The output of our shortest path algorithms will be a pair of V ⇥ V arrays encoding all V 2 distances
and predecessors. Many maps include a distance matrix—to find the distance from (say) Champaign to
(say) Columbus, you would look in the row labeled ‘Champaign’ and the column labeled ‘Columbus’. In
these notes, I’ll focus almost exclusively on computing the distance array. The predecessor array, from
which you would compute the actual shortest paths, can be computed with only minor additions to the
algorithms I’ll describe (hint, hint).

17.2 Lots of Single Sources

The obvious solution to the all-pairs shortest path problem is just to run a single-source shortest path
algorithm V times, once for every possible source vertex! Specifically, to fill in the one-dimensional
subarray dist[s][ ], we invoke either Dijkstra’s or Shimbel’s algorithm starting at the source vertex s.
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OBVIOUSAPSP(V, E, w):
for every vertex s

dist[s][ ] SSSP(V, E, w, s)

The running time of this algorithm depends on which single-source shortest path algorithm we use. If
we use Shimbel’s algorithm, the overall running time is ⇥(V2E) = O(V 4). If all the edge weights
are non-negative, we can use Dijkstra’s algorithm instead, which decreases the running time to
⇥(VE + V2

log V) = O(V 3). For graphs with negative edge weights, Dijkstra’s algorithm can take
exponential time, so we can’t get this improvement directly.

17.3 Reweighting

One idea that occurs to most people is increasing the weights of all the edges by the same amount so
that all the weights become positive, and then applying Dijkstra’s algorithm. Unfortunately, this simple
idea doesn’t work. Different paths change by different amounts, which means the shortest paths in the
reweighted graph may not be the same as in the original graph.

2 2

4 4

3

s t

Increasing all the edge weights by 2 changes the shortest path s to t.

However, there is a more complicated method for reweighting the edges in a graph. Suppose each
vertex v has some associated cost c(v), which might be positive, negative, or zero. We can define a new
weight function w0 as follows:

w0(u!v) = c(u) + w(u!v)� c(v)

To give some intuition, imagine that when we leave vertex u, we have to pay an exit tax of c(u), and
when we enter v, we get c(v) as an entrance gift.

Now it’s not too hard to show that the shortest paths with the new weight function w0 are exactly
the same as the shortest paths with the original weight function w. In fact, for any path u† v from one
vertex u to another vertex v, we have

w0(u† v) = c(u) +w(u† v)� c(v).

We pay c(u) in exit fees, plus the original weight of of the path, minus the c(v) entrance gift. At every
intermediate vertex x on the path, we get c(x) as an entrance gift, but then immediately pay it back as
an exit tax!

17.4 Johnson’s Algorithm

Johnson’s all-pairs shortest path algorithm finds a cost c(v) for each vertex, so that when the graph is
reweighted, every edge has non-negative weight.

Suppose the graph has a vertex s that has a path to every other vertex. Johnson’s algorithm computes
the shortest paths from s to every other vertex, using Shimbel’s algorithm (which doesn’t care if the edge
weights are negative), and then sets

c(v) = dist(s, v),
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so the new weight of every edge is

w0(u!v) = dist(s, u) +w(u!v)� dist(s, v).

Why are all these new weights non-negative? Because otherwise, Shimbel’s algorithm wouldn’t be
finished! Recall that an edge u!v is tense if dist(s, u) + w(u!v) < dist(s, v), and that single-source
shortest path algorithms eliminate all tense edges. The only exception is if the graph has a negative
cycle, but then shortest paths aren’t defined, and Johnson’s algorithm simply aborts.

But what if the graph doesn’t have a vertex s that can reach everything? No matter where we start
Shimbel’s algorithm, some of those vertex costs will be infinite. Johnson’s algorithm avoids this problem
by adding a new vertex s to the graph, with zero-weight edges going from s to every other vertex, but
no edges going back into s. This addition doesn’t change the shortest paths between any other pair of
vertices, because there are no paths into s.

So here’s Johnson’s algorithm in all its glory.

JOHNSONAPSP(V, E, w) :
create a new vertex s
for every vertex v 2 V

w(s!v) 0
w(v!s) 1

dist[s][ ] SHIMBEL(V, E, w, s)
abort if SHIMBEL found a negative cycle
for every edge (u, v) 2 E

w0(u!v) dist[s][u] + w(u!v)� dist[s][v]

for every vertex u 2 V
dist[u][ ] DIJKSTRA(V, E, w0, u)
for every vertex v 2 V

dist[u][v] dist[u][v]� dist[s][u] + dist[s][v]

The algorithm spends ⇥(V ) time adding the artificial start vertex s, ⇥(V E) time running SHIMBEL,
O(E) time reweighting the graph, and then ⇥(V E+ V 2 log V ) running V passes of Dijkstra’s algorithm.
Thus, the overall running time is ⇥(VE + V2

log V).

17.5 Dynamic Programming

There’s a completely different solution to the all-pairs shortest path problem that uses dynamic program-
ming instead of a single-source algorithm. For dense graphs where E = ⌦(V 2), the dynamic programming
approach eventually leads to the same O(V 3) running time as Johnson’s algorithm, but with a much
simpler algorithm. In particular, the new algorithm avoids Dijkstra’s algorithm, which gets its efficiency
from Fibonacci heaps, which are rather easy to screw up in the implementation. In the rest of this

lecture, I will assume that the input graph contains no negative cycles.

As usual for dynamic programming algorithms, we first need to come up with a recursive formulation
of the problem. Here is an “obvious" recursive definition for dist(u, v):

dist(u, v) =

(
0 if u= v

min
x

�
dist(u, x) +w(x!v)

�
otherwise

In other words, to find the shortest path from u to v, try all possible predecessors x , compute the shortest
path from u to x , and then add the last edge u!v. Unfortunately, this recurrence doesn’t work! In
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order to compute dist(u, v), we first have to compute dist(u, x) for every other vertex x , but to compute
any dist(u, x), we first need to compute dist(u, v). We’re stuck in an infinite loop!

To avoid this circular dependency, we need an additional parameter that decreases at each recursion,
eventually reaching zero at the base case. One possibility is to include the number of edges in the
shortest path as this third magic parameter. So let’s define dist(u, v, k) to be the length of the shortest
path from u to v that uses at most k edges. Since we know that the shortest path between any two
vertices has at most V � 1 vertices, what we’re really trying to compute is dist(u, v, V � 1).

After a little thought, we get the following recurrence.

dist(u, v, k) =

8
<
:

0 if u= v

1 if k = 0 and u 6= v

min
x

�
dist(u, x , k� 1) + w(x!v)

�
otherwise

Just like last time, the recurrence tries all possible predecessors of v in the shortest path, but now the
recursion actually bottoms out when k = 0.

Now it’s not difficult to turn this recurrence into a dynamic programming algorithm. Even before
we write down the algorithm, though, we can tell that its running time will be ⇥(V4) simply because
recurrence has four variables—u, v, k, and x—each of which can take on V different values. Except for
the base cases, the algorithm itself is just four nested for loops. To make the algorithm a little shorter,
let’s assume that w(v!v) = 0 for every vertex v.

DYNAMICPROGRAMMINGAPSP(V, E, w):
for all vertices u 2 V

for all vertices v 2 V
if u= v

dist[u][v][0] 0
else

dist[u][v][0] 1
for k 1 to V � 1

for all vertices u 2 V
for all vertices v 2 V

dist[u][v][k] 1
for all vertices x 2 V

dist[u][v][k] min
¶

dist[u][v][k], dist[u][x][k� 1] + w(x!v)
©

The last four lines actually evaluate the recurrence.
In fact, this algorithm is almost exactly the same as running Shimbel’s algorithm once for every

source vertex. The only difference is the innermost loop, which in Shimbel’s algorithm would read “for
all edges x ! v”. This simple change improves the running time to ⇥(V2E), assuming the graph is
stored in an adjacency list.

17.6 Divide and Conquer

But we can make a more significant improvement. The recurrence we just used broke the shortest path
into a slightly shorter path and a single edge, by considering all predecessors. Instead, let’s break it
into two shorter paths at the middle vertex on the path. This idea gives us a different recurrence for
dist(u, v, k). Once again, to simplify things, let’s assume w(v! v) = 0.

dist(u, v, k) =

(
w(u!v) if k = 1
min

x

�
dist(u, x , k/2) + dist(x , v, k/2)

�
otherwise
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This recurrence only works when k is a power of two, since otherwise we might try to find the shortest
path with a fractional number of edges! But that’s not really a problem, since dist(u, v, 2dlg V e) gives us
the overall shortest distance from u to v. Notice that we use the base case k = 1 instead of k = 0, since
we can’t use half an edge.

Once again, a dynamic programming solution is straightforward. Even before we write down the
algorithm, we can tell the running time is ⇥(V3

log V)—we consider V possible values of u, v, and x ,
but only dlg V e possible values of k.

FASTDYNAMICPROGRAMMINGAPSP(V, E, w):
for all vertices u 2 V

for all vertices v 2 V
dist[u][v][0] w(u!v)

for i 1 to dlg V e hhk = 2iii
for all vertices u 2 V

for all vertices v 2 V
dist[u][v][i] 1
for all vertices x 2 V

if dist[u][v][i]> dist[u][x][i � 1] + dist[x][v][i � 1]
dist[u][v][i] dist[u][x][i � 1] + dist[x][v][i � 1]

17.7 Aside: ‘Funny’ Matrix Multiplication

There is a very close connection (first observed by Shimbel, and later independently by Bellman) between
computing shortest paths in a directed graph and computing powers of a square matrix. Compare the
following algorithm for multiplying two n⇥ n matrices A and B with the inner loop of our first dynamic
programming algorithm. (I’ve changed the variable names in the second algorithm slightly to make the
similarity clearer.)

MATRIXMULTIPLY(A, B):
for i 1 to n

for j 1 to n
C[i][ j] 0
for k 1 to n

C[i][ j] C[i][ j] + A[i][k] · B[k][ j]
APSPINNERLOOP:

for all vertices u
for all vertices v

D0[u][v] 1
for all vertices x

D0[u][v] min
¶

D0[u][v], D[u][x] + w[x][v]
©

The only difference between these two algorithms is that we use addition instead of multiplication and
minimization instead of addition. For this reason, the shortest path inner loop is often referred to as
‘funny’ matrix multiplication.

DYNAMICPROGRAMMINGAPSP is the standard iterative algorithm for computing the (V � 1)th ‘funny
power’ of the weight matrix w. The first set of for loops sets up the ‘funny identity matrix’, with zeros
on the main diagonal and infinity everywhere else. Then each iteration of the second main for loop
computes the next ‘funny power’. FASTDYNAMICPROGRAMMINGAPSP replaces this iterative method for
computing powers with repeated squaring, exactly like we saw at the beginning of the semester. The
fast algorithm is simplified slightly by the fact that unless there are negative cycles, every ‘funny power’
after the V th is the same.
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There are faster methods for multiplying matrices, similar to Karatsuba’s divide-and-conquer algo-
rithm for multiplying integers. (Google for ‘Strassen’s algorithm’.) Unfortunately, these algorithms us
subtraction, and there’s no ‘funny’ equivalent of subtraction. (What’s the inverse operation for min?)
So at least for general graphs, there seems to be no way to speed up the inner loop of our dynamic
programming algorithms.

Fortunately, this isn’t true. There is a beautiful randomized algorithm, due to Noga Alon, Zvi
Galil, Oded Margalit*, and Moni Noar,1 that computes all-pairs shortest paths in undirected graphs
in O(M(V ) log2 V ) expected time, where M(V ) is the time to multiply two V ⇥ V integer matrices. A
simplified version of this algorithm for unweighted graphs was discovered by Raimund Seidel.2

17.8 Floyd and Warshall’s Algorithm

Our fast dynamic programming algorithm is still a factor of O(log V ) slower than Johnson’s algorithm. A
different formulation due to Floyd and Warshall removes this logarithmic factor. Their insight was to use
a different third parameter in the recurrence.

Number the vertices arbitrarily from 1 to V . For every pair of vertices u and v and every integer r,
we define a path ⇡(u, v, r) as follows:

⇡(u, v, r) := the shortest path from u to v where every intermediate vertex (that is, every
vertex except u and v) is numbered at most r.

If r = 0, we aren’t allowed to use any intermediate vertices, so ⇡(u, v, 0) is just the edge (if any) from
u to v. If r > 0, then either ⇡(u, v, r) goes through the vertex numbered r, or it doesn’t. If ⇡(u, v, r) does
contain vertex r, it splits into a subpath from u to r and a subpath from r to v, where every intermediate
vertex in these two subpaths is numbered at most r � 1. Moreover, the subpaths are as short as possible
with this restriction, so they must be ⇡(u, r, r�1) and ⇡(r, v, r�1). On the other hand, if ⇡(u, v, r) does
not go through vertex r, then every intermediate vertex in ⇡(u, v, r) is numbered at most r � 1; since
⇡(u, v, r) must be the shortest such path, we have ⇡(u, v, r) = ⇡(u, v, r � 1).

u v

intermediate nodes ≤ r

u v

r

intermediate nodes ≤ r-1

in
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rm
ediate

nodes ≤
 r-

1
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ediate

nodes ≤
 r-1

— or —=

Recursive structure of the restricted shortest path ⇡(u, v, r).

This recursive structure implies the following recurrence for the length of ⇡(u, v, r), which we will
denote by dist(u, v, r):

dist(u, v, r) =

(
w(u!v) if r = 0
min
¶

dist(u, v, r � 1), dist(u, r, r � 1) + dist(r, v, r � 1)
©

otherwise

We need to compute the shortest path distance from u to v with no restrictions, which is just dist(u, v, V ).
1N. Alon, Z. Galil, O. Margalit*, and M. Naor. Witnesses for Boolean matrix multiplication and for shortest paths. Proc. 33rd

FOCS 417-426, 1992. See also N. Alon, Z. Galil, O. Margalit*. On the exponent of the all pairs shortest path problem. Journal
of Computer and System Sciences 54(2):255–262, 1997.

2R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal of Computer and System
Sciences, 51(3):400-403, 1995. This is one of the few algorithms papers where (in the conference version at least) the
algorithm is completely described and analyzed in the abstract of the paper.
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Once again, we should immediately see that a dynamic programming algorithm that implements
this recurrence will run in ⇥(V3) time: three variables appear in the recurrence (u, v, and r), each of
which can take on V possible values. Here’s one way to do it:

FLOYDWARSHALL(V, E, w):
for u 1 to V

for v 1 to V
dist[u][v][0] w(u!v)

for r  1 to V
for u 1 to V

for v 1 to V
if dist[u][v][r � 1]< dist[u][r][r � 1] + dist[r][v][r � 1]

dist[u][v][r] dist[u][v][r � 1]
else

dist[u][v][r] dist[u][r][r � 1] + dist[r][v][r � 1]

Exercises

1. All of the algorithms discussed in this lecture fail if the graph contains a negative cycle. Johnson’s
algorithm detects the negative cycle in the initialization phase (via Shimbel’s algorithm) and
aborts; the dynamic programming algorithms just return incorrect results. However, both of these
algorithms can be modified to return correct shortest-path distances, even in the presence of
negative cycles. Specifically, if there is a path from vertex u to a negative cycle and a path from
that negative cycle to vertex v, the algorithm should report that dist[u][v] = �1. If there is no
directed path from u to v, the algorithm should return dist[u][v] = 1. Otherwise, dist[u][v]
should equal the length of the shortest directed path from u to v.

(a) Describe how to modify Johnson’s algorithm to return the correct shortest-path distances,
even if the graph has negative cycles.

(b) Describe how to modify the Floyd-Warshall algorithm to return the correct shortest-path
distances, even if the graph has negative cycles.

2. Let G = (V, E) be a directed graph with weighted edges; edge weights could be positive, negative,
or zero. Suppose the vertices of G are partitioned into k disjoint subsets V1, V2, . . . , Vk; that is,
every vertex of G belongs to exactly one subset Vi . For each i and j, let �(i, j) denote the minimum
shortest-path distance between vertices in Vi and vertices in Vj:

�(i, j) =min{dist(u, v) | u 2 Vi and v 2 Vj}.

Describe an algorithm to compute �(i, j) for all i and j in time O(V 2+ kE log E).

?3. Let G = (V, E) be an undirected, unweighted, connected, n-vertex graph, represented by the
adjacency matrix A[1 .. n, 1 .. n]. In this problem, we will derive Seidel’s sub-cubic algorithm to
compute the n⇥ n matrix D[1 .. n, 1 .. n] of shortest-path distances using fast matrix multiplication.
Assume that we have a subroutine MATRIXMULTIPLY that multiplies two n⇥ n matrices in ⇥(n!)
time, for some unknown constant ! � 2.3

3The matrix multiplication algorithm you already know runs in ⇥(n3) time, but this is not the fastest algorithm known. The
current record is ! ⇡ 2.376, due to Don Coppersmith and Shmuel Winograd. Determining the smallest possible value of ! is a
long-standing open problem; many people believe there is an undiscovered O(n2)-time algorithm for matrix multiplication.

7



Algorithms Lecture 17: All-Pairs Shortest Paths

(a) Let G2 denote the graph with the same vertices as G, where two vertices are connected by
a edge if and only if they are connected by a path of length at most 2 in G. Describe an
algorithm to compute the adjacency matrix of G2 using a single call to MATRIXMULTIPLY and
O(n2) additional time.

(b) Suppose we discover that G2 is a complete graph. Describe an algorithm to compute the
matrix D of shortest path distances in O(n2) additional time.

(c) Let D2 denote the (recursively computed) matrix of shortest-path distances in G2. Prove that
the shortest-path distance from node i to node j is either 2 · D2[i, j] or 2 · D2[i, j]� 1.

(d) Suppose G2 is not a complete graph. Let X = D2 · A, and let deg(i) denote the degree of
vertex i in the original graph G. Prove that the shortest-path distance from node i to node j
is 2 · D2[i, j] if and only if X [i, j]� D2[i, j] · deg(i).

(e) Describe an algorithm to compute the matrix of shortest-path distances in G in O(n! log n)
time.

c� Copyright 2009 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.
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