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INTRODUCTION 

The analysis of a problem in computer sci- 
ence often involves a sequence of numbers. 
For example, when determining the amount 
of time used by an algorithm, one may be 
interested in the sequence T(1), T(2), T(3), 
. . . .  where T(n) is the amount of time used 
on an input of size n. Such a sequence can 
also arise even if we are considering input 
of a fixed size; for example, if we are ana- 
lyzing the average amount of time used by 
a sorting algorithm we might be interested 
in a sequence p0, pl, p', . . . .  , where p~ is the 
probability that the algorithm makes i com- 
parisons during the sort. Sometimes instead 
of knowing a closed-form expression for the 
nth term in a sequence, we have a recur- 
rence relation, which is an equation that 
expresses the nth  term of a sequence as a 
function of previous terms. (Recurrence re- 
lations are sometimes called difference 
equations.) 

Consider, for example, the problem of 
determining the number of comparisons 
used by Mergesort; it can be viewed as a 
recursive sorting algorithm that splits the 
input list of n numbers into two halves, 
sorts each half, and then merges the results 
(using at most n - 1 comparisons) to yield 
the final sorted output [AHo74, Chap. 2]. 
Assuming n is a power of two, an upper 

bound T(n) on the number of comparisons 
used by this algorithm to sort n numbers is 
given by 

T(n) -- 2T(n/2) + n - 1, for n >_ 2, 

T(1) -- 0. 

The first of these two equations expresses 
the fact that the number of comparisons 
required to sort a large list must be, at most, 
the sum of the number of comparisons re- 
quired to sort both halves (2T(n/2)) and 
the number of comparisons (n - I) required 
in the worst case to merge the halves. The 
second equation expresses the fact that  
sorting a single element does not require 
any comparisons. (For more information 
about sorting algorithms see AHO74, Chaps. 
2 and 3; KNUT73, Chap. 5.) As a second 
example, consider the problem of finding 
the minimum number of vertices that  can 
be present in an AVL tree of height n; call 
this number a, .  (An AVL tree is a binary 
search tree in which the heights of the left 
and right subtrees of any node differ by at 
most 1; see KNUT73, Sec. 6.2.3, for a discus- 
sion of such trees and how they relate to 
efficient searching algorithms.) If the AVL 
tree is to have as few vertices as possible, 
one subtree must have height n - 1 and the 
other must have height n - 2. Both subtrees 
must also have the minimum number of 
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vertices for an AVL tree of tha t  height. We 
therefore obtain 

an ffi an-1 + an-2 + 1, for  n ~_ 2, 

a0--  1, 

axffi2.  

Note  tha t  in each case the recurrence is 
valid only for n at  least as large as some 
limit. Below tha t  point  we specify a few 
values of the sequence to enable the recur- 
rence to get started; these are called the 
boundary conditions. 

This  paper  is a tutorial  on some tech- 
niques for solving recurrences.  Of course 
one technique is simply to apply the recur- 
rence over and over  again to get successive 
terms in the sequence. This  may  not  give 
us much  insight into the behavior  of the 
sequence; instead we often seek to discover 
a closed-form expression for the n t h  te rm 
of the sequence. The  first two sections dis- 
cuss summing factors and characterist ic 
equations, which enable one systematical ly 
to solve a fairly large class of equations. 
The  third section discusses domain and 
range t ransformations on recurrences,  
which can significantly extend the class of 
recurrences  solvable by  the  techniques of 
Sections 1 and 2. In Sect ion 4 the  notion of 
generat ing functions is discussed and used 
to analyze problems which arise in com- 
puter  science; we also discuss some espe- 

cially useful propert ies  of generating func- 
tions related to probabilities. Finally, we 
indicate how one may  sometimes use gen- 
erating functions to determine the asymp- 
totic behavior  of the  solution to  a recur- 
rence wi thout  having to solve it  exactly. 
This  paper  is in tended for advanced under-  
graduates and graduate  students,  but  
should also be useful to others  seeking an 
in t roduct ion to recurrences.  

1. SUMMING FACTORS 

We begin by considering two easy recur- 
rences which involve counting the number  
of nodes in a binary tree. Le t  the height of 
a binary tree be the distance from the root  
to the fur thes t  leaf, where by distance we 
mean the number  of edges on the pa th  
joining two nodes. Thus  the  height  of a t ree 
is one less than  the number  of levels in the  
tree. Say a binary tree is perfect if all nodes 
have zero or two children and all leaves are 
at  the same distance f rom the root; in a 
perfect  t ree each level ei ther  has all possible 
nodes or no nodes. We now consider the 
problem of determining the number  a ,  of 
nodes in a perfect  t ree of height n. The re  
are two ways of obtaining a recurrence for 
an. First  we could note  tha t  a t ree  of height  
n can be obtained by adding a new bo t tom 
row of leaves to a t ree of height n - 1. Since 
the number  of nodes at  each level in a 
perfect  binary tree is twice the number  in 
the next  higher  row it is not  hard  to see 
tha t  the number  of leaves in the new bot- 
tom row is 2 n. Thus  we conclude tha t  

a n = a , - l + 2  n, for n _ l .  (1.1) 

A second way of viewing this problem is to 
use a different decomposi t ion of a t ree  of  
height  n. Note  tha t  the  t ree  consists of  a 
root  and two perfect  subtrees of height  
n - 1. This  leads to the  recurrence 

an -- 2an-l + l, for n _ > l .  (1.2) 

In  e i ther  case the  boundary  condit ion is 
obta ined by  no t ing , tha t  a t ree  of height  0 
consists of a single node,  so 

ao = 1.  ( 1 . 3 )  

To  il lustrate the  definition and use of sum- 
ming factors, we compare  the  problem of  
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solving eq. (1.1) and of solving eq. (1.2); we 
should of course get the  same answer. Now 
(1.1) can be rewri t ten  as 

an - an-1 ffi 2". (1.4) 

Note  what  happens  if we add up eq. (1.4) 
for n running from I to m: 

am - a o  ffi2 
a2 - -  a l  ffi 4 
a 3  - -  a 2  ---- 8 

a m - i  -- am-2  -~ 2 m - I  

am - - a m - 1  ~" 2 m. 

For  0 < n < m, an occurs positively in one 
equat ion bu t  negatively in the next. Thus  
when we add all of  these equations together  
most  of the te rms will cancel out; we say 
tha t  the sum t e l e scopes .  We are left  with 

am -- ao ffi ~ 2 n. 

The  r ight-hand side is a well-known sum 
with the value 2 m+~ - 2, so we obtain 

a ~ f f i a o + 2  m + l - 2 f f i 2  m + ~ - l .  (1.5) 

Finding the  solution to (1.1) was almost 
trivial. Somet imes  however  we have to use 
a little t r ickery to make the sum of succes- 
sive equat ions telescope. Suppose tha t  our  
recurrence is 

p n a ~  - q n a , - i  ffi rn, for n - 1, 
(1.6) 

a o  ffi t o ,  

where pn, q~, and r ,  are given and an is 
unknown. If  we t ry  to add two successive 
copies of this equation, for example, 

p ~ a n  - q n a ~ - i  ~- rn 

and 

p n - l a n - 1  --  q n - l a n - 2  ~ m - l ,  

we note  tha t  the a~_~ terms do not  cancel 
since Pn-~ will generally not  equal q~. Note  
however  tha t  we could multiply the equa- 
tions by some factor which would make  the 
a~-~ terms cancel. This  mot ivates  the fol- 
lowing approach.  Mult iply the n t h  equat ion 
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by  some (so far  unspecifiedl factor  s• to 
obtain 

SnPnan -- Snqnan-1 ffi snrn 

and 

8 n - l p n - l a n - 1  --  S n - l q n - l a n - 2  •ffi S n - l r n - 1 .  

In order  to guarantee  t h a t  t h e  a,-1 te rms 
cancel, we require  tha t  

s n q n  ffi S n - l p n - 1 ,  

SO 

sn = s , - l p , - 1 / q , .  

We can force this to be t rue  by  lett ing 
n - I  ] n ,  

Sn "~ n 1 p i /  .H1 qi (1.7) 

(or any constant  multiple of  this). T h e n  
telescopy will work when we add up 

s~pna~  - -  Snqnan- I  ffi Snrn 

for n running from 1 to  m. 
We now t ry  to u s e  t h i s  t r ick on the  re- 

currence (1.2). This  is an example of  (1.6) 
with 

pn ffi 1, q ,  ffi 2. 

By (1.7) we may  choose 

sn ffi 2-". 

Multiplying by sn gives the new equat ion 

2 - " a .  - 2- (n- l~an-1 == 2 -n.  

Summing this for n running f rom 1 to m 
gives 

?n 

2 - m a ~ - a o  ffi ~ 2 -n. 

Thus  

a m  ---- 2 m 2 - n  -4- a o  

m--1  

-- ~ 2 n + 2  m 
n--0  

ffi 2 m - -  1 + 2 ~ 

= 2 ~+1 - 1.  

This  of course agrees with (1.5). 

(1.8) 
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For  a considerably more  challenging ap- 
pl icat ion of  summing  factors,  see the  anal-  
ysis of  Quicksort  in Kst~r73,  Sec. 5.2.2. 

2. CHARACTERISTIC EQUATIONS 

2.1  H o m o g e n e o u s  E q u a t i o n s  

A recurrence  re la t ion is said to be  a homo- 
geneous  l inear recurrence with constant  
coefficients if i t  has  the  fo rm 

poan + plaa-] + p2an-2 

+ . ' .  + pka , -k  = 0, (2.1) 

where  each  p~ is a constant .  I t  is called a 
l inear recurrence  because  we are specifying 
a value for some l inear  combinat ion  of  the  
a,. Since the  coefficients pi are constants ,  
we say the  recurrence  has  constant  coeffi- 
cients. T h e  word homogeneous  refers  to the  
fact  t ha t  we are requir ing t ha t  the  l inear  
combina t ion  be se t  equal  to zero. An ex- 
ample  is the  recurrence  

a .  - a ~ - i  - 2 a n - 2  = 0.  

We now show a general  m e t h o d  for solving 
any  such recurrence.  

Such  recurrences  of ten have  solutions 
which can  be expressed as 

a n  = r n 

where  r is some constant .  Le t  us plug this 
into eq. (2.1) and  see if we can find a value 
for r which will work. We obtain  

k 

~ p , r~ - '  = 0, 

which is satisfied provided 

k 
pir  k-~ = O. 

This  k th -degree  polynomia l  in r is called 
the  characteristic equat ion for the  recur- 
rence.  We  need to find the  roots  of  this 
polynomial ,  which are called its character- 
istic roots. Since this polynomial  has  degree 
k, we expect  there  will be  k roots; t empo-  
rari ly assume they  are all distinct and  call 
t h e m  rl ,  r2 . . . .  , rk. I t  is no t  ha rd  to see t h a t  
any  l inear  combina t ion  of solutions to eq. 

(2.1) is also a solution, so anyth ing  of  the  
fo rm 

k 

an ffi ~ c , r ,  ~ 

where c, are  a rb i t r a ry  cons tants  will also be  
a solution. In  fact,  as T h e o r e m  1 estab-  
lishes, if  there  are k dist inct  roots,  this  is a 
general  fo rm for any  solution to (2.1). We 
now need  to  de te rmine  which values  of the  
cons tan ts  will give the  solution we want.  In  
order  to do this we use the  boundary  con- 
ditions. 

As an example,  suppose  we are given 

an - 5an-1 + 6an-2 ffi 0, for n >_ 2, 

ao = 0, 

a l l  1. 

T h e  character is t ic  equat ion  ibr this is 

r 2 - 5r  + 6 = 0, 

whose roots  are 

r 1 = 2 ,  r 2 = 3 .  

T h u s  the  general  solution to the  recurrence  
i s  

an ffi c12" + c23". (2.2) 

However ,  we know the  values of  ao and a , .  
T h u s  we m a y  wri te  

0m~" ao f f i  C1-[- C2, 

1 = a ,  -- 2c, + 3c2. 

Solving for Cl and  c2 gives 

c, = - I ,  

c2-- 1, 

so the solution to our recurrence is 

an ffi 3 n - 2 n. 

So far  we have  assumed  tha t  the  roots  of  
the  character is t ic  equa t ion  axe distinct.  
W h a t  if  there  are mul t ip le  roots?  (For ex- 
ample ,  (r - 1) ~ ffi 0 has  1 as a root  wi th  
mult ipl ic i ty  2.) In  general,  if r is a roo t  of 
the  character is t ic  equat ion  with multiplic-  
i ty q, t hen  the  equat ion  will have  solut ions 

a n  = nPr ~ 

where  p is any  integer  f rom 0 to q - 1. 
Ano the r  way  to express this is t h a t  any-  
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thing of the form 

a~ = (a polynomial  in n of degree(2.3) 
less than  q) r = 

is a solution. One might  wonder  whether  
there  are also other  solutions not  of the 
form shown in {2.3}. The  answer is no, as 
the following theorem shows. 

Theorem 1 

Let  f (x)  be the characteristic equation of  
the recurrence 

poa ,  + p~a~-~ + p2a,-2 + . .  • + pkan-k ffi O, 

for n >_ k, (2.4) 

where the p, are constants. Le t  the roots of  
f, over the complex numbers,  be r,, i ffi 1, 
. . . .  m, and  let their respective multiplici- 
ties be q~, i ffi 1 , . . . ,  m. Then  any solution 
to (2.4) is of  the form 

/ q.-1 ) 

where the % are constants. 

We omit  the proof  here; the interested 
reader  may  consult LIu68, App. 3-1. Note  
tha t  in order  for the theorem to be true, it 
is impor tant  tha t  we determine all of the 
roots, including those tha t  are complex. All 
of the characterist ic equations discussed in 
this paper  have only real roots. Complex 
roots, which can give rise to solutions with 
periodic behavior,  can be handled by the 
methods  discussed here, but  it is often use- 
ful to express such solutions in terms of 
the sine and cosine functions [LIu68, 
pp. 62-64]. 

We now give an example of a recurrence 
whose characteristic equat ion has a multi- 
pie root. Le t  the rank  of a node in a t ree be 
one more than  its number  of descendants. 
(We count  a node as one of its own descen- 
dants.) When  discussing a type of t ree 
known as a BB(a)  tree (see REIN77, Sec. 
6.4.3), the notion of the rank of a node can 
be useful. In particular, sometimes it is 
useful to find the sum of the ranks of all of 
the nodes in the tree. This  sum is also 
closely related to the internal  and external  
pa th  length of a tree, discussed in KNUT68, 
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Sec. 2.3.4.5. Here  we determine  the  total  
rank an of the nodes in a perfect  binary t ree  
of height  n. First  note  tht/t  the  rank  of  the  
root  is 2 TM, since we have M]ceady seen tha t  
it has  2 "+~ - 1 descendants.  T h e  total  rank 
of the nodes in each of its subtrees is a~-~. 
Thus  

a ~  - 2 a ~ - 1  f f i  2 n+l ,  

aoffi2.  

Now unfor tunate ly  this is not  a homoge- 
neous equat ion because of the ,2  =+1 appear- 
ing on the r ight-hand side. Shor t ly  we will 
see a systematic way of dealing with such 
problems, bu t  for the  t ime being we use an 
ad hoc approach to force the  equat ion to be 
homogeneous.  Note  tha t  the  r ight-hand 
side doubles each t ime n increases by one. 
Thus  if we take one equat ion and subtract  
twice the previous one, we can eliminate 
r ight-hand side, as follows: 

a= - 2an-1 ffi 2 n+l 
- 2  ( a ~ - i  - -  2 a a - 2  = 2 ~) 

an - -  4a~-1 + 4an-2 = 0 

Since this new equat ion is valid only for 
n _> 2 we must  provide a boundary  value 
for al (which we may  determine from the 
recurrence),  so the set of  boundary  condi- 
tions becomes 

a0 ffi 2, al ffi 8. 

The  characteristic equat ion is 

r2--4r+4ffiO. 

This can be rewri t ten as 

(r - 2) 2 ffi 0, 

so 2 is the only root  bu t  it occurs twice. 
Thus  the general solution is 

a~ ffi (cl + c2n)2 ~. 

Using the boundary conditions we obtain 

2 = aoffi cl, 

8 = a~ ffi 2(c~ + c2). 

Solving gives 

cl ffi 2, c2 ffi 2, 

so the general solution is 

a , , - - ( 2 n  + 2)2 ~. 
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2.2 Nonhomogeneous Equations 

We have now seen how to solve any ho- 
mogeneous linear recurrence with constant 
coefficients. Often however the recurrence 
we wish to solve is not homogeneous, as, for 
example, in 

an-5an_ l+6an_2f f i4 ,  for n _ 2 ,  

ao = 5, (2.5) 

a l =  7. 

A recurrence which looks like eq. (2.1) but 
has a nonzero function of n on the right- 
hand side is called anonhomogeneous  lin- 
ear recurrence with constant coefficients. 
Any sequence an which satisfies the recur- 
rence (but not necessarily the boundary 
conditions) is called a part icular  solution; 
any sequence which makes the left-hand 
side identically zero is called a homogene- 
ous solution. Sometimes we can guess a 
particular solution, but cannot easily find 
one which makes the boundary conditions 
hold. In this case the following theorem is 
very helpful. 

Theorem 2 
I f  we start  wi th  any part icular  solution a,  
and  add  any homogeneous solution, we 
obtain another  part icular  solution. More- 
over the difference between any two partic- 
ular solutions is always a homogeneous 
solution. 

(The proof is easy; we do not present it 
here.) This theorem suggests the following 
approach to solving nonhomogeneous re- 
currences. 

1. Guess a particular solution an. 
2. Write a formula for a,  plus the general 

homogeneous solution {with unknown 
constants). 

3. Use the boundary conditions to solve for 
the constants. 

We now demonstrate this technique on 
the recurrence in (2.5). First we guess a 
particular solution; after some effort we 
discover that an = 2 will work. (This process 
of trying to guess a solution could be quite 
frustrating. Fortunately there is a sys- 
tematic method which covers many cases, 

and which we discuss in a moment.) We 
have seen before (2.2) that the homogene- 
ous solution has the form 

an = e l 2  n + c23 n. 

Thus by Theorem 2 the solution to (2.5) 
must have the form 

an = 2 + c12 n + c23 n. 

Solving for the constants using the bound- 
ary conditions we obtain 

Cl f f i  4, c2 = -1,  
SO 

an ffi 2 + 4 . 2 , ,  - 3, , .  

The method outlined has an obvious dis- 
advantage: It requires that we be able to 
guess a particular solution. It would seem 
much more desirable to have a systematic 
method for producing particular solutions. 
We now outline a systematic method which 
applies to many recurrences. Some addi- 
tional notation is useful. We represent a 
sequence by simply writing down a formula 
for its nth element in angle brackets, as- 
suming elements are numbered starting at 
0. For example, the sequence 1, 2, 4 . . . .  is 
represented by (2n). (Be sure to read this 
carefully; (a,,) denotes a sequence, not the 
single element an.) Let E be an operator 
which transforms a sequence by throwing 
away its first element. For example, the 
sequence 1, 2, 4, 8, . . .  is transformed by E 
into 2, 4, 8, 16 . . . . .  This can be abbreviated 
by writing 

E(2 n) ffi ( 2 n + ~ ) .  

In general, 

E(a,,) = (an+l). 

We can build new operators by combining 
E with itself and with constants. To do this, 
for any constant c we define an operator 
(also denoted by c) by the equation 

C(an) = (ca,,). 

We also define addition and multiplication 
of operators by 

(A + B)(an)  = A(a, , )  + B(a, ,) ,  

and 

( A B ) ( a , )  = A(B(an) ) .  

Comput ing Surveys, Vol 12, No. 4, l )ecember  1980 



Some Techniques for Solving Recurrences 

TABLE 1. ANNIHILATORS FOR VARIOUS SEQUI~NCES 

Sequence Annihi lator  

(c) E - 1 
(a polynomial in n of degree k) (E - 1) k+l 
(c n) (E - c) 
(c n times a polynomial in n of degree k) (E - c) k+l 

• 425 

With  these definitions we can easily verify 
tha t  addit ion and mult ipl icat ion of opera- 
tors are commuta t ive  and associative; 
moreove r  mult ipl icat ion distr ibutes over  
addition. (In fact, the set  of  all possible 
opera tors  tha t  can be constructed as de- 
scribed above forms an algebraic s t ructure  
known as a Euclidean ring. See HERS64, p. 
104.) Here  are two examples  of  applicat ions 
of  operators .  

(2 + E)(a, , )  = (2a,, + an+i), 

E3(an) = (an+3). 

Such opera tors  enable us to express cer- 
tain concepts  very concisely. Note,  for ex- 
ample,  t ha t  if f (r)  is the  characteris t ic  poly- 
nomial  of  some recurrence of the form in 
(2.4), we m a y  write the recurrence as 

f ( E ) ( a , )  = (0). 

As this equat ion suggests, somet imes  a cer- 
tain operator ,  when applied to a certain 
sequence, produces a sequence consisting 
entirely of zeroes. In  this case we say tha t  
the opera tor  is an annihilator for the se- 
quence. For  example,  E - 2 is an annihila- 
tor  for (2"), since 

(E - 2)(2 n) -- (2 n+~ - 2.2")  ffi (0). 

We can now finally describe a fairly general  
technique for producing solutions to non- 
homogeneous  equations with constant  coef- 
ficients. 

1. Apply  an annihi la tor  for the r ight-hand 
side to bo th  sides of the  equation. 

2. Solve the  result ing homogeneous  equa- 
t ion by  the  methods  discussed earlier. 

A list of sequences and corresponding an- 
nihilators is shown in Tab le  1. One can 
prove  tha t  this table is correct  as follows. I t  
can easily be shown tha t  if we apply  
(E - c) to (c~p(n)), where p(n) is a poly- 
nomial  of posit ive degree d, we obtain 
(c"q(n)), where q(n) is a polynomial  of  

degree d - 1. Using this  and  an easy induc- 
tion, we can establish tha t  the  last  line in 
the  table  is correct.  All of  the  o ther  lines 
are special cases of  the  last  line. 

One can easily prove  t h a t  ff A is an 
annihi la tor  for (an) and B is an annihi la tor  
for (bn), then  the  product AB is an anni- 
hi lator  for the  sum (a, + b,). Thus,  for 
example,  an annihi la tor  for (n2 n + 1) is 
(E - 2)2(E - 1). 

We now work out  two examples.  T h e  first 
is eq. (2.5), which we solved above  by guess- 
ing the  par t icular  solution. With  our  new 
nota t ion  we can write this as 

( E  2 - 5E + 6)(an) = (4). 

Factoring gives 

(E - 2)(E - 3)(an) ffi {4). 

Now apply (E - 1) to annihilate the  4. 

( E  - 1 ) ( E  - 2 ) ( E  - 3 ) ( a n )  ffi ( 0 ) .  

This  has the character is t ic  equat ion  

(r - 1)(r - 2)(r - 3) ffi 0, 

with distinct roots  1, 2, and  3. T h u s  we 
mus t  have 

a ,  -- cl + c22 n + c,~3 ~. 

We can solve for the  constants  by  noting 
tha t  

a 2  - 5 a l  + 6 a o  ffi 4 ,  

aoffi5,  

al •7 .  

T h e  result  is 

an ffi 2 + 4 .2  n -  3 n, 

as before. 
For  a second example,  consider the equa- 

t ion 
an - 2an-1 -- 2 n - 1, for n ~- 1, 

ao ffi 0. (2.6) 
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(We show an impor tant  application of this 
recurrence in Section 3.) Using the  operator  
E we ma y  write 

( E  - 2 ) { a . )  = ( 2  "+1 - 1 ) .  

T h e  annihi lator  for the r ight-hand side is 
(E - 2)(E - 1), so we obtain 

( E  - 1 ) ( E  - 2 ) 2 ( a . )  = (0). 

Thus  the characteristic roots are 2 (with a 
multiplicity of 2) and 1, so 

a n  = (Cl 4" c 2 n ) 2  n 4- c3. 

Solving for the constants we obtain 

cl ffi - 1 ,  c2 -- 1, c3 ffi 1, 
SO 

a n  ffi (n - 1 ) 2  n 4- 1 .  

3. DOMAIN AND RANGE TRANSFORMA- 
TIONS 

Somet imes  it is useful to apply a transfor- 
mat ion  to a sequence in order  to make it 
appear  in a more desirable form. A se- 
quence can be thought  of as a mapping 
from the integers into the  reals; thus we 
call a t ransformation on the values of the 
sequence a range t rans format ion  and a 
t ransformat ion on the indices a domain  
transformation.  (In LEVY61, p. 103, se- 
quences which can be t ransformed by  do- 
main or range transformations into linear 
recurrences are called "pseudo-non-l inear 
equations.") We begin by showing an ex- 
ample of  a range transformation.  Suppose 

a n  = 3a2-1, for n _> 1, 

a0f f i l .  

This  cannot  be solved by any method  dis- 
cussed so far, but  if we let  

b, = l g a ,  

(where lg denotes the base-2 logarithm), we 
m ay  rewrite the recurrence as 

b, = 2b,-1 + lg 3, 

b 0 = 0 .  

This  can easily be solved by the methods  
discussed before. The  result  is 

b,  = ( 2 " -  1) lg 3, 

s o  

a n  = 2 (2n-1)ig 3 ~_ 32"-1. 

Next  we show how domain transforma- 
t ions can be useful. Recall  the recurrence 
which we ment ioned at  the beginning of 
this paper  for Mergesort:  

T(n)  = 2T(n /2 )  + n - 1, 

for n >_ 2, (3.1) 

T(1) = 0, 

where n is required to be a power of 2. (See 
AHO74, pp. 65-67.) We may  be t empted  to 
consider the recurrence 

a n  = 2an~2 + n - 1, 

but  none of the techniques we have dis- 
cussed so far are directly applicable to this 
equation. However  if we let  

n = 2 k and ah ffi T(n) ffi T(24), 

we can write 

ak = 2ak-1 + 2 4 - -  1, for k _> 1, 

a o = 0 .  

Th is  is a recurrence which can be solved by 
the methods  already described. In fact, it is 
one of those which we solved as an example 
in the preceding section, namely  (2.6). T h e  
solution we found was 

ak = (k - 1) 24 + 1. 

Thus,  since a~ = T(24), we may  conclude 
tha t  

T(n) f f i ( l g n - 1 ) n + l .  

Next  we give an example of a more diffi- 
cult  domain transformation.  I t  is possible 
to mult iply two n-bi t  numbers  by doing 
three  multiplications of (n/2 + D-bit  (or 
shorter)  numbers  and O(n) additional 
work. (See AHo74, pp. 62-65; there  the al- 
gori thm is described in a way which needs 
only mult iply n /2-bi t  numbers,  bu t  a more  
natural  implementa t ion yields the recur- 
rence we are about  to analyze.) Applying 
this decomposit ion recursively (and stop- 
ping the recursion when the numbers  are of 
length 3 or less) leads to an algori thm whose 
complexity is described by 

T(n)  = 3 T ( n / 2  + 1) + O(n), 

for n > 3 ,  (3.2) 

T(3) ffi O(1). 
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T h e  O-nota t ion in the  recurrence is a little 
inconvenient .  To  el iminate it, note  tha t  
there  mus t  be some constant  c' such tha t  
the  extra  t ime represented  by  the " O ( n ) "  
in the recurrence is bounded  by  c'n. Simi- 
larly, there  is a constant  c" such tha t  the 
t ime represented  by  the "O(1)" is bounded 
by  c". Lett ing c be the larger of these, we 
conclude tha t  we m a y  bound T(n )  by 1'(n), 
if  ~/'(n) is the  solution to 

~(n)  = 3 ~ ( n / 2  + 1) + c n, 

for n > 3 ,  (3.3) 

~ ( 3 )  = c. 

Since we only seek the  O-notat ion for the  
complexi ty  of  the  algori thm, we can scale 
this by  any  constant  factor. In  par t icular  
we m a y  let  c be 1, to obtain 

~(n)  -- 3~/'(n/2 + 1) + n, 

for n > 3 ,  (3.4) 

~'(3) ---- 1. 

We would like to be able to choose an index 
k so tha t  the recurrence could be wri t ten as 

ak = 3ak-~ + (some function of k). (3.5) 

Let  nk denote the value of n corresponding 
to a given k. In order  for (3.4) to correspond 
to (3.5), we mus t  have  

nk-1 ffi nk /2  + 1, 

SO 

nk = 2nk-1 -- 2. 

We call this a s e c o n d a r y  r e c u r r e n c e  for 
(3.4). I f  we let no = 3, the solution is 

nk = 2 k + 2. 

Now if we let 

ak -- ~(nk), 

we may  rewrite (3.4) as 

ak --- 3ak-~ + 2 k + 2, 

ao ffi l .  

Solving this yields 

ah ffi 4 .3 k - 2.2 k -  1. 

Since the relat ion be tween n and k implies 

k ffi lg(n - 2), 

we conclude t ha t  for any  n which  appea r s  
in the  sequence ( n D ,  

~(n)  ffi 4 .3  igor-2) - 2 .2  Igor-2) - 1 

ffi 4(n - 2 )  lg3  - 2(n - 2) - 1 

ffi 4(n - 2 )  i g3  - 2n + 3. 

T h u s  this me thod  for mult iplying two num- 
bers  works in T ( n )  ffi O(n  I¢~) time. Since 
lg 3 is abou t  1.59, this mult ipl icat ion 
me thod  is asymptot ica l ly  fas ter  t han  the 
s imple O(n  2) approach.  

For  very  large n a m u c h  fas ter  way  of 
mult iplying n-bi t  numbe r s  is the  Schon- 
hage-S t ras sen  me thod  [AHo74, Sec. 7.5; 
SCHO71]. In  analyzing this me thod  the  fol- 
lowing recurrence arises. 

T ( n )  ffi lg n + 2T(4 nl/2). (3.6) 

We begin the solution of this recurrence  by  
using a domain  t ransformat ion.  T h e  appro-  
pr iate  secondary recurrence  is 

A ~1/2 
n t  ~ ~ i$i+1.  

T o  convert  this  into a more  t rac table  form, 
we m a y  use the range t rans format ion  m, ffi 
lg n,. T h e n  we have  

m~ ffi 2 + m,+~/2. 

This  can be solved by  the  me thods  of Sec- 
t ion 1 or Sect ion 2. T h e  solut ion is 

m, ffi 2 t + 4, 
SO 

n~ ~- 2 ~+4. (3.7) 

(Other  solutions are also possible since we 
have  not  s ta ted  the boundary  conditions.) 
I f  we now let  a, ffi T(nl ) ,  eq. (3.6) becomes  

a, -- 2' + 4 + 2a,-1, 

which is readily solved to yield 

a~ ffi i2 '  + b2' - 4, 

where b is unspecified since we have  not  
given boundary  conditions. T h e n  since 
f rom {3.7) 

= lg ( lg  n,  - 4) ,  

it mus t  be t ha t  for any  n appear ing  in the  
sequence (n~), 

M ( n )  ffi O(i2 i) 

--- O(lg(lg n - 4) 2 ( lg ( lgn-4) ) )  

= O ( l g ( l g  n - 4 ) ( l g  n - 4 ) )  

ffi O ( l g  n lg  lg  n) .  
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TABLE 2. G~.NERATING FUNCTIONS FOR SOME 
S E Q U E N C E S  

Sequence Generating Function 

1, 1, 1, I ,  . . .  
1, C, C 2, . . .  

1, 2c, 3c2 , . . . ,  
(i + 1)c',... 

(o) (:) ..... 
(:) .... 

I'bZ+Z2"i'Za4" . . . .  1 / ( l - - z )  

1 + cz + (cz) 2 + . . .  = 1 / (1-cz )  
1 / (1-cz )  ~ 

(1 + z)" 

Using this solution one can show that  the 
SchSnhage-Strassen algorithm will multi- 
ply two n-bit numbers in O(n  lg n lg lg n) 
time; see AHo74, Sec. 7.5, for more details. 

4. GENERATING FUNCTIONS 

4.1 Generating Functions for Sequences 

Generating functions are an ingenious 
method by which certain problems can be 
solved very elegantly. Like Laplace trans- 
forms and Fourier transforms, generating 
functions transform a problem from one 
conceptual domain into another, in the 
hope that the problem will be easier to 
solve in the new domain. 

Definition 

The g e n e r a t i n g  func t ion  for the sequence 
a0, al, a2 . . . . .  is the function 

ao 

A ( z )  = ~ a,z'. 
t--O 

(The sum in the definition might not always 
converge; we have more to say about this 
later. In FELL68, Sec. XI.1, the definition 
given for generating functions requires that  
the series converge over some interval of 
positive length.) At first there seems to be 
little motivation for the definition of gen- 
erating functions, but we shall see that  cer- 
tain types of operations on sequences cor- 
respond to certain other operations on gen- 
erating functions. Thus in tackling a prob- 
lem we can choose whichever domain 
makes the problem easier. Table 2 provides 
some examples of sequences and corre- 
sponding generating functions. Note that if 
n is a positive integer, the last generating 
function is a polynomial. We can extend the 

Computing Surveys, Vol 12, No. 4, December 1980 

usefulness of this generating function by 
using an extended definition of the binomial 
coefficients, as in LIu68, Sec. 2-2, and 
S~.DG75, p. 299. For any real n and any 
integer i define 

= i f  i < 0 t h e n  0 e l s e  I ~  ° (n  - j ) .  

Then the last line in the table is valid for 
any real n and gives a sequence with infi- 
nitely many nonzero values if n is negative 
or nonintegral. 

Now we show how some standard oper- 
ations on functions correspond to opera- 
tions on sequences. (Further discussion of 
these operations can be found in KSUT68, 
Sec. 1.2.9, and REXN77, Sec. 3.3.) Let A ( z )  
and B ( z )  be the generating functions for 
(a,) and (b,) respectively. In Table 3 the 
left column shows a function that  can be 
obtained from A and B by simple opera- 
tions and the right column shows a formula 
for the ith element of the corresponding 
sequence. 

We now show how generating functions 
can be used to solve a simple recurrence. 
Suppose that  

a .  -- 2an-1 + 1, 

a o =  l.  

Let 

for n > 1, 

a~ 

A ( z )  = ~ a . z" .  
n~O 

From the recurrence, this sum can be re- 
written as 

oo 

A ( z )  ffi 1 + ~ (2a,=-1 + 1)z" 
n - -1  

oo oo  

= l + z  ~ 2a.-1 + ~ z" 
n - -1  n - - I  

(11) 
• l + 2zA( z )  + '1 z 

Note what has happened. Initially we had 
a problem to be solved for (a.).  In the left 
and right sides of the foregoing equation we 
have a problem which is to be solved for .4. 
This new problem is a simple one. Algebra 
yields 

1 
A ( z )  =,  

(1 --  z ) ( 1  --  2 z ) "  



Some Techniques for Solving Recurrences 

TABLE 3. OPEEATmNS ON 
GENERATING FUNCTIONS 

Generating Formula for tth 
Functwn Element of Sequence 

cA ca, 
A + B a, + b, 
AB  Y,~-o a~b,_j 

zkA(z) i f  i < k t h e n  0 else a,-k 

A(z) 
1 - z Y~-o  at 
zA'(z) ia~ 
S ~ A(t) dt i f  i = 0 t h e n  0 e lse  a,-1/~ 

Now we must return to the original prob- 
lem domain. Unfortunately A(z) is not in 
Table 2. However, by use of partial frac- 
tions, we may write 

1 -1  2 

( 1  - z ) ( 1  - 2 z )  1 - z 1 - 2z 

(We do not discuss here the problem of 
decomposing a rational expression with 
partial fractions; the interested reader may 
consult FADE64, Sec. 13.8.) Using Tables 2 
and 3, we now see that  the corresponding 
sequence is given by 

an = 2 "+1  - 1. 

This agrees with the solution in eq. (1.8). 
At this point a word of caution is in order. 

We have done some formal manipulations 
involving sequences but have ignored ques- 
tions such as convergence. This might lead 
to extraneous answers in some cases. There 
are at least two possible ways to avoid 
difficulty. One approach is to check the 
answer by some independent method. In 
our example a simple inductive proof would 
suffice. A second approach is to check care- 
fully the validity of each step. In our ex- 
ample we could tell by inspection of the 
recurrence that 

lim an+l ~- 2, 
n--)oo a n 

and hence that  the radius of convergence 
of A(z) is ½ (by BUCK78, Th. 14, p. 240). 
This could form the basis of a rigorous 
proof of the validity of our operations. (See 
also the discussion in KNUT68, Sec. 1.2.9. 
For a good rigorous discussion of properties 
of series, see BUCK78, Chaps. 5 and 6.) In 
the remainder of this paper we do not al- 
ways perform these verifications. 

° 429 

As a second example of the use of gen- 
erating functions, we consider the problem 
of counting the number of distinct binary 
trees with a given number of nodes. (We 
assume that  the nodes are indistinguish- 
able. Thus we consider two trees identical 
if they have the same shape. This is some- 
times referred to as the enumeration of 
planted plane binary trees.) This example 
shows that  generating functions can be used 
to solve problems for which the techniques 
of Sections 1 and 2 do not seem to be of 
much help. Let bn be the number of distinct 
binary trees which can be formed from n 
nodes; let B (z) be the generating function 
for (bn). 

Before continuing the analysis it is worth 
noting that  the generating function must 
converge for any z in the open interval (-¼, 
¼). To see this let the type of a node be 0 ff 
it has no children, 1 if it has only a left 
child, 2 if it has only a right child, and 3 if 
it has both children. It is not difficult to 
show (see STASS0, Sec. 3.5.2) that  if we 
have a list of the types of the nodes in 
preorder, then we have enough information 
to reconstruct the tree. Now there are only 
4" strings of n of these four types; thus it 
must be that  bn - 4 n. Hence the radius of 
convergence of B (z) must be at least ¼. 

To get more information about B (z) we 
determine a recurrence for (bn). A binary 
tree on one cr more vertices has to have a 
root. Assuming it has n + 1 nodes, the 
remaining n nodes can be distributed arbi- 
trarily between the left and right subtrees. 
Note that  if we put i nodes in one subtree 
there will be n - i nodes remaining for the 
other tree. If we choose to partition the 
nodes this way, we can still build the left 
subtree in any of b, ways and the right 
subtree in any of bn-, ways, for a total of 
b~bn-, combinations. Summing over all the 
possible choices for i, we come up with the 
following recurrence. 

n 

bn+l = ~ b,bn-,, for n _> 0, 
~=0 (4.1) 

b0 ~ 1. 

The boundary condition may seem a tittle 
strange at first. We need this for con- 
sistency, however, since if we decide to put 
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all of the nodes in the one subtree there is 
exactly one way to build the other subtree, 
namely, to put nothing there. 

To begin to convert eq. (4.1) into a state- 
ment about B(z ) ,  we multiply by z n and 
sum as n goes from 0 to infinity. 

2 b,+l z n =  ~, b,bn_,Z n. (4.2) 
n--O n--O t~O 

The left side of (4.2) is 

bl + b2z + b3z 2 + b4z a + . . . .  

This is just the same as B(z), except that  
we have deleted the first term (b0) and 
removed one factor of z. Therefore, since bo 
is 1, the left side is 

(B(z)  - 1)/z.  

The right side, from the third line of Table 
3, is 

B(z) 2. 

Thus {4.2) becomes 

(B(z)  - 1)/z = B ( z )  2, 

which can be rearranged as 

zB( z )  2 - B ( z )  + 1 = O, 

and solved by the quadratic formula to 
obtain 

1 __. ~ f l -  4z 
B(z)  = (4.3) 

2z 

At this point we might be a little dismayed, 
since the _+ sign gives two solutions, and it 
is not apparent which is correct. However 
note that  

B(0) ffi bo + blz + b2z2 + . . .  Iz-0 ffi b0. 

Thus B (0) must be 1. Now if we choose the 
- sign in (4.3), B(0) will indeed be 1; ff we 
choose the + sign, B(z )  approaches infinity 
as z approaches 0. Thus we may finally 
conclude that  

1 - ~/1 - 4z 
B(z)  ffi (4.4) 

2z 

A number of texts have shown how to ob- 
tain an exact formula for bn from this gen- 
erating function [KNUT68, Sec. 2.3.4.4; 

STAN80, Sec. 3.3.2; REIN77, Sec. 3.3]. It is 
shown that  

n +----~ " (4.5) 

We do not repeat this part of the solution 
here. However, at the end of the third part 
of our discussion of generating functions, 
we show how to obtain an asymptotic de- 
scription of b, very easily. 

4.2 Probability Generating Functions 

Let X be a random variable which assumes 
nonnegative integer values and letp,  be the 
probability that  X = i. Then the  probabi l i ty  
genera t ing  funct ion (pgf)  for X is the gen- 
erating function for (p,). Note that  its ra- 
dius of convergence must be at least 1, since 
probabilities lie in the range [0, 1]. Such 
functions have some particularly nice prop- 
erties, which we explore in this section. 

Suppose X and Y are two independent 
nonnegative integer random variables, with 
probability generating functions P and Q 
respectively. Using the third line in Table 
3, we can readily establish the rather pleas- 
ing fact that  the pgf for the sum of X and Y 
is the product of P and Q. (It must be 
stressed that  this fact is not true i fX and Y 
are not independent. As an extreme exam- 
ple, note that  the pgf for X + X is P(z2),  
not (P(z))2.) 

Many of the commonly encountered non- 
negative integer random variables have eas- 
ily expressed generating functions. A few of 
these are summarized in Table 4. (This 
table is based on FELL68, Sec. XI.2.) The 
first two distributions can be described in 
terms of a sequence of flips of a biased coin, 
which lands heads up with a probability of 
p. The binomial distribution tells the num- 
ber of heads in n flips. The geometric dis- 
tribution describes the number of tails that  
occur before the first head. The Poisson 
distribution can be viewed as a limiting case 
of the binomial distribution, in which we let 
n --~ ~ and p --+ 0 in such a way that  p = 
)~/n. Radioactive decay provides a simple 
example of such a distribution. If we assume 
that  decays of separate atoms are indepen- 
dent, then the number of flashes of a radio- 
active watch dial in some time period has 
very nearly a Poisson distribution. By tak- 
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Some Techniques for Solving Recurrences 

PROBABILITY GENERATING FUNCTIONS FOR SOME 
RANDOM VARIABLES 

Probabdity 
Name Formula for pk Generattng Function 

Binomial (~) pk(1- p)'-k (1-p+Pz)n 

Geometric pqk 1 - q where q = 1 - p 
1 - qz 

Poisson k~e-~'/k! e ~(~-l) 

• 4 3 1  

ing the limit of the generating function for 
the binomial distribution and invoking the 
Continuity Theorem, we can obtain the 
generating function shown in the table for 
the Poisson distribution; see FELL68, Sec. 
XI.6. 

Another useful property of probability 
generating functions is that  they enable us 
to find certain expected values quickly. (See 
FELL68, Sec. IX.2, for a discussion of expec- 
tation.) For example, note that 

ov 

P'(1) = ~ ip, ffi E[X]. 

Table 5 presents a number of formulas for 
expected values; Dz denotes the derivative 
with respect to z. (The first three lines of 
the table may be found in FELL68, Secs. 
XI.1 and XI.2, and KNuT68, Sec. 1.2.10. 
The fourth line follows easily from line 6 of 
Table 3.) 

Some caution must be exercised when 
using Table 5. We express the possible 
problem in terms of the last line, since the 
first three lines are special cases of it. Let 
r be the radius of convergence of the gen- 
erating function. If ] c I > r, the function in 
the left column does not have a finite ex- 
pectation, even though the formula in the 
right column may seem to give an answer. 
In the case c ffi r, a finite expectation may 
or may not exist. In this case if c > 0 and 

lira (zD~) kP(z) 
z~c 

exists, then a finite expectation does exist 
and is given by the limit. If lc [ < r, the 
formula always gives the correct answer. 
Note that  for the binomial and Poisson 
distributions the generating function con- 
verges everywhere, so problems of the sort 
discussed here do not arise. 

As an example of the application of prob- 
ability generating functions we now analyze 

the expected complexity of a highly effi- 
cient sorting algorithm known as address 
calculation sorting [ISAA56; KNUT73, Sec. 
5.2.1]. Suppose we know that  the data to be 
sorted (xl, x2, . . . ,  x,) are distributed uni- 
formly and independently over the open 
interval (0, 1). The following algorithm clas- 
sifies the data into n buckets, each corre- 
sponding to a piece of the interval of length 
1/n. Then it sorts each bucket and concate- 
nates them. The hope is that  each bucket 
will contain so few elements that  each sort 
can be performed in very little time. 

begin 
f o r  k :-- 0 u n t i l  n - I d o  

Lk :-- the empty list; 
f o r  ~ :ffi I u n t i l  n d o  

begin 
k :ffi f loor(nx~); 
"append x, to Lk; 

e n d ;  
f o r  i :ffi 0 u n t i l  n - I d o  

if L, is nonempty then sort Li b y  
insertion sort; 

output Lo II L~ [I L2 [[ . . -  [I L~-I; 
e n d ;  

Here two consecutive vertical bars denote 
concatenation of lists. 

Aside from the time in the sorts, the 
algorithm clearly uses O(n) time. We show 
that  the expected time for each sort is O(1) 
and hence the overall time is O (n). 

First we determine the generating func- 
tion for the length X of one of the lists, say 
L0. Note that  each element, independently, 
has a probability of 1/n of being placed into 
list Lo. Since there are n trials we obtain a 
binomial distribution. From Table 4, ff we 
let p -- 1/n, X has the generating function 

P(z) f f i ( 1 - p + P z ) n f f i ( l + Z - 1 )  n ' n  

The time to perform insertion sort is O (X2). 
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TABLE 5. EXPECTED VALUES FOR SEVERAL 
FUNCTIONS OF A RANDOM VARIABLE X WITH 

PROBABILITY GENERATING FUNCTION P 

Function of X Expected Value 

X P'(1) 
X 2 P"(1) + P'(1) 
c X P(c) 
X% x (zDz)kP(z) ]z-c 

But by Table 5, 

E [X  2] -- P"(1) + P'(1) 

- n - l ( l + Z - 1 )  n - 2 n  n 

.(l.Z 7' I 
n z - i  

R - - 1  
- - - -  b l < 2 .  

n 

Thus the expected time for each sort is 
iIldeed O(1), so this sorting algorithm runs 
in O (n) time under the given assumptions. 

This same type of problem arises in a 
different context in an analysis of the trav- 
eling salesman problem [KARP77]. There is 
a well-known dynamic programming ap- 
proach which yields an O(n~2 n) algorithm 
for this problem [BELL62, HELD62]. In 
KARP77, this is used as one of the building 
blocks for an algorithm which tends, 
asymptotically, to run quite quickly and 
give near-optimal results on the average, 
under certain assumptions about the distri- 
bution of inputs. In particular it is assumed 
that the number of points is drawn from a 
Poisson distribution with mean n, and that 
the points are distributed uniformly over 
the unit square. The square is subdivided 
into subsquares and the TSP is solved op- 
timally for the set of points within each 
subsquare. These solutions are then com- 
bined to produce an approximate solution 
for the entire problem. Part  of the analysis 
involves determining the average amount 
of time spent solving one of these 
subproblems. If each subsquare has area A, 
then the number of points within each sub- 
square has a Poisson distribution and a 
mean of A n .  Let X denote a variable with 
this distribution, and, for convenience, let 
m = A n .  Thus to evaluate E [ X 2 2  x] 

we write 

(zDz)2em(z-1)[z.2 
f f i  (zDz)zmem(Z-1) l z .  2 

ffi (4m 2 + 2m)e  m ffi O(m2em). 

Note that if the number of points were 
exactly m, the time used would be O(m22 m) 
rather than O(m2em). Since the function 
m22 m grows rapidly, the effect of the fluc- 
tuation of X about its mean is to increase 
the mean time somewhat. 

As a final example of an application of 
probability generating functions, we con- 
sider the problem of solving a random as- 
signment problem. Donath [DONA69] used 
generating functions in obtaining a lower 
bound on the average value of the optimum 
solution. We discuss his argument here. To 
define the assignment problem assume that 
a manager must assign n workers to n jobs, 
and that we have a matrix (c~) in which c,~ 
indicates how much worker i dislikes job j. 
The manager wishes to assign workers to 
jobs so as to minimize the total worker 
dissatisfaction. More formally, he wishes to 
choose exactly one element from each row 
of the matrix in such a way as to minimize 
the total of the selected elements. We call 
this minimum total the va lue  o f  the  opti- 
m u m  solut ion.  Donath showed how to ob- 
tain a lower bound on the average value of 
the optimum solution for a random matrix. 
Of course, in order to make this precise, we 
must state the assumptions to be made 
about what a "random matrix" looks like. 
In the result reported here Donath assumed 
that each row was (independently) a ran- 
dom permutation of the integers from 1 to 
n; each of the n! permutations could occur 
with equal probability. (See GONN79 for an 
interpretation of the assignment problem, 
with this distribution of inputs, in terms of 
ideal structuring of hash tables.) To begin, 
we fix one possible assignment and try to 
find the pgf for the sum it yields for a 
random matrix. Note that  in each row this 
assignment yields, with equal probability, 
a number from 1 to n. Thus the pgf for the 
number selected from any particular row is 

z + z  ~ + . . .  + z  n z ( 1 - z  n) 

n n(1 - z) " 
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To find the pgf for the total cost of the n 
rows, we merely raise this generating func- 
tion to the n th  power to obtain 

z"(1 - z~)" 

n~(1 - z) ~ 

It will turn out that  we are more interested 
in the cumulative probabilities, that is, the 
sequence (ak) where ak is the probability 
that  the total is less than or equal to k. To 
obtain this, we apply the summation oper- 
ator found in line 5 of Table 3, namely, 
1/(1 - z), to obtain 

n-~z"(1 - z)-(n+l~(1 - z~) ". (4.6) 
Now, as we verify in a moment, the range 
of k over which we need the values of ak is 
n < k < 2n. An inspection of (4.6) shows 
that for k in this range, the coefficient of z k 
must be the coefficient of z k-" in 

n-~(l - z)-("+l). 

By an application of the binomial theorem 
we can establish that this coefficient is 

( - 1 ) n - k n - ~ ( - ; 2 : ) )  ffi n -~(k  k n ) ,  

where the equality follows from SEDG75, 
identity (16), p. 301. 

So far we have been considering the prob- 
ability that  the total cost is bounded by k, 
given a fixed assignment of columns to 
rows. To bound the optimum, we must bear 
in mind that  n! assignments are possible. 
Now by Boole's inequality the probability 
that any of the assignments yields a cost 
bounded by k is no more than the sum, over 
all assignments, of the probability that this 
particular assignment does. Thus if we let 
bk be the probability that  the optimum is 
less than or equal to k we have 

b k < n ! a k = n ! n - n (  k ) - -  k - n  " (4.7) 

Using Stirling's approximation one may es- 
tablish that  

in b, <_ n[fl ln fl - (fl - 1) In ( f l -  1) - 1] 

+ O(ln n), 

where k = fin. Now let fl0 be the root of 

f l l n f l -  ( f l - 1 )  i n ( f l - 1 ) - l = 0 .  (4.8) 

It is not hard to establish that if fl < rio, the 

right-hand side of (4.7) approaches 0 expo- 
nentially as n approache~ infinity. From 
this we may deduce that  the average value 
of the optimum is asymptotically bounded 
below by Bon. Numerical solution of (4.8) 
reveals that  P0 is about 1.54221. Simulation 
of the assignment problem with random 
data of the type discussed here suggests 
that  actually the optimum tends to be 
asymptotic to approximately 1.8n [DONA69, 
GONN79]. Thus this lower bound is proba- 
bly not tight. See WALK79 for a derivation 
of an upper bound for a very closely related 
problem. 

4.3 Extracting Asymptotic Information 
from Generating Functions 

In this subsection we briefly discuss the 
problem of determining the asymptotic be- 
havior of the sequence (an) from its gen- 
erating function A(z). For this subsection 
only, the reader needs familiarity with com- 
plex variables and with the gamma func- 
tion. In BEND74 a number of useful tech- 
niques are presented, along with numerous 
interesting applications. Here we discuss 
one of the theorems from that  paper, which 
can be applied to many generating func- 
tions. We apply it to the generating function 
for the number of binary trees on n nodes, 
which we showed in (4.4) to be 

1 -  ~/1" - 4 z  
B(z) = (4.9) 

2z 

If a function f has a singularity at a, we 
say it is an algebraic singularity if near 
we can write f as 

g(z) 
f(z) ffi fo(z) + (4.10) 

(1  - z / a )  ~ 

where fo and g are analytic near a, g is 
nonzero near a, and w is not 0, -1,  -2,  
. . .  ; we assume here that  w is real. The 
following theorem is stated (in a slightly 
different and more general form) in 
BEND74, Th. 4, p. 498, as a special case of 
Darboux's Theorem [Sz~659, Th. 8.4, p. 
205]. 

Theorem 3 [BEND74, SZEG59] 
Suppose that for some real r > O, A(z) is 
analytic in the region [ z I < r, and has a 
finite number k > 0 of singularities on the 
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circle I z I ffi r, al l  o f  which are algebraic. 
L e t  ai, o~i, a n d  g ,  i ffi 1 . . . . .  k, be the values 
of  a, ~, a n d  g in (4.10) corresponding to the 
i-th such singularity.  Then  A(z )  is the gen- 
erat ing funct ion for a sequence (an) sat- 
isfying 

1 ~ g,(ai)n '~' 
J an ~ n ,=1 ~ + °(r-nnw-1 )" 

where w is the m a x i m u m  of  the ¢o,, a n d  F 
denotes the g a m m a  function. 

Although the statement of this theorem 
is fairly complex, it can sometimes be ap- 
plied very easily to give asymptotic infor- 
mation. For example, for the generating 
function B(z)  in (4.9) one easily establishes 
that  

1 r f f i -  k f f i l ,  
4' 
1 1 - 1  

al = 4 ' wl = - ~, g~(z) --- 2"--z" 

Hence by the theorem, 
1 - 2n -1/2 

b n ~ - - .  
n F(-½)(¼)" 

+ o((¼)-nn -~/~) 

4 ~ 

~r~ n 3 / 2 ' 

which agrees with the result obtained in 
KSUT68, Sec. 2.3.4.4; STAN80, Sec. 3.3.2; 
and REIN77, Sec. 3.3, by applying Stirling's 
approximation to the exact solution (4.5). 

Although we do not reproduce the proof 
of the above theorem, we mention one of 
the ideas which is close to the heart  of the 
proof, and which is quite interesting in its 
own right. 

Lemma 

Suppose tha t  for some real r > O, A(z )  is 
analyt ic  in the region I z I < r a n d  contin- 
uous for ] z I <_ r. Then  A(z)  is the gener- 
at ing function for a sequence ( an ) satisfy- 
ing 

1 f c A ( Z )  dz  
an = ~ i  Z n+l ' 

where C is the contour I z [ ~- r, the integra- 
tion is counterclockwise, and  i is the 
square root o f - 1 .  
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This formula can be established using the 
Cauchy integral formula [CHUR60, Secs. 51 
and 52], the theorem on Taylor series 
[CHUR60, Sec. 56], and the fact that A must 
be uniformly continuous on the closed re- 
gion bounded by C. 

For other examples of the extraction of 
asymptotic information from generating 
functions, see BEND74 and HARA73, 
Chap. 9. 

5. SUMMARY 

We have discussed the application of recur- 
rences to problems in computer science and 
surveyed some techniques for solving them. 
We have also seen how generating functions 
provide a useful technique for manipulating 
sequences, including some applications 
other than the solution of recurrences. 
Many of the techniques used for dealing 
with recurrences--for example, annihila- 
t o r s - a r e  similar to those used with differ- 
ential equations [FADE68, Chaps. 9 and 10]. 

Many authors have written discussions 
of sequences, recurrences, and generating 
functions. MILN60 is a useful text entirely 
on finite differences; in particular, Chapter 
XIV discusses methods for solving linear 
recurrences in which the coefficients are 
rational functions of n. KNUT68, KNUT73, 
and Rv.xs77 discuss recurrences in the con- 
text of algorithm analysis. HALL67, Chap. 
3; LIu68, Chaps. 1 and 2; RIOR58, Chaps. 1 
and 2; and RIOR68, Chaps. 1 and 4, discuss 
them in the context of combinatorial anal- 
ysis. In SEDG75, which performs a very 
interesting and thorough analysis of a num- 
ber of variations of Quicksort, Appendix B 
provides a useful discussion of recurrences 
and generating functions, especially as they 
relate to harmonic numbers and binomial 
coefficients. For more information on gen- 
erating functions, see BV.ND74, FLAJ80a, 
FLAJ80b, LIU68, and STAN78. GONN78 dis- 
cusses useful methods for obtaining asymp- 
totic estimates of summations. SLOA73 pro- 
vides a remarkable encyclopedia of various 
sequences of integers. The reader is en- 
couraged to consult these references for 
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some fascinating topics which we have not  GONN78 
presented  here.  
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