
CS711008Z Algorithm Design and Analysis
Lecture 5. Basic algorithm design technique: Divide and

Conquer

Dongbo Bu

Institute of Computing Technology

Chinese Academy of Sciences, Beijing, China

1 / 169

Outline

The basic idea of Divide and Conquer technique;

The first example: MergeSort

Correctness proof by using loop invariant technique;
Time complexity analysis of recursive algorithm.

Other examples: CountingInversion, ClosestPair,
Multiplication, FFT;

Combining with randomization: QuickSort,
QuickSelect, BFPRT and FloydRivest algorithm for
Selection problem;

Remarks:
1 Divide and Conquer could serve to reduce the running

time though the brute-force algorithm is already
polynomial-time, say the O(n2) brute-force algorithm versus
O(n log n) divide and conquer algorithm for the
ClosestPair problem.

2 This technique is especially powerful when combined with
randomization technique.

2 / 169

The general Divide and Conquer paradigm

Basic idea: Many problems are recursive in structure, i.e., to
solve a given problem, they call themselves several times to
deal with closely related sub-problems. These sub-problems
have the same form to the original problem but a smaller size.

Three steps of the Divide and Conquer paradigm:
1 Divide a problem into a number of independent

sub-problems;
2 Conquer the subproblems by solving them recursively;
3 Combine the solutions to the subproblems into the solution to

the original problem.

3 / 169

Peng’s saying

4 / 169

Divide and Conquer technique

To see whether the Divide and Conquer technique applies
on a given problem, we need to examine both input and
output of the problem description.

Examine the input part to determine how to decompose the
problem into subproblems of same structure but smaller size:
It is relatively easy to decompose a problem into subproblems
if the input part is related to the following data structures:

An array with n elements;
A matrix;
A set of n elements;
A tree;
A directed acyclic graph;
A general graph.

Examine the output part to determine how to construct the
solution to the original problem using the solutions to its
subproblems.

5 / 169

Sort problem: to sort an array of n integers

6 / 169

Sort problem

INPUT: An array of n integers, denoted as A[0..n− 1];
OUTPUT: The elements of A in increasing order.

An array can be divided into smaller ones based on indices or
values of elements.

7 / 169

Divide strategy 1 based on indices of elements

Divide array A[0..n− 1] into a n− 1-length array
A[0..n− 2] and a single element: A[0..n− 2] has the same
form to A[0..n− 1] but smaller size; thus, sorting A[0..n− 2]
constructs a subproblem of the original problem. The Divide
and Conquer strategy might apply if we can sort
A[0..n− 1] using the sorted A[0..n− 2].

A0 A1 . . . An−2 An−1

A0 A1 . . . An−2 An−1

8 / 169

Sort A[0..n− 1] using the sorted A[0..n− 2]

Basic idea: To sort A[0..n− 1], it suffices to put A[n− 1] in
its correct position among the sorted A[0..n− 2], which can
be achieved through comparing A[n− 1] with the elements in
A[0..n− 2].

InsertionSort(A, k)

1: if k ≤ 1 then
2: return ;
3: end if
4: InsertionSort(A, k − 1);
5: key = A[k];
6: i = k − 1;
7: while i ≥ 0 and A[i] > key do
8: A[i+ 1] = A[i];
9: i−−;

10: end while
11: A[i+ 1] = key;

9 / 169

An example

4 3 2 1

4 3 2 1

Divide
4 3 2

4 3

3 4

Combine

2

2 3 4 1

1 2 3 4

10 / 169

An example

4 3 2 1

4 3 2 1

Divide

4 3 2

4 3

3 4

Combine

2

2 3 4 1

1 2 3 4

10 / 169

An example

4 3 2 1

4 3 2 1

Divide
4 3 2

4 3

3 4

Combine

2

2 3 4 1

1 2 3 4

10 / 169

An example

4 3 2 1

4 3 2 1

Divide
4 3 2

4 3

3 4

Combine

2

2 3 4 1

1 2 3 4

10 / 169

An example

4 3 2 1

4 3 2 1

Divide
4 3 2

4 3

3 4

Combine

2

2 3 4 1

1 2 3 4

10 / 169

An example

4 3 2 1

4 3 2 1

Divide
4 3 2

4 3

3 4

Combine

2

2 3 4 1

1 2 3 4

10 / 169

An example

4 3 2 1

4 3 2 1

Divide
4 3 2

4 3

3 4

Combine

2

2 3 4

1

1 2 3 4

10 / 169

An example

4 3 2 1

4 3 2 1

Divide
4 3 2

4 3

3 4

Combine

2

2 3 4 1

1 2 3 4

10 / 169

An example

4 3 2 1

4 3 2 1

Divide
4 3 2

4 3

3 4

Combine

2

2 3 4 1

1 2 3 4

10 / 169

Analysis of InsertionSort algorithm

Worst case: elements in A[0..n− 1] are in decreasing order.
Time complexity: T (n) = T (n− 1) +O(n) = O(n2). The
subproblems decrease slowly in size (linearly here, reducing
by only one element each time); thus the sum of linear steps
yields quadratic overall time.

8 7 6 5 4 3 2 1

7 8 6 5 4 3 2 1

...

1 2 3 4 5 6 7 8

InsertSort: 28 ops 11 / 169

Divide strategy 2 based on indices of elements

Divide the array A[0..n− 1] into two arrays A[0..⌈n2 ⌉ − 1]
and A[⌈n2 ⌉..n− 1]: Both A[0..⌈n2 ⌉ − 1] and A[⌈n2 ⌉..n− 1]
have same form to A[0..n− 1] but smaller size; thus, sorting
A[0..⌈n2 ⌉ − 1] and A[⌈n2 ⌉..n− 1] construct two subproblem of
the original problem. The Divide and Conquer technique
might apply if we can sort A[0..n− 1] using the sorted
A[0..⌈n2 ⌉ − 1] and the sorted A[⌈n2 ⌉..n− 1].

A0 A1 . . . A⌈n
2
⌉ . . . An−1

A0 A1 . . . A⌈n
2
⌉ . . . An−1

12 / 169

MergeSort algorithm [J. von Neumann, 1945, 1948]

A0 A1 . . . A⌈n
2
⌉ . . . An−1

A0 A1 . . . A⌈n
2
⌉ . . . An−1

MergeSort(A, l, r)

1: //Sort elements in A[l..r]
2: if l < r then
3: m = (l + r)/2; //m denotes the middle point
4: MergeSort(A, l,m);
5: MergeSort(A,m+ 1, r);
6: Merge(A, l,m, r); //Combining the sorted arrays
7: end if

Sort the entire array: MergeSort(A, 0, n− 1)

13 / 169

An example

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

Divide
8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

7 8 5 6 3 4 1 2

Combine
5 6 7 8 1 2 3 4

1 2 3 4 5 6 7 8

14 / 169

An example

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

Divide

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

7 8 5 6 3 4 1 2

Combine
5 6 7 8 1 2 3 4

1 2 3 4 5 6 7 8

14 / 169

An example

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

Divide
8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

7 8 5 6 3 4 1 2

Combine
5 6 7 8 1 2 3 4

1 2 3 4 5 6 7 8

14 / 169

An example

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

Divide
8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

7 8 5 6 3 4 1 2

Combine
5 6 7 8 1 2 3 4

1 2 3 4 5 6 7 8

14 / 169

An example

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

Divide
8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

7 8 5 6 3 4 1 2

Combine

5 6 7 8 1 2 3 4

1 2 3 4 5 6 7 8

14 / 169

An example

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

Divide
8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

7 8 5 6 3 4 1 2

Combine
5 6 7 8 1 2 3 4

1 2 3 4 5 6 7 8

14 / 169

An example

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

Divide
8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

7 8 5 6 3 4 1 2

Combine
5 6 7 8 1 2 3 4

1 2 3 4 5 6 7 8

14 / 169

MergeSort algorithm: how to combine?

Merge (A, l,m, r)
1: //Merge A[l..m] (denoted as L) and A[m+ 1..r] (denoted as R).
2: i = 0; j = 0;
3: for k = l to r do
4: if L[i] < R[j] then
5: A[k] = L[i];
6: i++;
7: if all elements in L have been copied then
8: Copy the remainder elements from R into A;
9: break;
10: end if
11: else
12: A[k] = R[j];
13: j ++;
14: if all elements in R have been copied then
15: Copy the remainder elements from L into A;
16: break;
17: end if
18: end if
19: end for

15 / 169

Merge algorithm

Ak

1 2 3

5 6 7 8
Li

1 2 3 41 2 3
Rj

(see a demo)

16 / 169

Correctness of MergeSort algorithm

17 / 169

Correctness of Merge procedure: loop-invariant
technique [R. W. Floyd, 1967]

Loop invariant: (similar to mathematical induction proof
technique)

1 At the start of each iteration of the for loop, A[l..k − 1]
contains the k − l smallest elements of L[1..n1 + 1] and
R[1..n2 + 1], in sorted order.

2 L[i] and R[j] are the smallest elements of their array that
have not been copied to A.

Proof.

Initialization: k = l. Loop invariant holds since A[l..k − 1] is
empty.

Maintenance: Suppose L[i] < R[j], and A[l..k − 1] holds the
k − l smallest elements. After copying L[i] into A[k], A[l..k]
will hold the k − l + 1 smallest elements.

18 / 169

Correctness of Merge procedure: loop-invariant
technique [R. W. Floyd, 1967]

Since the loop invariant holds initially, and is maintained
during the for loop, thus it should hold when the algorithm
terminates.

Termination: At termination, k = r + 1. By loop invariant,
A[l..k − 1], i.e. A[l..r] must contain r − l + 1 smallest
elements, in sorted order.

19 / 169

Time-complexity of MergeSort algorithm

20 / 169

Time-complexity of Merge algorithm
Merge (A, l,m, r)
1: //Merge A[l..m] (denoted as L) and A[m+ 1..r] (denoted as R).
2: i = 0; j = 0;
3: for k = l to r do
4: if L[i] < R[j] then
5: A[k] = L[i];
6: i++;
7: if all elements in L have been copied then
8: Copy the remainder elements from R into A;
9: break;
10: end if
11: else
12: A[k] = R[j];
13: j ++;
14: if all elements in R have been copied then
15: Copy the remainder elements from L into A;
16: break;
17: end if
18: end if
19: end for

Time complexity: O(n).
21 / 169

Time-complexity of MergeSort algorithm

Let T (n) denote the running time of MergeSort on an
array of size n. As comparison of elements dominates the
algorithm, we use the number of comparisons as T (n).

8 7 6 5 4 3 2 1 T (n) Merge: O(n)

T (n2) T (n2)8 7 6 5 4 3 2 1

We have the following recursion:

T (n) =

{
1 if n ≤ 2

T (n2) + T (n2) +O(n) otherwise
(1)

Note that the subproblems decrease exponentially in size,
which is much faster than the linearly decrease in
InsertSort.

22 / 169

Analysis of recursion

Ways to analyse a recursion:
1 Unrolling the recurrence: unrolling a few levels to find a

pattern, and then sum over all levels;
2 Guess and substitution: guess the solution, substitute it into

the recurrence relation, and check whether it works.
3 Master theorem

23 / 169

Analysis technique 1: Unrolling the recurrence

We have T (n) = 2T (n2) +O(n) ≤ 2T (n2) + cn for a constant
c. Let unrolling a few levels to find a pattern, and then sum
over all levels.

T (n)

T (n2) T (n2)

. . . cn

24 / 169

Analysis technique 1: Unrolling the recurrence

We have T (n) = 2T (n2) +O(n) ≤ 2T (n2) + cn for a constant
c. Let unrolling a few levels to find a pattern, and then sum
over all levels.

T (n)

T (n2) T (n2)

T (n4) T (n4) T (n4) T (n4)

. . . cn

. . . cn

25 / 169

Analysis technique 1: Unrolling the recurrence

We have T (n) = 2T (n2) +O(n) ≤ 2T (n2) + cn for a constant
c. Let unrolling a few levels to find a pattern, and then sum
over all levels.

T (n)

T (n2) T (n2)

T (n4) T (n4) T (n4) T (n4)

. . . cn

. . . cn

. . . cn

. . . O(n)

.

1 1 1 1 1 1 1 1
n leaves

log2 n layers

Total: O(n log n)

26 / 169

Analysis technique 1: Unrolling the recurrence

We have T (n) = 2T (n2) +O(n) ≤ 2T (n2) + cn for a constant
c. Let unrolling a few levels to find a pattern, and then sum
over all levels.

T (n)

T (n2) T (n2)

T (n4) T (n4) T (n4) T (n4)

. . . cn

. . . cn

. . . cn

. . . O(n)

.

1 1 1 1 1 1 1 1
n leaves

log2 n layers

Total: O(n log n)

26 / 169

Analysis technique 2: Guess and substitution

Guess and substitution: guess a solution, substitute it into the
recurrence relation, and justify that it works.

Guess: T (n) ≤ cn log2 n.

Verification:

Case n = 2: T (2) = 1 ≤ cn log2 n;
Case n > 2: Suppose T (m) ≤ cm log2 m holds for all m ≤ n.
We have

T (n) = 2T (n2) + cn

≤ 2cn2 log2(
n
2) + cn

= 2cn2 log2 n− 2cn2 + cn

= cn log2 n

27 / 169

Analysis technique 2: a weaker version

Guess and substitution: one guesses the overall form of the
solution without pinning down the constants and parameters.

A weaker guess: T (n) = O(n log n). Rewritten as
T (n) ≤ kn logb n, where k, b will be determined later.

T (n) ≤ 2T (n2) + cn

≤ 2kn
2 logb(

n
2) + cn (set b = 2 for simplification)

= 2kn
2 log2 n− 2kn

2 + cn

= kn log2 n− kn+ cn (set k = c for simplification)

= cn log2 n

28 / 169

Master theorem

Theorem

Let T (n) be defined by T (n) = aT (nb) +O(nd) for a > 1, b > 1
and d > 0, then T (n) can be bounded by:

1 If d < logb a, then T (n) = O(nlogb a);

2 If d = logb a, then T (n) = O(nlogb a log n);

3 If d > logb a, then T (n) = O(nd).

29 / 169

Intuition: the ratio of cost between neighbouring layers is a
bd
.

Proof.

T (n) = aT (nb) +O(nd)

≤ aT (nb) + cnd

≤ a(aT (n
b2
) + c(nb)

d) + cnd

≤

≤ cnd(1 + a
bd

+ (a
bd
)2 + . . .+ (a

bd
)logb n−1) + alogb n

=

O(nlogb a) if d < logb a

O(nlogb a log n) if d = logb a

O(nd) if d > logb a

Here c > 0 represents a constant.

30 / 169

Master theorem: examples

Example 1: T (n) = 3T (n2) +O(n)

T (n) = O(nlog2 3) = O(n1.585)

Example 2: T (n) = 2T (n2) +O(n2)

T (n) = O(n2)

31 / 169

Question: from O(n2) to O(n log n), what did we save?

32 / 169

CountingInversion: to count inversions in an array of n
integers

33 / 169

CountingInversion problem

Practical problems:

1 To identify two users with similar preference, i.e. ranking
books, movies, etc.

CountingInversion problem

INPUT: An array A[0..n− 1] with n distinct numbers;
OUTPUT: the number of inversions. A pair of indices i and j
constitutes an inversion if i < j but A[i] > A[j].

34 / 169

Application 1: Genome comparison

Figure 1: Sequence comparison of the 5’ flanking regions of mouse, rat
and human ERβ.

Reference: In vivo function of the 5’ flanking region of mouse estrogen

receptor β gene, The Journal of Steroid Biochemistry and Molecular

Biology Volume 105, Issues 1-5, June-July 2007, pages 57-62.

35 / 169

Application 2: A measure of bivariate association

Motivation: how to measure the association between two
genes when given expression levels across n time points?
Existing measures:

Linear relationship: Pearson’s CC (most widely used, but
sensitive to outliers)
Monotonic relationship: Spearman, Kendall’s correlation
General statistical dependence: Renyi correlation, mutual
information, maximal information coefficient

A novel measure:

W1 =
∑n−k+1

i=1 (I+i + I−i)

Here, I+i is 1 if X[i,..,i+k−1] and Y[i,..,i+k−1] has the same

order and 0 otherwise, while I−i is 1 if X[i,..,i+k−1] and
−Y[i,..,i+k−1] has the same order and 0 otherwise.
Advantage: the association may exist across a subset of
samples. For example,

X : 1 3 4 2 5
Y : 1 4 5 2 3

W1 = 2 when k = 3. Much better than Pearson CC, et al.

Ref: R. Wang, M. Waterman, H. Huang, PNAS, 2014
36 / 169

CountingInversion problem

Solution: index pairs. The possible solution space has a size
of O(n2).

Brute-force: O(n2) (Examining all index pairs (i, j)).

Can we design a better algorithm?

37 / 169

CountingInversion problem

Divide and Conquer technique:
1 Divide: Divide A into two arrays A[0..⌈n

2 ⌉ − 1] and
A[⌈n

2 ⌉..n− 1]; thus counting inversions within A[0..⌈n
2 ⌉ − 1]

and A[⌈n
2 ⌉..n− 1] constitutes two subproblems.

2 Conquer: Counting inversions within each half by calling
CountingInversion itself.

5 2 3 1 7 8 6 4

5 2 3 1 7 8 6 4

38 / 169

Combine strategy 1

Combine: How to count the inversions (i,j) with A[i] and
A[j] from different halves?

If the two halves A[0..⌈n2 ⌉ − 1] and A[⌈n2 ⌉..n− 1] have no
special structure, we have to examine all possible index pairs
i ∈ [0, ⌈n2 ⌉ − 1], j ∈ [⌈n2 ⌉, n− 1] to count such inversions,

which costs n2

4 time.

Thus, T (n) = 2T (n2) +
n2

4 = O(n2).

5 2 3 1 7 8 6 4

5 2 3 1 7 8 6 4

39 / 169

Combine strategy 2

Combine: How to count the inversions (i,j) with A[i] and
A[j] from different halves?

If the two halves are unstructured, it would be inefficient to
count inversions. Thus, we need to introduce some structures
into A[0..⌈n2 ⌉ − 1] and A[⌈n2 ⌉..n− 1].

Note that it is relatively easy to count such inversions if
elements in both halves are in increasing order.

5 2 3 1 7 8 6 4

1 2 3 5 4 6 7 8

(See a demo)

40 / 169

Sort-and-Count algorithm

Sort-and-Count(A)

1: Divide A into two sub-sequences L and R;
2: (RCL, L) = Sort-and-Count(L);
3: (RCR, R) = Sort-and-Count(R);
4: (C,A) = Merge-and-Count(L,R);
5: return (RC = RCL +RCR + C,A);

Time complexity: T (n) = 2T (n2) +O(n) = O(n log n).

41 / 169

Merge-and-Count algorithm
Merge-and-Count (L,R)

1: RC = 0; i = 0; j = 0;
2: for k = 0 to ∥L∥+ ∥R∥ − 1 do
3: if L[i] > R[j] then
4: A[k] = R[j];
5: j ++;
6: RC+ = (∥L∥ − i);
7: if all elements in R have been copied then
8: Copy the remainder elements from L into A;
9: break;

10: end if
11: else
12: A[k] = L[i];
13: i++;
14: if all elements in L have been copied then
15: Copy the remainder elements from R into A;
16: break;
17: end if
18: end if
19: end for
20: return (RC, A);

42 / 169

QuickSort algorithm: divide based on value of elements

43 / 169

QuickSort algorithm [C. A. R. Hoare, 1962]

Figure 2: Sir Charles Antony Richard Hoare, 2011

44 / 169

QuickSort: divide based on value of a
randomly-selected element

QuickSort(A)

1: S− = {};S+ = {};
2: Choose a pivot A[j] uniformly at random;
3: for i = 0 to n− 1 do
4: Put A[i] in S− if A[i] < A[j];
5: Put A[i] in S+ if A[i] ≥ A[j];
6: end for
7: QuickSort(S+);
8: QuickSort(S−);
9: Output S−, then A[j], then S+;

The randomization operation makes this algorithm simple
(relative to MergeSort algorithm) but efficient.
However, the randomization also makes it difficult to analyze
time-complexity: When dividing based on indices, it is easy to
divide into two halves with equal size; in contrast, we divide
based on value of a randomly-selected pivot and thus we
cannot guarantee that each sub-problem has exactly n

2
elements.

45 / 169

Various cases of the execution of QuickSort algorithm

Worst case: selecting the smallest/largest element at each
iteration. The subproblems decrease linearly in size.

T (n) = T (n− 1) +O(n) = O(n2)

Best case: select the median exactly at each iteration. The
subproblems decrease exponentially in size.

T (n) = 2T (n2) +O(n) = O(n log n)

Most cases: instead of selecting the median exactly, we can
select a nearly-central pivot with high probability. We claim
that the expected running time is still

T (n) = O(n log n).

46 / 169

Analysis

Let X denote the number of comparisons performed in line 4
and 5. After expanding all recursive calls, it is obvious that
the running time of QuickSort is O(n+X). Our objective
is to calculate E[X].

For simplicity, we represent each element using its index in the
sorted array, denoted as Ã. We have two key observations:

Observation 1: Any two elements Ã[i] and Ã[j] are
compared at most once.

1 2 3 4 5 6 74

1 2 3 5 6 7

X

i j

S− S+

Ã

47 / 169

Analysis cont’d

1 2 3 4 5 6 74

1 2 3 5 6 7

X

i j

S− S+

Ã

Define index variable

Xij =

{
1 if Ã[i] is compared with Ã[j]

0 otherwise

Thus X =
∑n−1

i=0

∑n−1
j=i+1Xij .

E[X] = E[
∑n−1

i=0

∑n−1

j=i+1
Xij]

=
∑n−1

i=0

∑n−1

j=i+1
E[Xij]

=
∑n−1

i=0

∑n−1

j=i+1
Pr(Ã[i] is compared with Ã[j])

48 / 169

Analysis cont’d

Observation 2: Ã[i] and Ã[j] are compared iff either Ã[i] or
Ã[j] is selected as pivot when processing elements containing
Ã[i..j].

We claim Pr(Ã[i] is compared with Ã[j]) = 2
j−i+1 . (Why?)

Then

E[X] =
∑n−1

i=0

∑n−1

j=i+1
Pr(Ã[i] is compared with Ã[j])

=
∑n−1

i=0

∑n−1

j=i+1

2

j − i+ 1

=
∑n−1

i=0

∑n−i−1

k=1

2

k + 1

≤
∑n−1

i=0

∑n−1

k=1

2

k + 1
= O(n log n)

Here k is defined as k = j − i.

49 / 169

Why Pr(Ã[i] is compared with Ã[j]) = 2
j−i+1?

Ã 1 2 3
i j

Pivot:

1
2

3

1 2 31 1 2 32 1 2 33

Let’s examine a simple example first: For an array with only 3
elements, each element will be selected as pivot with equal
probability 1

3 .

In two out of the three cases, Ã[i] is compared with Ã[j].
Hence, Pr(Ã[i] is compared with Ã[j]) = 2

3

50 / 169

Why Pr(Ã[i] is compared with Ã[j]) = 2
j−i+1? cont‘d

Ã 1 2 3 4
i j

Pivot: 1

2 3

4

1 2 3 41 1 2 3 42 1 2 3 43 1 2 3 44

Let’s consider a larger array with 4 elements.

Each element will be selected as pivot with equal probability
1
4 : the selection of Ã[i] or Ã[j] as pivot will lead to an

immediate comparison of Ã[i] and Ã[j]. In contrast, the
selection of Ã[3] as pivot produces a smaller problem, where
Ã[i] will be compared with Ã[j] with probability 2

3 by
induction. Hence,

Pr(Ã[i] is compared with Ã[j]) = 1
4 + 0 + 1

4 + 1
4 × 2

3

= 3
4 × 2

3 + 1
4 × 2

3

= 2
3

51 / 169

Why Pr(Ã[i] is compared with Ã[j]) = 2
j−i+1? cont‘d

1 2 3 4 5 6 . . . n
i j

Ã

Now let’s extend these observations to general case that A
has n elements. By induction over the size of A, we can
calculate the probability as:

Pr(Ã[i] is compared with Ã[j]) = 1
n + 1

n + n−(j−i+1)
n × 2

j−i+1

= (j−i+1
n + n−(j−i+1)

n)× 2
j−i+1

= 2
j−i+1

52 / 169

A special case: neighbors should definitely compare with
each other

Ã 1 2 3
i j

Pivot:

1
2

3

1 2 31 1 2 32 1 2 33

Let’s examine a simple example first: For an array with only 3
elements, each element will be selected as pivot with equal
probability 1

3 .

Pr(Ã[i] is compared with Ã[i+ 1]) = 1
3 + 1

3 + 1
3 × 1 = 1

53 / 169

Modified QuickSort: easier to analyze
ModifiedQuickSort(A)

1: while TRUE do
2: Choose a pivot A[j] uniformly at random;
3: S− = {};S+ = {};
4: for i = 0 to n− 1 do
5: Put A[i] in S− if A[i] < A[j];
6: Put A[i] in S+ if A[i] ≥ A[j];
7: end for
8: if ∥S+∥ ≥ n

4 and ∥S−∥ ≥ n
4 then

9: break; //A fixed proportion of elements fall both below and
above the pivot;

10: end if
11: end while
12: ModifiedQuickSort(S+);
13: ModifiedQuickSort(S−);
14: Output S−, then A[j], and finally S+;

ModifiedQuickSort works when all items are distinct.
However, it is slower than the original version since it doesn’t
run when the pivot is “off-center”.

54 / 169

ModifiedQuickSort: analysis

Ã Ã0
. . . Ãn

4
. . . Ãn

2
. . . Ã 3n

4

. . . Ãn−1Ãn
4

. . . Ãn
2

. . . Ã 3n
4

Ãn
2

best pivot

︸ ︷︷ ︸
good pivots

It is easy to obtain a nearly central pivot:
Pr(select the centroid as pivot) = 1

n
Pr(select a nearly central element as pivot) = 1

2
Thus E(#WHILE) = 2, i.e., the expected time of finding a
nearly central pivot is 2n.

Nearly central pivot is good:
An element is a good pivot if a fixed proportion of elements
fall both below and above it, thus making subproblems
decrease exponentially in size.
Specifically, the recursion tree has a depth of O(log 4

3
n), and

O(n) work is needed at each level, hence T (n) = O(n log 4
3
n).

55 / 169

Lomuto’s in-place algorithm
QuickSort(A, l, r)

1: if l < r then
2: p =Partition(A, l, r) //Use A[r] as pivot;
3: QuickSort(A, l, p− 1);
4: QuickSort(A, p+ 1, r);
5: end if

In-place algorithm: avoid the extra memory requirement by
S− and S+ through reusing the space occupied by A to
represent these two sets
S−: the elements before the pivot
S+: the elements after the pivot

7 8 4 3 6 1 9 2 55 pivot = A[r] = 5A

l r

Partition

4 3 1 2 7 9 8 65A

l rp

< 5 ≥ 5
56 / 169

How to swap elements? Lomuto’s Partition procedure

4 3 1 8 6 7 9 2 554 3 1 8 6 7 pivot = A[r] = 5A

l i j r

< 5 ≥ 5

Basic idea: Swap the elements (in A[l..j − 1]) to make
elements in A[l..i− 1] < pivot and elements in
A[i..j − 1] ≥ pivot.

Partition(A, l, r)

1: pivot = A[r]; i = l;
2: for j = l to r − 1 do
3: if A[j] < pivot then
4: Swap A[i] with A[j];
5: i++;
6: end if
7: end for
8: Swap A[i] with A[r]; //Put pivot in its correct position
9: return i;

57 / 169

How to swap elements? Hoare’s in-place algorithm [1961]

QuickSort(A, l, r)

1: if l < r then
2: p =Partition(A, l, r) //Use A[l] as pivot;
3: QuickSort(A, l, p); //Reason: A[p] might not be at its correct position
4: QuickSort(A, p+ 1, r);
5: end if

Sort the entire array: QuickSort(A, 0, n− 1).

7 8 4 3 6 1 9 2 57 pivot = A[l] = 7A

l r

Partition

5 2 4 3 6 1 9 8 7A

l rp

≤ 7 ≥ 7

58 / 169

Hoares’ Partition procedure

5 2 4 3 6 1 9 8 75 2 4 3 9 8 7 pivot = A[l] = 7A

l i j r

≤ 7 ≥ 7

Basic idea: Keep the elements in A[l..i− 1] ≤ pivot and the
elements in A[j + 1..r] ≥ pivot.

Partition(A, l, r)

1: i = l − 1; j = r + 1; pivot = A[l];
2: while TRUE do
3: repeat
4: j = j − 1; //From right to left, find the first element ≤ pivot
5: until A[j] ≤ pivot or j == l ;
6: repeat
7: i = i+ 1; //From left to right, find the first element ≥ pivot
8: until A[i] ≥ pivot or i == r;
9: if j ≤ i then
10: return j;
11: end if
12: Swap A[i] with A[j];
13: end while

Sort the entire array: QuickSort(A, 0, n− 1). 59 / 169

Comparison with MergeSort [Hoare, 1961]

Note: The preceding QuickSort algorithm works well for
lists with distinct elements but exhibits poor performance
when the input list contains many repeated elements. To
solve this problem, an alternative Partition algorithm was
proposed to divide the list into three parts: elements less than
pivot, elements equal to pivot, and elements greater than
pivot. Only the less-than and greater-than pivot partitions
need to be recursively sorted.

60 / 169

Extension: stability of sorting algorithm

Stability: Stable sort algorithms sort equal elements in the
same order that they appear in the input: if two items
compare as equal (like the two 5 cards), then their relative
order will be preserved, i.e. if one comes before the other in
the input, it will come before the other in the output.

Stability is important to preserve order over multiple sorts on
the same data set.

MergeSort algorithm is stable while QuickSort and
IntroSort are unstable.

61 / 169

Extension: median of 3 killer

Complexity attack: QuickSort has the expectation of
running time of O(n log n) but the worst-case time-complexity
of O(n2). Thus, for elaborately-designed arrays, QuickSort
runs very slowly.

Improvement: D. R. Musser proposed IntroSort:
IntroSort uses QuickSort when the iteration depth is
less than O(n log n) and uses HeapSort otherwise.

62 / 169

Extension: sorting on dynamic data

When the data changes gradually, the goal of a sorting
algorithm is to sort the data at each time step, under the
constraint that it only has limited access to the data each
time.

As the data is constantly changing and the algorithm might
be unaware of these changes, it cannot be expected to always
output the exact right solution; we are interested in
algorithms that guarantee to output an approximate solution.

In 2011, Eli Upfal et al. proposed an algorithm to sort
dynamic data.

In 2017, Liu and Huang proposed an efficient algorithm to
determine top k elements of dynamic data.

63 / 169

AlphaDev: faster sorting algorithms discovered using deep
reinforcement learning

Daniel J. Mankowitz, et al. Nature 2023.

https://www.nature.com/articles/s41586-023-06004-9

64 / 169

Sort an array with three to five numbers

Objective: improving sorting algorithms for shorter sequences
of three to five elements. These algorithms are among the
most widely used because they are often called many times as
a part of larger sorting functions.

Sorting networks:

Wire: each wire carries a value running from left to right
Comparator: each comparator connects two lines and swaps
two values if and only if the top line’s value is greater than or
equal to the bottom line’s value

65 / 169

Sorting three numbers: an implementation designed by
human

Question: can we find a more efficient implementation of the
circled operations?

66 / 169

The implementation discovered by AlphaDev

AlphaDev: reduce 1 instruction
67 / 169

Performance of the two implementations

68 / 169

How does AlphaDev discover new algorithms?

Assembly game:
State of the system: St =< Pt, Zt >, where Pt denotes
algorithm and Zt denotes CPU states after executing Pt

Action: selecting an instruction to add to the algorithm
Reward: correctness and latency on test input sequences — for
sort3, this corresponds to all combinations of sequences of
three elements 69 / 169

Why does AlphaDev use assembly program?

Two advantages:

Easy to modify: just adding an instruction (removing an
instruction can be accomplished by inserting a NOP instruction
Easy to represent state: the state of system (CPU here) can be
represented using the configuration of memory and registers

Two extensions:

More algorithms: after discovering faster sorting algorithms,
DeepMind tested whether AlphaDev could generalise and
improve a different computer science algorithm: hashing. For
9-16 bytes range of the hashing function, the algorithm that
AlphaDev discovered was 30% faster
High-level language: optimise algorithms directly in high-level
languages such as C++ which would be more useful for
developers

70 / 169

What is an assembler?

Assembly code is converted into executable machine code by
a utility program referred to as an assembler

The term “assembler” is generally attributed to Wilkes,
Wheeler and Gill in their 1951 book The Preparation of
Programs for an Electronic Digital Computer, who, however,
used the term to mean “a program that assembles another
program consisting of several sections into a single program”

Figure: excerpted from https://www.cs.uah.edu/̃rcoleman/CS121/ClassTopics/ProgrammingLanguages.html with

courtesy

71 / 169

Selection problem: to select the k-th smallest items in an array

72 / 169

Selection problem

INPUT:
An array A = [A0, A1, ..., An−1], and a number k < n;
OUTPUT:
The k-th smallest item in general case (or the median of A as a
special case).

Things will be easy when k is very small, say k = 1, 2.
However, identification of the median is not that easy.

The k-th smallest element could be readily determined after
sorting A, which takes O(n log n) time.

In contrast, when using Divide and Conquer technique, it
is possible to develop a faster algorithm, say the deterministic
linear algorithm (16n comparisons) by Blum et al.

73 / 169

Applying the general Divide and Conquer paradigm
Select(A, k)

1: Choose an element Ai from A as a pivot;
2: S+ = {}; S− = {};
3: for all element Aj in A do
4: if Aj > Ai then
5: S+ = S+ ∪ {Aj};
6: else
7: S− = S− ∪ {Aj};
8: end if
9: end for
10: if |S−| = k − 1 then
11: return Ai;
12: else if |S−| > k − 1 then
13: return Select(S−, k);
14: else
15: return Select(S+, k − |S−| − 1);
16: end if

Note: Unlike QuickSort, the Select algorithm needs to
consider only one subproblem. The algorithm would be efficient if
the subproblem size, i.e., ∥S+∥ or ∥S−∥, decreases exponentially as
iteration proceeds.

74 / 169

Question: How to choose a pivot?

Ã Ã0
. . . Ãn

4
. . . Ãn

2
. . . Ã 3n

4

. . .Ãn−1Ãn
4
. . . Ãn

2
. . . Ã 3n

4
Ãn

2

best pivot

︸ ︷︷ ︸
good pivots

Worst choice: select the smallest/largest element as pivot at each
iteration. The subproblems decrease linearly in size.

T (n) = T (n− 1) +O(n) = O(n2)

Best choice: select the exact median at each iteration. The
subproblems decrease exponentially in size.

T (n) = T (n2) +O(n) = O(n)

Good choice: select a nearly-central element such that a fixed
proportion of elements fall both below and over it, i.e., ∥S+∥ ≥ ϵn,
and ∥S−∥ ≥ ϵn for a fixed ϵ > 0, say ϵ = 1

4 . In this case, the
subproblems decrease exponentially in size, too.

T (n) ≤ T ((1− ϵ)n) +O(n)

≤ cn+ c(1− ϵ)n+ c(1− ϵ)2n+

= O(n)
75 / 169

How to efficiently get a nearly-central pivot?

Selection of nearly-central pivots always leads to small
subproblems, which will speed up the algorithm regardless of
k. But how to obtain nearly-central pivots?

We estimate median of the whole set through examining a
sample of the whole set. The following samples have been
tried:

1 Select a nearly-central pivot via examining medians of
groups;

2 Select a nearly-central pivot via randomly selecting an
element;

3 Select a nearly-central pivot via examining a random sample.

Note: In 1975, Sedgewick proposed a similar pivot-selecting
strategy called “median-of-three” for QuickSort:
selecting the median of the first, middle, and last elements as
pivot. The “median-of-three” rule gives a good estimate of
the best pivot.

76 / 169

Strategy 1: BFPRT algorithm uses median of medians as pivot

77 / 169

Strategy 1: Median of medians [Blum et al, 1973]

0 5 6 21 3 17 14 4 1 22 8
2 9 11 25 16 19 31 20 36 29 18

Medians 7 10 13 26 27 32 34 35 38 42 44
12 24 23 30 43 33 37 41 46 49 48
15 51 28 40 45 53 39 47 50 54 52

Select(A, k)

1: Line up elements in groups of 5 elements;
2: Find the median of each group; //Cost 6

5n time
3: Find the median of medians (denoted as M) through recursively

running Select over the group medians; //T (n5) time
4: Use M as pivot to partition A into S− and S+; //O(n) time
5: if |S−| = k − 1 then
6: return M ;
7: else if |S−| > k − 1 then
8: return Select(S−, k); //at most T (7

10n) time
9: else

10: return Select(S+, k − |S−| − 1); //at most T (7
10n) time

11: end if
78 / 169

A = [51, 10, 24, 9, 5, 40, 30, 26, 25, 21, 15, 12, 7, 2, 0, 13, 11, 6, 28,

23, 43, 27, 45, 16, 3, 34, 37, 39, 31, 14, 32, 33, 53, 19, 17, 4, 35,

41, 47, 20, 8, 44, 18, 48, 52, 1, 36, 38, 50, 46, 22, 42, 54, 49, 29],

G3 G1 G4 G2 G5 G7 G6 G8 G10 G11 G9
0 5 6 21 3 17 14 4 1 22 8
2 9 11 25 16 19 31 20 36 29 18
7 10 13 26 27 32 34 35 38 42 44
12 24 23 30 43 33 37 41 46 49 48
15 51 28 40 45 53 39 47 50 54 52

79 / 169

Analysis

0 5 6 21 3 17 14 4 1 22 8
2 9 11 25 16 19 31 20 36 29 18

Medians 7 10 13 26 27 32 34 35 38 42 44
12 24 23 30 43 33 37 41 46 49 48
15 51 28 40 45 53 39 47 50 54 52

Basic idea: Median of medians M = 32 is a perfect
approximate median as at least 3n

10 elements are larger (in
red), and at least 3n

10 elements are smaller than M (in blue).
Thus, at least 3n

10 elements will not appear in S+ and S−.

Running time:

T (n) ≤ T (n5) + T (7n10) +O(n) = O(n).

Actually it takes at most 24n comparisons.

80 / 169

BFPRT algorithm: an in-place implementation

Select(A, l, r, k)

1: while TRUE do
2: if l == r then
3: return l;
4: end if
5: p =Pivot(A, l, r); //Use median of medians A[p] as pivot ;
6: pos =Partition(A, l, r, p); //pos represents the final

position of the pivot, A[l..pos− 1] deposit S− and
A[pos+ 1..r] deposit S+;

7: if (k − 1) == pos then
8: return k − 1;
9: else if (k − 1) < pos then

10: r = pos− 1;
11: else
12: l = pos+ 1;
13: end if
14: end while

81 / 169

Pivot(A, l, r): get median of medians

Pivot(A, l, r)

1: if (r − l) < 5 then
2: return Partition5(A, l, r); //Get median for 5 or less

elements;
3: end if
4: for i = l to r by 5 do
5: right = i+ 4;
6: if right > r then
7: right = r;
8: end if
9: m =Partition5(A, i, right); //Get median of a group;

10: Swap A[m] and A[l + ⌊ i−l
5 ⌋];

11: end for
12: return Select(A, l, l + ⌊ r−l

5 ⌋, l + r−l
10);

82 / 169

Partition(A, l, r, p): Partition A into S− and S+

Partition(A, l, r, p)

1: pivot = A[p];
2: Swap A[p] and A[r]; //Move pivot to the right end;
3: i = l;
4: for j = l to r − 1 do
5: if A[j] < pivot then
6: Swap A[i] and A[j];
7: i++;
8: end if
9: end for

10: Swap A[r] and A[i];
11: return i;

Basic idea: Swap A[p] and A[r] to move pivot to the right
end first, and then execute the Partition function used by
Lomuto’s QuickSort algorithm.

83 / 169

An example: Iteration #1 of Select(A, 0, 15, 7)

8 1 15 10 4 3 2 9 7 12 5 16 14 6 13 11

Find group medians

8 1 15 10 4 3 2 9 7 12 5 16 14 6 13 118 7 13 11

Swap medians to end

8 7 13 11 4 3 2 9 1 12 5 16 14 6 15 108 7 13 11

Find pivot using Select(A, 0, 3, 2)

8 7 13 11 4 3 2 9 1 12 5 16 14 6 15 108 7 13 1111

Partition(A, 0, 15, 3)

11 16 14 12 15 138 7 10 4 3 2 9 1 5 6 11
84 / 169

Iteration #2: Select(A, 0, 9, 7)

11 16 14 12 15 138 7 10 4 3 2 9 1 5 6

Find group medians

11 16 14 12 15 138 7 10 4 3 2 9 1 5 67 5

Swap medians to end

11 16 14 12 15 137 5 10 4 3 2 9 1 8 67 5

Find pivot using Select(A, 0, 1, 1)

11 16 14 12 15 137 5 10 4 3 2 9 1 8 67 55

Partition(A, 0, 9, 1)

11 16 14 12 15 134 3 2 1 5 10 9 7 8 654 3 2 1 10 9 7 8 6

85 / 169

Iteration #3: Select(A, 5, 9, 7)

11 16 14 12 15 134 3 2 1 5 10 9 7 8 64 3 2 1 5 10 9 7 8 6

Find group medians

11 16 14 12 15 134 3 2 1 5 10 9 7 8 64 3 2 1 5 10 9 7 8 68

Move medians to end

11 16 14 12 15 134 3 2 1 5 8 9 7 10 68

Find pivot using Select(A, 5, 5, 1)

11 16 14 12 15 134 3 2 1 5 8 9 7 10 68

Partition(A, 5, 9, 5)

11 16 14 12 15 134 3 2 1 5 6 7 8 10 96 7 10 98

Return A[6] = 7
86 / 169

Question: How about setting other group size?

It is easy to prove T (n) = O(n) when setting group size as 7
or larger.

However, when we setting group size as 3, we have:

T (n) ≤ T (n3) + T (2n3) +O(n) = O(n log n)

Note that BFPRT algorithm always selects the median of
medians as pivot regardless of the value of k. In 2017, Zeng
et al. proposed to use fractile of medians rather than median
of medians as pivot and selected appropriate fractile of
medians according to k.

87 / 169

Strategy 2: QuickSelect algorithm randomly select an element
as pivot

88 / 169

Strategy 2: Selecting a pivot randomly [Hoare, 1961]

QuickSelect(A, k)

1: Choose an element Ai from A uniformly at random;
2: S+ = {};
3: S− = {};
4: for all element Aj in A do
5: if Aj > Ai then
6: S+ = S+ ∪ {Aj};
7: else
8: S− = S− ∪ {Aj};
9: end if
10: end for
11: if |S−| = k − 1 then
12: return Ai;
13: else if |S−| > k − 1 then
14: return QuickSelect(S−, k);
15: else
16: return QuickSelect(S+, k − |S−| − 1);
17: end if

89 / 169

Randomized Divide and Conquer cont’d

Ã Ã0
. . . Ãn

4
. . . Ãn

2
. . . Ã 3n

4

. . . Ãn−1Ãn
4

. . . Ãn
2

. . . Ã 3n
4

Ãn
2

best pivot

︸ ︷︷ ︸
good pivots

Basic idea: when selecting an element uniformly at random, it
is highly likely to get a good pivot since a fairly large fraction
of the elements are nearly-central.

90 / 169

An example

Iteration #1 Ã0
. . . Ãn

4
. . . Ãn

2
. . . Ã 3n

4

. . . Ãn−1Ãn
4

. . . Ãn
2

. . . Ã 3n
4

Ãn
2

Select Ãn−1 as pivot

Iteration #2 Ã0
. . . Ãn

4
. . . Ãn

2
. . . Ã 3n

4

. . .Ãn
4

. . . Ãn
2

. . . Ã 3n
4

Ãn
2

Select Ãn
4
as pivot

Iteration #3 . . . Ãn
2

. . . Ã 3n
4

. Ãn
2

. . . Ã 3n
4

Ãn
2

Selecting a nearly-central pivot will lead to a 3
4 shrinkage of

problem size.

Two iterations are expected before selecting a nearly-central
pivot.

91 / 169

Theorem

The expected running time of QuickSelect is O(n).

Proof.

We divide the execution into a series of phases: phase j contains a
collection of iterations when the size of set under consideration is in
[n(34)

j+1 + 1, n(34)
j], say [34n+ 1, n] for phase 0, and [9

16n+ 1, 3
4n]

for phase 1.

Let X be the number of comparison that QuickSelect uses, and
Xj be the number of comparison in phase j. Thus,
X = X0 +X1 +

Consider phase j. The probability to find a nearly-central pivot is 1
2

since half elements are nearly-central. Selecting a nearly-central
pivot will lead to a 3

4 shrinkage of problem size and therefore make
the execution enter phase (j + 1). Thus, the expected iteration
number in phase j is 2.

Each iteration in phase j performs at most cn(34)
j comparison j

since there are at most n(34)
j elements. Thus, E[Xj] ≤ 2cn(34)

j .

Hence E[X] = E[X0 +X1 +] ≤
∑

j 2cn(
3
4)

j ≤ 8cn. 92 / 169

Strategy 3: Floyd-Rivest algorithm selects a pivot based on
random samples

93 / 169

Strategy 3: Selecting pivots according to a random sample

In 1973, Robert Floyd and Ronald Rivest proposed to select
pivot using random sampling technique.

Basic idea: A random sample, if sufficiently large, is a good
representation of the whole set. Specifically, the median of a
sample is an unbiased point estimator of the median of the
whole set. We can also use interval estimation, i.e., a small
interval that is expected to contain the median of the whole
set with high probability.

94 / 169

Floyd-Rivest algorithm for Selection [1973]

Floyd-Rivest-Select(A, k)

1: Select a small random sample S (with replacement) from A.
2: Select two pivots, denoted as u and v, from S through

recursively calling Floyd-Rivest-Select. The interval
[u, v], although small, is expected to cover the k-th smallest
element of A.

3: Divide A into three dis-joint subsets: L contains the elements
less than u, M contains elements in [u, v], and H contains the
elements greater than v.

4: Partition A into these three sets through comparing each
element Ai with u and v: if k ≤ n

2 , Ai is compared with v first
and then to u only if Ai ≤ v. The order is reversed if k > n

2 .
5: The k-th smallest element of A is selected through recursively

running over an appropriate subset.

Here we present a variant of Flyod-Rivest algorithm called
LazySelect, which is much easier to analyze.

95 / 169

LazySelectMedian algorithm

LazySelectMedian(A)

1: Randomly sample r elements (with replacement) from
A = [A0, A1, A2, ..., An−1]. Denote the sample as S.

2: Sort S. Let u be the 1−δ
2 r-th smallest element of S and v be the

1+δ
2 r-th smallest element of S.

3: Divide A into three dis-joint subsets:

L = {Ai : Ai < u};
M = {Ai : u ≤ Ai ≤ v};
H = {Ai : Ai > v};

4: Check the following constraints of M :

M covers the median: |L| ≤ n
2 and |H| ≤ n

2

M should not be too large: |M | ≤ cδn

If one of the constraints was violated, got to Step 1.
5: Sort M and return the (n2 − |L|)-th smallest of M as the median of

A.

96 / 169

An example

8 1 15 10 4 3 2 9 7 12 5 16 14 6 13 11

8 1 15 10 4 3 2 9 7 12 5 16 14 6 13 118 24 5 16 13 1115

S = {2, 4, 5, 8, 11, 13, 15, 16}

Input: A. n = |A| = 16. Set δ = 1
2

Return 8 as the median of A

Sample r = 8 elements

Divide A into L, M , and H

1 3 22

L

4 5 6 7 8 9 10 11 12 134 5 8 11 134

u v

137 8

M

15 16 1415 16

H

97 / 169

Elaborately-designed δ and r

S = {2, 4, 5, 8, 11, 13, 15, 16}

1 3 22

L

4 5 6 7 8 9 10 11 12 134 5 8 11 134

u v

137 8

M

15 16 1415 16

H

We expect the following two properties of M :

On one side, |M | should be sufficiently large such that the
median of A is covered by M with high probability.
On the other side, |M | should be sufficiently small such that
the sorting operation in Step 5 will not take a long time.

We claim that |M | = Θ(n
3
4) is an appropriate size that

satisfies these two constraints simultaneously.

To obtain such a M , we set r = n
3
4 , and δ = n− 1

4 as M is
expected to have a size of δn = n

3
4 .

98 / 169

Time-comlexity analysis: linear time
LazySelectMedian(A)

1: Randomly sample r elements (with replacement) from

A = [A0, A1, A2, ..., An−1]. Denote the sample as S. //Set r = n
3
4

2: Sort S. Let u be the 1−δ
2

r-th smallest element of S and v be the 1+δ
2

r-th
smallest element of S. //Take O(rlogr) = o(n) time

3: Divide A into three dis-joint subsets: //Take 2n steps

L = {Ai : Ai < u};
M = {Ai : u ≤ Ai ≤ v};
H = {Ai : Ai > v};

4: Check the following constraints of M :

M covers the median: |L| ≤ n
2
and |H| ≤ n

2

M should not be too large: |M | ≤ cδn

If one of the constraints was violated, got to Step 1.
5: Sort M and return the (n

2
− |L|)-th smallest of M as the median of A.

//Take O(δn log(δn)) = o(n) time when setting δ = n− 1
4

Total running time (in one pass): 2n+ o(n). The best known
deterministic algorithm takes 3n but it is too complicated. On
the hand, it has been proved at least 2n steps are needed.

99 / 169

Analysis of the success probability in one pass

Theorem

With probability 1−O(n− 1
4), LazySelectMedian reports the

median in the first pass. Thus, the total running time is only
2n+ o(n).

S = {2, 4, 5, 8, 11, 13, 15, 16}

1 3 22

L

4 5 6 7 8 9 10 11 12 134 5 8 11 134

u v

137 8

M

15 16 1415 16

H

There are two types of failures in one pass, namely, M does
not cover the median of the whole set A, and M is too large.
We claim that the probability of both types of failures are as
small as O(n− 1

4). Here we present proof for the first type only.

100 / 169

M covers the median of A with high probability

We argue that |L| > n
2 occurs with probability O(n− 1

4). Note
that |L| > n

2 implies that u is greater than the median of A,

and thus at least 1+δ
2 r elements in S are greater than the

median.
Let X = x1 + x2 + ...xr be the number of sampled elements
greater than the median of A, where xi is an index variable:

xi =

{
1 if the i-th element in S is greater than the median

0 otherwise

Then E(xi) =
1
2 , σ

2(xi) =
1
4 , E(X) = 1

2r, σ
2(X) = 1

4r, and

Pr(|L| > n
2) ≤ Pr(X ≥ 1+δ

2 r) (2)

= 1
2 Pr(|X − E(X)| ≥ δ

2r) (3)

≤ 1
2
σ2(X)

(
δ
2 r)

2
(4)

= 1
2

1
δ2r

(5)

= 1
2n

−1
4 (6)

101 / 169

Multiplication problem: to multiply two n-bits integers

102 / 169

Multiplication problem

INPUT: Two n-bits integers x and y. Here we represent x as an
array x0x1...xn−1, where xi denotes the i-th bit of x. Similarly, we
represent y as an array y0y1...yn−1, where yi denotes the i-th bit
of y.
OUTPUT: The product x× y.

103 / 169

Grade-school algorithm

An example:
12

×34

48
36

408

Question: Is the grade-school O(n2) algorithm optimal?

104 / 169

Kolmogorov’s conjecture

Conjecture: In 1960, Andrey Kolmogorov conjectured that
any algorithm for that task would require Ω(n2) elementary
operations.

105 / 169

Multiplication problem: Trial 1

Key observation: both x and y can be decomposed into two
parts;

Divide and Conquer:
1 Divide: x = xh × 2

n
2 + xl, y = yh × 2

n
2 + yl,

2 Conquer: calculate xhyh, xhyl, xlyh, and xlyl;
3 Combine:

xy = (xh × 2
n
2 + xl)(yh × 2

n
2 + yl) (7)

= xhyh2
n + (xhyl + xlyh)2

n
2 + xlyl (8)

106 / 169

Multiplication problem: Trial 1

Example:

Objective: to calculate 12× 34
x = 12 = 1× 10 + 2, y = 34 = 3× 10 + 4
x× y = (1× 3)× 102 + ((1× 4) + (2× 3))× 10 + 2× 4

Note: 4 sub-problems, 3 additions, and 2 shifts;

Time-complexity: T (n) = 4T (n2) +O(n) = O(n2)

107 / 169

Question: can we reduce the number of sub-problems?

108 / 169

Reduce the number of sub-problems

× yh yl

xh xhyh xhyl
xl xlyh xlyl

Our objective is to calculate xhyh2
n + (xhyl + xlyh)2

n
2 + xlyl.

Thus it is unnecessary to calculate xhyl and xlyh separately;
we just need to calculate the sum (xhyl + xlyh).

It is obvious that
(xhyl + xlyh) + xhyh + xlyl = (xh + xl)× (yh + yl).

The sum (xhyl + xlyh) can be calculated using only one
additional multiplication.

This idea is dated back to Carl. F. Gauss: Calculation of the
product of two complex numbers
(a+ bi)(c+ di) = (ac− bd) + (bc+ ad)i seems to require four
multiplications, three multiplications ac, bd, and (a+ b)(c+ d)
are sufficient because bc+ ad = (a+ b)(c+ d)− ac− bd.

109 / 169

Multiplication problem: a clever conquer
[Karatsuba-Ofman, 1962]

Figure 3: Anatolii Alexeevich Karatsuba

Karatsuba algorithm was the first multiplication algorithm
asymptotically faster than the quadratic ”grade school”
algorithm.

110 / 169

Multiplication problem: a clever conquer

Divide and Conquer:
1 Divide: x = xh × 2

n
2 + xl, y = yh × 2

n
2 + yl,

2 Conquer: calculate xhyh, xlyl, and P = (xh + xl)(yh + yl);
3 Combine:

xy = (xh × 2
n
2 + xl)(yh × 2

n
2 + yl) (9)

= xhyh2
n + (xhyl + xlyh)2

n
2 + xlyl (10)

= xhyh2
n + (P − xhyh − xlyl)2

n
2 + xlyl (11)

111 / 169

Karatsuba-Ofman algorithm

Example:

Objective: to calculate 12× 34
x = 12 = 1× 10 + 2, y = 34 = 3× 10 + 4
P = (1 + 2)× (3 + 4)
x× y = (1× 3)× 102 + (P − 1× 3− 2× 4)× 10 + 2× 4

Note: 3 sub-problems, 6 additions, and 2 shifts;

Time-complexity:
T (n) = 3T (n2) + cn = O(nlog2 3) = O(n1.585)

Karatsuba algorithm is a special case of Toom-Cook
algorithm. Toom-3 algorithm decomposes both x and y into 3
parts, and calculates xy in O(n1.465) time.

112 / 169

Theoretical analysis vs. empirical performance

For large n, Karatsuba’s algorithm will perform fewer shifts
and single-digit additions.
For small values of n, however, the extra shift and add
operations may make it run slower.
The crossover point depends on the computer platform and
context.
When applying FFT technique over ring, the
Multiplication can be finished in O(n log n log logn) time.

Figure 4: See https://www.cs.cmu.edu/ cburch/251/karat/ for more details.
113 / 169

Extension: Fast Division

Problem: Given two n-digit numbers s and t, to calculate
q = s/t and r = s mod t.

Method:
1 Calculate x = 1/t using Newton’s method first:

xi+1 = 2xi − t× x2
i

2 At most log n iterations are needed.
3 Thus division is as fast as multiplication.

114 / 169

Details of Fast Division: Newton’s method

Objective: Calculate x = 1/t.

x is the root of f(x) = 0, where f(x) = (t− 1
x). (Why the

form here?)
Newton’s method:

xi+1 = xi −
f(xi)

f ′(xi)
(12)

= xi −
t− 1

xi

1
x2
i

(13)

= −t× x2
i + 2xi (14)

Convergence speed: quadratic, i.e. ϵi+1 ≤ Mϵ2i , where M is a
supremum of a ratio, and ϵi denotes the distance between xi

and 1
t . Thus the number of iterations is limited by

log log t = O(log n).

115 / 169

Fast Division: an example

Objective: to calculate 1
13 .

#Iteration xi ϵi
0 0.018700 -0.058223
1 0.032854 -0.044069
2 0.051676 -0.025247
3 0.068636 -0.008286
4 0.076030 -0.000892
5 0.076912 -1.03583e-05
6 0.076923 -1.39483e-09
7 0.076923 -2.77556e-17
8

Note: the quadratic convergence implies that the error ϵi has
a form of O(e2

i
); thus the iteration number is limited by

log log(t).

116 / 169

Matrix Multiplication problem: to multiply two matrices

117 / 169

Matrix Multiplication problem

INPUT: Two n× n matrices A and B,

A =

a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann

, B =

b11 b12 · · · b1n
b21 b22 · · · b2n
· · · · · · · · · · · ·
bn1 bn2 · · · bnn

OUTPUT: The product C = AB.

Grade-school algorithm: O(n3).

118 / 169

MatrixMultiplication problem: Trial 1 I

Matrix multiplication: Given two n× n matrices A and B,
compute C = AB;

Grade-school: O(n3).

Key observation: matrix can be decomposed into four n
2 × n

2
matrices;

Divide and Conquer:
1 Divide: divide A, B, and C into sub-matrices;
2 Conquer: calculate products of sub-matrices;
3 Combine: [

C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]

C11 = (A11B11) + (A12B21)

C12 = (A11B12) + (A12B22)

C21 = (A21B11) + (A22B21)

C22 = (A21B12) + (A22B22)
119 / 169

MatrixMultiplication problem: Trial 1 II

We need to solve 8 sub-problems, and 4 additions; each
addition takes O(n2) time.

T (n) = 8T (n2) + cn2 = O(n3)

120 / 169

Question: can we reduce the number of sub-problems?

121 / 169

Strassen algorithm, 1969

Figure 5: Volker Strassen, 2009

The first algorithm for performing matrix multiplication faster
than the O(n3) time bound.

122 / 169

MatrixMultiplication problem: a clever conquer I

Matrix multiplication: Given two n× n matrices A and B,
compute C = AB;

Grade-school: O(n3).
Key observation: matrix can be decomposed into four n

2 × n
2

matrices;

Divide and Conquer:
1 Divide: divide A, B, and C into sub-matrices;
2 Conquer: calculate products of sub-matrices;
3 Combine: [

C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]

123 / 169

MatrixMultiplication problem: a clever conquer II

P1 = A11(B12 −B22) (15)

P2 = (A11 +A12)B22 (16)

P3 = (A21 +A22)B11 (17)

P4 = A22(B21 −B11) (18)

P5 = (A11 +A22)(B11 +B22) (19)

P6 = (A12 −A22)(B21 +B22) (20)

P7 = (A11 −A21)(B11 +B12) (21)

C11 = P4 + P5 + P6 − P2 (22)

C12 = P1 + P2 (23)

C21 = P3 + P4 (24)

C22 = P1 + P5 − P3 − P7 (25)

124 / 169

MatrixMultiplication problem: a clever conquer III

We need to solve 7 sub-problems, and 18
additions/subtraction; each addition/subtraction takes O(n2)
time.

T (n) = 7T (n2) + cn2 = O(nlog2 7) = O(n2.807).

Question: how did Strassen work out this brilliant idea? Can
we reinvent this idea or even a better idea?

125 / 169

Advantages

For large n, Strassen algorithm is faster than grade-school
method. 1

Strassen algorithm can be used to solve other problems, say
matrix inversion, determinant calculation, finding triangles in
graphs, etc.

Gaussian elimination is not optimal.

1This heavily depends on the system, including memory access property,
hardware design, etc.

126 / 169

Shortcomings

Strassen algorithm performs better than grade-school method
only for large n.

The reduction in the number of arithmetic operations however
comes at the price of a somewhat reduced numerical stability,

The algorithm also requires significantly more memory
compared to the naive algorithm.

127 / 169

Fast matrix multiplication

multiply two 2× 2 matrices: 7 scalar sub-problems:
O(nlog2 7) = O(n2.807) [Strassen 1969]

multiply two 2× 2 matrices: 6 scalar sub-problems:
O(nlog2 6) = O(n2.585) (impossible)[Hopcroft and Kerr 1971]

multiply two 3× 3 matrices: 21 scalar sub-problems:
O(nlog3 21) = O(n2.771) (impossible)

multiply two 20× 20 matrices: 4460 scalar sub-problems:
O(nlog20 4460) = O(n2.805)

multiply two 48× 48 matrices: 47217 scalar sub-problems:
O(nlog48 47217) = O(n2.780)

Best known till 2010: O(n2.376) [Coppersmith-Winograd,
1987]

Conjecture: O(n2+ϵ) for any ϵ > 0

128 / 169

A fast algorithm for integer matrix multiplication

129 / 169

A fast algorithm by Changhun Jiang [1989]

https://github.com/deltadbu/UCAS algorithm course/blob/main/Lectures/Lec5-MM-JiangChangjun.pdf

130 / 169

Algorithm

Key idea: using column (row) vectors as coefficients of a polynomial, and

transforming these coefficients into value and vice versa 131 / 169

An example

Aim: calculating C = AB, where

A =

[
1 2
3 4

]
, B =

[
5 6
7 8

]
.

Step 1: Let a = maxi,j aij = 4, b = maxij bij = 8. Define two large
numbers x = 2× 4× 8 + 1 = 65,
y = 2× 2× 4× 8× xm−1 + 1 = 8231;
Step 2: Evaluating polynomials with the column vectors of A and
the row vectors of B as their coefficients: a1 = 1 + 3x,
a2 = 2 + 4x, b1 = 5 + 6y, b2 = 7 + 8y. ()
Step 3: Calculating the product:
c = a1b1 + a2b2 = (1 + 3x)× (5 + 6y) + (2 + 4x)× (7 + 8y).
Step 4: Decomposing c into a vector:
c = [6× (1+ 3x)+ 8× (2+ 4x)]× y+ [5× (1+ 3x)+ 7× (2+ 4x)].
Step 5: Further decompose the coefficients:
c1 = 6×(1+3x)+8×(2+4x) = (3×6+4×8)×x+(1×6+2×8),
c2 = 5×(1+3x)+7×(2+4x) = (3×5+4×7)×x+(1×5+2×7).
Finally we obtain the matrix product:

C =

[
1× 5 + 2× 7 1× 6 + 2× 8
3× 5 + 4× 7 3× 6 + 4× 8

]
.

132 / 169

The number of scalar multiplication and divide:
O(m(n+ l))

133 / 169

AlphaTensor: discovering faster matrix multiplication algorithms
with reinforcement learning

Alhussein Fawzi, et al, Nature 2022.

https://www.nature.com/articles/s41586-022-05172-4

134 / 169

Representing matrix multiplication as tensor decomposition

Take c1 = a1b1 + a2b3 as an example, we represent its calculation
as a matrix and decompose it as follows.

1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 =

1
0
0
1

 [
1 0 0 1

]
+

0
0
0
1

 [
−1 0 1 0

]
−

1
1
0
0

 [
0 0 0 1

]
+

0
1
0
−1

 [
0 0 1 1

]

https://github.com/deltadbu/UCAS algorithm course/blob/main/Lectures/Lec5-AlphaTensor.m

135 / 169

An algorithm framework based on tensor decomposition

A tensor decomposition {u(r), v(r), w(r)}, r = 1, 2, ..., R
corresponds to an algorithm for matrix multiplication. Smaller
R corresponds to less sub-problems in matrix multiplication
and thereafter more efficient algorithm.
Question: how to find a tensor decomposition with the
smallest R? 136 / 169

What is tensor decomposition?

Vector decomposition:[
1 0 2

]
= 1×

[
1 0 0

]
+ 0×

[
0 1 0

]
+ 2×

[
0 0 1

]
.

Matrix decomposition:[
1 2
3 4

]
= −0.37×

[
−0.82
0.56

] [
−0.92 0.42

]
+5.4×

[
−0.41
−0.91

] [
−0.57 −0.84

]
.

Tensor decomposition:

137 / 169

AlphaTensor: a game to find the optimal tensor
decomposition using MCTS

The state of the game is a tensor, representing the remaining work
to be done

138 / 169

Training AlphaTensor using MCTS

139 / 169

AlphaTensor’s findings

140 / 169

ClosestPair problem: given a set of points in a plane, to find
the closest pair

141 / 169

ClosestPair problem

INPUT: n points in a plane;
OUTPUT: The pair with the least Euclidean distance.

142 / 169

About ClosestPair problem

Computational geometry: M. Shamos and D. Hoey were
working out efficient algorithm for basic computational
primitive in CG in 1970’s. They asked a question: does there
exist an algorithm using less than O(n2) time?

1D case: it is easy to solve the problem in O(n log n) via
sorting.

2D case: a brute-force algorithm works in O(n2) time by
checking all possible pairs.

Question: can we find a faster method?

143 / 169

Trial 1: Divide into 4 subsets

144 / 169

Trial 1: Divide and Conquer (4 subsets)

Divide and Conquer: divide into 4 subsets.

Difficulties:

The subsets might be unbalanced — we cannot guarantee that
each subset has approximately n

4 points.
Since the closest pair might lie in different subsets, we need to
consider all

(
4
2

)
pairs of subsets to avoid missing the closest

pair, thus complicating the “combine” step.

145 / 169

Trial 2: Divide into 2 halves

146 / 169

Trial 2: Divide and Conquer (2 subsets)

Divide: divide into two halves with equal size.
It is easy to achieve this through sorting by x coordinate first,
and then select the median as pivot.

147 / 169

Trial 2: Divide and Conquer (2 subsets)

Divide: dividing into two (roughly equal) subsets;

Conquer: finding closest pairs in each half;

21

12

148 / 169

Trial 2: Divide and Conquer (2 subsets)

Combine: It suffices to consider the pairs consisting of one
point from left half and one point from right half. Simply
examining all such pairs will take O(n2) time.

21

12

8

149 / 169

Two types of redundancy

21

12

8

It is redundant to calculate distance between pi and pj if

|xi − xj | ≥ 12, or
|yj − yj | ≥ 12

150 / 169

Remove redundancy of type 1

Observation 1:
The third type occurs in a narrow strip only; thus, it suffices
to check point pairs within the 2δ-strip.
Here, δ is the minimum of ClosestPair(LeftHalf) and
ClosestPair(RightHalf).

δ = min(12, 21)

δ

21

12

151 / 169

Remove redundancy of type 2

Observation 2:
Moreover, it is unnecessary to explore all point pairs within the
2δ-strip. In fact, for each point pi, it suffices to examine 11
points for possible closest partners.
Let’s divide the 2δ-strip into grids (size: δ

2 × δ
2). A grid

contains at most one point.
If two points are 2 rows apart, the distance between them
should be over δ and thus cannot form closest pair.
Example: For point 27, it suffices to search within 2 rows for
possible closest partners (< δ).

31
39 j

29
30

27 28

26

1
2δ

1
2δ

1
2δ

152 / 169

To detect potential closest pair: Case 1

31
39 j

1
2δ

1
2δ

1
2δ

Green: point i;

Red: the possible closest partner (distance < δ) of point i;

153 / 169

To detect potential closest pair: Case 2

31
39 j

1
2δ

1
2δ

1
2δ

Green: point i;

Red: the possible closest partner (distance < δ) of point i;

154 / 169

To detect potential closest pair

31
39 j

1
2δ

1
2δ

1
2δ

If all points within the strip were sorted by y-coordinates, it
suffices to calculate distance between each point with its next
11 neighbors.

Why 11 points here? All red points fall into the subsequent 11
points.

155 / 169

ClosestPair algorithm

ClosestPair(pl, ..., pr)

1: //To find the closest points within (pl, ..., pr). Here we assume that
pl, ..., pr have already been sorted according to x-coordinate;

2: if r − l == 1 then
3: return d(pl, pr);
4: end if
5: Use the x-coordinate of p⌊ l+r

2 ⌋ to divide pl, ..., pr into two halves;

6: δ1 = ClosestPair(LeftHalf); //T (n2)
7: δ2 = ClosestPair(RightHalf); //T (n2)
8: δ = min(δ1, δ2);
9: Sort points within the 2δ wide strip by y-coordinate; //O(n log n)

10: Scan points in y-order and calculate distance between each point
with its next 11 neighbors. Update δ if finding a distance less than δ;
//O(n)

Find closest pair within p0, p1, ..., pn−1:
ClosestPair(p0, ..., pn−1)

Time-complexity: T (n) = 2T (n2) +O(n log n) = O(n log2 n).

156 / 169

ClosestPair algorithm: improvement

Note that if the points within the 2δ-wide strip have no
structure, we have to sort them from the scratch, which will
take O(n log n) time.

Let’s try to introduce some structure into the points within
the 2δ-wide: If the point within each δ-wide strip were already
sorted, it is relatively easy to sort the points within the
2δ-wide strip. Specifically,

Each recursion keeps two sorted list: one list by x, and the
other list by y.
We merge two pre-sorted lists into a list as MergeSort does,
which costs only O(n) time.

Time-complexity: T (n) = 2T (n2) +O(n) = O(n log n).

157 / 169

ClosestPair: an example with 8 points

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

Objective: to find the closest pair among these 8 points.

158 / 169

ClosestPair: an example with 8 points

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

Objective: to find the closest pair among these 8 points.

158 / 169

Left half: A, B, C, D

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

159 / 169

Left half: A, B, C, D

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

δL =
√
2

Pair 1: d(A,B) =
√
2;

Pair 2: d(C,D) = 3; ⇒ min =
√
2; Thus, it suffices to calculate:

Pair 3: d(B,C) =
√
2;

Pair 4: d(B,D) =
√
5; ⇒ δL =

√
2.

160 / 169

Left half: A, B, C, D

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

δL =
√
2

Pair 1: d(A,B) =
√
2;

Pair 2: d(C,D) = 3; ⇒ min =
√
2; Thus, it suffices to calculate:

Pair 3: d(B,C) =
√
2;

Pair 4: d(B,D) =
√
5; ⇒ δL =

√
2.

160 / 169

Left half: A, B, C, D

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

δL =
√
2

Pair 1: d(A,B) =
√
2;

Pair 2: d(C,D) = 3; ⇒ min =
√
2; Thus, it suffices to calculate:

Pair 3: d(B,C) =
√
2;

Pair 4: d(B,D) =
√
5; ⇒ δL =

√
2.

160 / 169

Left half: A, B, C, D

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

δL =
√
2

Pair 1: d(A,B) =
√
2;

Pair 2: d(C,D) = 3; ⇒ min =
√
2; Thus, it suffices to calculate:

Pair 3: d(B,C) =
√
2;

Pair 4: d(B,D) =
√
5; ⇒ δL =

√
2.

160 / 169

Left half: A, B, C, D

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

δL =
√
2

Pair 1: d(A,B) =
√
2;

Pair 2: d(C,D) = 3; ⇒ min =
√
2; Thus, it suffices to calculate:

Pair 3: d(B,C) =
√
2;

Pair 4: d(B,D) =
√
5; ⇒ δL =

√
2.

160 / 169

Right half: E, F, G, H

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

δL =
√
2

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

161 / 169

Right half: E, F, G, H

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

δL =
√
2

δR = min{
√
2,
√
5}

Pair 5: d(E,F) =
√
5;

Pair 6: d(G,H) =
√
2; ⇒ min =

√
2; Thus, it suffices to calculate:

Pair 7: d(G,F) =
√
5; ⇒ δR =

√
2.

162 / 169

Right half: E, F, G, H

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

δL =
√
2

δR = min{
√
2,
√
5}

Pair 5: d(E,F) =
√
5;

Pair 6: d(G,H) =
√
2; ⇒ min =

√
2; Thus, it suffices to calculate:

Pair 7: d(G,F) =
√
5; ⇒ δR =

√
2.

162 / 169

Right half: E, F, G, H

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

δL =
√
2 δR = min{

√
2,
√
5}

Pair 5: d(E,F) =
√
5;

Pair 6: d(G,H) =
√
2; ⇒ min =

√
2; Thus, it suffices to calculate:

Pair 7: d(G,F) =
√
5; ⇒ δR =

√
2.

162 / 169

Right half: E, F, G, H

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

δL =
√
2 δR = min{

√
2,
√
5}

Pair 5: d(E,F) =
√
5;

Pair 6: d(G,H) =
√
2; ⇒ min =

√
2; Thus, it suffices to calculate:

Pair 7: d(G,F) =
√
5; ⇒ δR =

√
2.

162 / 169

Right half: E, F, G, H

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

δL =
√
2 δR = min{

√
2,
√
5}

Pair 5: d(E,F) =
√
5;

Pair 6: d(G,H) =
√
2; ⇒ min =

√
2; Thus, it suffices to calculate:

Pair 7: d(G,F) =
√
5; ⇒ δR =

√
2.

162 / 169

The entire set: A, B, C, D, E, F, G, H

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

δL =
√
2 δR =

√
2

δ = min{δL, δR} =
√
2

δ = min{
√
2, 1} = 1

Pair 8: d(C,E) = 1;

Pair 9: d(D,E) =
√
10; ⇒ δ = 1.

163 / 169

The entire set: A, B, C, D, E, F, G, H

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

δL =
√
2 δR =

√
2

δ = min{δL, δR} =
√
2

δ = min{
√
2, 1} = 1

Pair 8: d(C,E) = 1;

Pair 9: d(D,E) =
√
10; ⇒ δ = 1.

163 / 169

The entire set: A, B, C, D, E, F, G, H

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

δL =
√
2 δR =

√
2

δ = min{δL, δR} =
√
2

δ = min{
√
2, 1} = 1

Pair 8: d(C,E) = 1;

Pair 9: d(D,E) =
√
10; ⇒ δ = 1.

163 / 169

The entire set: A, B, C, D, E, F, G, H

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

δL =
√
2 δR =

√
2

δ = min{δL, δR} =
√
2

δ = min{
√
2, 1} = 1

Pair 8: d(C,E) = 1;

Pair 9: d(D,E) =
√
10; ⇒ δ = 1.

163 / 169

The entire set: A, B, C, D, E, F, G, H

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

δL =
√
2 δR =

√
2

δ = min{δL, δR} =
√
2

δ = min{
√
2, 1} = 1

Pair 8: d(C,E) = 1;

Pair 9: d(D,E) =
√
10; ⇒ δ = 1.

163 / 169

From O(n2) to O(n log n), what did we save?

−6 −5 −4 −3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

∗A

∗B

∗D

∗C ∗E

∗F

∗G

∗H

We calculated distances for only 9 pairs of points (see ‘blue’ line). The

other 19 pairs are redundant due to:

at least one of the two points lies out of 2δ-strip.
although two points appear in the same 2δ-strip, they are at
least 2 rows of grids (size: δ

2 × δ
2) apart.

164 / 169

Extension: arbitrary (not necessarily geometric) distance
functions

Theorem

We can perform bottom-up hierarchical clustering, for any cluster
distance function computable in constant time from the distances
between subclusters, in total time O(n2). We can perform median,
centroid, Ward, or other bottom-up clustering methods in which
clusters are represented by objects, in time O(n2 log2 n) and space
O(n).

(See Eppstein 1998 for details.)
165 / 169

VLSI embedding: to embed a tree

166 / 169

Embedding a tree

INPUT: Given a binary tree with n node;
OUTOUT: Embedding the tree into a VLSI with minimum area.

W (n)

H(n)

167 / 169

Trial 1: divide into two sub-trees

Let’s divide into 2 sub-trees, each with a size of n
2 .

W (n)

H(n)

We have:
H(n) = H(n2) + 1 = Θ(log n)
W (n) = 2W (n2) + 1 = Θ(n)

The area is Θ(n log n).

168 / 169

Trial 2: divide into 4 sub-trees

Let’s divide into 4 sub-trees, each with a size of n
4 .

L(n)

L(n)

L(n4) L(n4)
1

We have:
L(n) = 2L(n4) + 1 = Θ(

√
n)

Thus the area is Θ(n).

169 / 169

