
Algorithms Lecture �: Advanced Dynamic Programming [Sp’��]

It is a very sad thing that nowadays there is so little
useless information.

— Oscar Wilde, “A Few Maxims for the Instruction
Of The Over-Educated” (1894)

Ninety percent of science fiction is crud.
But then, ninety percent of everything is crud,
and it’s the ten percent that isn’t crud that is important.

— [Theodore] Sturgeon’s Law (1953)

� Advanced Dynamic Programming?

Dynamic programming is a powerful technique for efficiently solving recursive problems, but
it’s hardly the end of the story. In many cases, once we have a basic dynamic programming
algorithm in place, we can make further improvements to bring down the running time or the
space usage. We saw one example in the Fibonacci number algorithm. Buried inside the naïve
iterative Fibonacci algorithm is a recursive problem—computing a power of a matrix—that can
be solved more efficiently by dynamic programming techniques—in this case, repeated squaring.

�.� Saving Space: Divide and Conquer

Just as we did for the Fibonacci recurrence, we can reduce the space complexity of our edit
distance algorithm from O(mn) to O(m+ n) by only storing the current and previous rows of
the memoization table. This ‘sliding window’ technique provides an easy space improvement for
most (but not all) dynamic programming algorithm.

Unfortunately, this technique seems to be useful only if we are interested in the cost of the
optimal edit sequence, not if we want the optimal edit sequence itself. By throwing away most
of the table, we apparently lose the ability to walk backward through the table to recover the
optimal sequence.

Fortunately for memory-misers, in ���� Dan Hirshberg discovered a simple divide-and-conquer
strategy that allows us to compute the optimal edit sequence in O(mn) time, using just O(m+ n)
space. The trick is to record not just the edit distance for each pair of prefixes, but also a single
position in the middle of the optimal editing sequence for that prefix. Specifically, any optimal
editing sequence that transforms A[1 .. m] into B[1 .. n] can be split into two smaller editing
sequences, one transforming A[1 .. m/2] into B[1 .. h] for some integer h, the other transforming
A[m/2+ 1 .. m] into B[h+ 1 .. n].

To compute this breakpoint h, we define a second function Half(i, j) such that some optimal
edit sequence from A[1 .. i] into B[1 .. j] contains an optimal edit sequence from A[1 .. m/2] to
B[1 ..Half(i, j)]. We can define this function recursively as follows:

Half(i, j) =

8
>>>>><
>>>>>:

1 if i < m/2
j if i = m/2
Half(i � 1, j) if i > m/2 and Edit(i, j) = Edit(i � 1, j) + 1
Half(i, j � 1) if i > m/2 and Edit(i, j) = Edit(i, j � 1) + 1
Half(i � 1, j � 1) otherwise

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

�

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Algorithms Lecture �: Advanced Dynamic Programming [Sp’��]

(Because there there may be more than one optimal edit sequence, this is not the only correct
definition.) A simple inductive argument implies that Half(m, n) is indeed the correct value of h.
We can easily modify our earlier algorithm so that it computes Half(m, n) at the same time as the
edit distance Edit(m, n), all in O(mn) time, using only O(m) space.

Edit A L G O R I T H M
0 1 2 3 4 5 6 7 8 9

A 1 0 1 2 3 4 5 6 7 8
L 2 1 0 1 2 3 4 5 6 7
T 3 2 1 1 2 3 4 4 5 6
R 4 3 2 2 2 2 3 4 5 6
U 5 4 3 3 3 3 3 4 5 6
I 6 5 4 4 4 4 3 4 5 6
S 7 6 5 5 5 5 4 4 5 6
T 8 7 6 6 6 6 5 4 5 6
I 9 8 7 7 7 7 6 5 5 6
C 10 9 8 8 8 8 7 6 6 6

Half A L G O R I T H M
1 1 1 1 1 1 1 1 1 1

A 1 1 1 1 1 1 1 1 1 1
L 1 1 1 1 1 1 1 1 1 1
T 1 1 1 1 1 1 1 1 1 1
R 1 1 1 1 1 1 1 1 1 1
U 0 1 2 3 4 5 6 7 8 9
I 0 1 2 3 4 5 5 5 5 5
S 0 1 2 3 4 5 5 5 5 5
T 0 1 2 3 4 5 5 5 5 5
I 0 1 2 3 4 5 5 5 5 5
C 0 1 2 3 4 5 5 5 5 5

Finally, to compute the optimal editing sequence that transforms A into B, we recursively
compute the optimal sequences transforming A[1 .. m/2] into B[1 ..Half(m, n)] and transforming
A[m/2+ 1 .. m] into B[Half(m, n) + 1 .. n]. The recursion bottoms out when one string has only
constant length, in which case we can determine the optimal editing sequence in linear time
using our old dynamic programming algorithm. The running time of the resulting algorithm
satisfies the following recurrence:

T (m, n) =

8
><
>:

O(n) if m 1
O(m) if n 1
O(mn) + T (m/2, h) + T (m/2, n� h) otherwise

It’s easy to prove inductively that T (m, n) = O(mn), no matter what the value of h is. Specifically,
the entire algorithm’s running time is at most twice the time for the initial dynamic programming
phase.

T (m, n) ↵mn+ T (m/2, h) + T (m/2, n� h)
 ↵mn+ 2↵mh/2+ 2↵m(n� h)/2 [inductive hypothesis]

= 2↵mn

A similar inductive argument implies that the algorithm uses only O(n+m) space.
Hirschberg’s divide-and-conquer trick can be applied to almost any dynamic programming

problem to obtain an algorithm to construct an optimal structure (in this case, the cheapest edit
sequence) within the same space and time bounds as computing the cost of that optimal structure
(in this case, edit distance). For this reason, we will almost always ask you for algorithms to
compute the cost of some optimal structure, not the optimal structure itself.

�.� Saving Time: Sparseness

In many applications of dynamic programming, we are faced with instances where almost every
recursive subproblem will be resolved exactly the same way. We call such instances sparse.
For example, we might want to compute the edit distance between two strings that have few
characters in common, which means there are few “free” substitutions anywhere in the table.

�

Algorithms Lecture �: Advanced Dynamic Programming [Sp’��]

Most of the table has exactly the same structure. If we can reconstruct the entire table from just
a few key entries, then why compute the entire table?

To better illustrate how to exploit sparseness, let’s consider a simplification of the edit distance
problem, in which substitutions are not allowed (or equivalently, where a substitution counts as
two operations instead of one). Now our goal is to maximize the number of “free” substitutions,
or equivalently, to find the longest common subsequence of the two input strings.

Fix the two input strings A[1 .. n] and B[1 .. m]. For any indices i and j, let LCS(i, j) denote
the length of the longest common subsequence of the prefixes A[1 .. i] and B[1 .. j]. This function
can be defined recursively as follows:

LCS(i, j) =

8
><
>:

0 if i = 0 or j = 0
LCS(i � 1, j � 1) + 1 if A[i] = B[j]
max {LCS(i, j � 1), LCS(i � 1, j)} otherwise

This recursive definition directly translates into an O(mn)-time dynamic programming algorithm.
Call an index pair (i, j) a match point if A[i] = B[j]. In some sense, match points are the

only ‘interesting’ locations in the memoization table; given a list of the match points, we could
easily reconstruct the entire table.

C

A

L

T

R

U

I

S

T

I

«

A L G O R I T H M« S

0

1

2

3

5

4

4

5

3

0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

1 1 1 1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

2 2 2 2 2 2 2 2

2 2 2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

3 3 3

3 3 3 3 3

3 3 3 3 3 3

3

3

3

3

3

4 4 4 4

4 4 4 4

4

4

5 5 5

5 5 5

5 5 5

5

5

0

1

2

3

3

3

4

5

5

5

5

0 1 2 2 2 3 4 5 5 5 5 6

»

»

The LCS memoization table for ALGORITHMS and ALTRUISTIC; the brackets « and » are sentinel characters.

More importantly, we can compute the LCS function directly from the list of match points
using the following recurrence:

LCS(i, j) =

8
><
>:

0 if i = j = 0
max

�
LCS(i0, j

0) | A[i0] = B[j0] and i
0 < i and j

0 < j

+ 1 if A[i] = B[j]

max
�
LCS(i0, j

0) | A[i0] = B[j0] and i
0 i and j

0 j

otherwise

(Notice that the inequalities are strict in the second case, but not in the third.) To simplify
boundary issues, we add unique sentinel characters A[0] = B[0] and A[m+1] = B[n+1] to both
strings. This ensures that the sets on the right side of the recurrence equation are non-empty,
and that we only have to consider match points to compute LCS(m, n) = LCS(m+ 1, n+ 1)� 1.

If there are K match points, we can actually compute them all in O(m log m+ n log n+ K)
time. Sort the characters in each input string, but remembering the original index of each
character, and then essentially merge the two sorted arrays, as follows:

�

Algorithms Lecture �: Advanced Dynamic Programming [Sp’��]

F���M������(A[1 .. m], B[1 .. n]):
for i 1 to m: I[i] i

for j 1 to n: J[j] j

sort A and permute I to match
sort B and permute J to match

i 1; j 1
while i < m and j < n

if A[i]< B[j]
i i + 1

else if A[i]> B[j]
j j + 1

else hhFound a match!ii
ii i

while A[ii] = A[i]
j j j

while B[j j] = B[j]
report (I[i i], J[j j])
j j j j + 1

ii i + 1
i ii; j j j

To efficiently evaluate our modified recurrence, we once again turn to dynamic programming.
We consider the match points in lexicographic order—the order they would be encountered in a
standard row-major traversal of the m⇥ n table—so that when we need to evaluate LCS(i, j), all
match points (i0, j

0) with i
0 < i and j

0 < j have already been evaluated.

S�����LCS(A[1 .. m], B[1 .. n]):
Match[1 .. K] F���M������(A, B)
Match[K + 1] (m+ 1, n+ 1) hhAdd end sentinelii
Sort M lexicographically
for k 1 to K

(i, j) Match[k]
LCS[k] 1 hhFrom start sentinelii
for ` 1 to k� 1

(i0, j
0) Match[`]

if i
0 < i and j

0 < j

LCS[k] min{LCS[k], 1+ LCS[`]}
return LCS[K + 1]� 1

The overall running time of this algorithm is O(m log m + n log n + K
2). So as long as

K = o(
p

mn), this algorithm is actually faster than naïve dynamic programming.

�.� Saving Time: Monotonicity

The SMAWK matrix-searching algorithm is a better example here; the problem is more general,
the algorithm is simpler, and the proof is self-contained. Next time!

Recall the optimal binary search tree problem from the previous lecture. Given an array
F[1 .. n] of access frequencies for n items, the problem it to compute the binary search tree that
minimizes the cost of all accesses. A relatively straightforward dynamic programming algorithm
solves this problem in O(n3) time.

As for longest common subsequence problem, the algorithm can be improved by exploiting
some structure in the memoization table. In this case, however, the relevant structure isn’t in the

�

Algorithms Lecture �: Advanced Dynamic Programming [Sp’��]

table of costs, but rather in the table used to reconstruct the actual optimal tree. Let OptRoot[i, j]
denote the index of the root of the optimal search tree for the frequencies F[i .. j]; this is always
an integer between i and j. Donald Knuth proved the following nice monotonicity property for
optimal subtrees: If we move either end of the subarray, the optimal root moves in the same
direction or not at all. More formally:

OptRoot[i, j � 1] OptRoot[i, j] OptRoot[i + 1, j] for all i and j.

This (nontrivial!) observation leads to the following more efficient algorithm:

F�����O������S�����T���(f [1 .. n]):
I���F(f [1 .. n])
for i 1 downto n

OptCost[i, i � 1] 0
OptRoot[i, i � 1] i

for d 0 to n

for i 1 to n

C������C���A��R���(i, i + d)
return OptCost[1, n]

C������C���A��R���(i, j):
OptCost[i, j] 1
for r OptRoot[i, j � 1] to OptRoot[i + 1, j]

tmp OptCost[i, r � 1] +OptCost[r + 1, j]
if OptCost[i, j]> tmp

OptCost[i, j] tmp
OptRoot[i, j] r

OptCost[i, j] OptCost[i, j] + F[i, j]

It’s not hard to see that the loop index r increases monotonically from 1 to n during each
iteration of the outermost for loop of F�����O������S�����T���. Consequently, the total cost
of all calls to C������C���A��R��� is only O(n2).

If we formulate the problem slightly differently, this algorithm can be improved even further.
Suppose we require the optimum external binary tree, where the keys A[1 .. n] are all stored at the
leaves, and intermediate pivot values are stored at the internal nodes. An algorithm discovered
by Ching Hu and Alan Tucker¹ computes the optimal binary search tree in this setting in only
O(n log n) time!

�.� Saving Time: Four Russians

Some day.

Exercises

�. Describe an algorithm to compute the edit distance between two strings A[1 .. m] and
B[1 ... n] in O(m log m+ n log n+ K

2) time, where K is the number of match points. [Hint:
Use the F���M������ algorithm on page � as a subroutine.]

�. (a) Describe an algorithm to compute the longest increasing subsequence of a string
X [1 .. n] in O(n log n) time.

(b) Using your solution to part (a) as a subroutine, describe an algorithm to compute the
longest common subsequence of two strings A[1 .. m] and B[1 ... n] in O(m log m+
n log n+ K log K) time, where K is the number of match points.

¹T. C. Hu and A. C. Tucker, Optimal computer search trees and variable length alphabetic codes, SIAM J. Applied
Math. ��:���–���, ����. For a slightly simpler algorithm with the same running time, see A. M. Garsia and M. L. Wachs,
A new algorithms for minimal binary search trees, SIAM J. Comput. �:���–���, ����. The original correctness proofs
for both algorithms are rather intricate; for simpler proofs, see Marek Karpinski, Lawrence L. Larmore, and Wojciech
Rytter, Correctness of constructing optimal alphabetic trees revisited, Theoretical Computer Science, ���:���-���, ����.

�

Algorithms Lecture �: Advanced Dynamic Programming [Sp’��]

�. Describe an algorithm to compute the edit distance between two strings A[1 .. m] and
B[1 ... n] in O(m log m+ n log n+ K log K) time, where K is the number of match points.
[Hint: Combine your answers for problems � and �(b).]

�. Let T be an arbitrary rooted tree, where each vertex is labeled with a positive integer. A
subset S of the nodes of T is heap-ordered if it satisfies two properties:

• S contains a node that is an ancestor of every other node in S.

• For any node v in S, the label of v is larger than the labels of any ancestor of v in S.

3

1 4 1 5

65

7 9 3

2

8 9

8

5

9

4

3

2 3

2 7 9

6

A heap-ordered subset of nodes in a tree.

(a) Describe an algorithm to find the largest heap-ordered subset S of nodes in T that
has the heap property in O(n2) time.

(b) Modify your algorithm from part (a) so that it runs in O(n log n) time when T is a
linked list. [Hint: This special case is equivalent to a problem you’ve seen before.]

?(c) Describe an algorithm to find the largest subset S of nodes in T that has the heap
property, in O(n log n) time. [Hint: Find an algorithm to merge two sorted lists of
lengths k and ` in O(log

�
k+`

k

�
) time.]

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.

�

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms

	Advanced Dynamic Programming
	Saving Space: Divide and Conquer
	Saving Time: Sparseness
	Saving Time: Monotonicity
	Saving Time: Four Russians

