
The Coppersmith-Winograd Matrix Multiplication Algorithm

Matthew Anderson, Siddharth Barman

December 6, 2009

1 Introduction

Definition 1 (Matrix Multiplication). Given matrices A ∈ Fm×n, B ∈ Fn×p, compute C ∈ Fm×p
such that AB = C.

We only consider square matrices of dimension n (so m = n = p), though all arguments can be
extended in some way to distinct dimensions (and even give better results in some cases).

Definition 2 (Mk(n)). The number of multiplication operations over field k sufficient to multiply
two n by n matrices.

Definition 3 (ω). ω(k) ≡ inf{τ ∈ R|Mk(n) = O(nτ)}. Informally ω(k) is the minimum exponent
required to multiply two n by n matrices.

For simplicity we fix k = F, for some arbitrary field F, so we will drop it from the notation and
for the most part ignore it.

Trivially, 2 ≤ ω ≤ 3. The upper bound follows from the grade school algorithm for matrix
multiplication and the lower bound follows because the output is of size of C is n2.

Some progress has been made, though Coppersmith-Winograd represents the pinnacle thus far:

Year ω <

< 1969 3
1969 2.81 Strassen
1978 2.79 Pan
1979 2.78 Bini et al
1981 2.55 Schonhage
1982 2.50 Pan; Romani; CW
1987 2.48 Strassen
1987 2.38 CW

Figure 1: Historical improvements in bounding ω

2 Intuition

Before we get into the details of the CW, we’ll try to provide some intuition for what is going on.

1

2.1 Multiplying Complex Numbers

Let A,B ∈ C = R[i]/(i2 +1). Wlog A = (a+ ib) and B = (c+ id), then AB = (ac−bd)+(ad+bc)i.
This process uses 4 multiplications. Can we do better? Certainly, define:

m1 = (a+ b)(c− d) = (ac− bd) + bc− ad
m2 = bc

m3 = ad

AB = (m1 −m2 +m3) + (m2 +m3)i

(1)

Thus, complex multiplication be accomplished with only 3 multiplications over R.

2.2 Strassen’s Algorithm

Strassen’s 1969 algorithm, which gives ω < 2.81 follows similarly. (For reference see [Str69], [Wik09],
[BCS97] pages 10-14 or almost any book on algebraic algorithms). Let A,B,C ∈ R2×2.

A =
[
A1,1 A1,2

A2,1 A2,2

]
, B =

[
B1,1 B1,2

B2,1 B2,2

]
, C =

[
C1,1 C1,2

C2,1 C2,2

]
(2)

M1 := (A1,1 + A2,2)(B1,1 + B2,2)
M2 := (A2,1 + A2,2)B1,1

M3 := A1,1(B1,2 −B2,2)
M4 := A2,2(B2,1 −B1,1)
M5 := (A1,1 + A1,2)B2,2

M6 := (A2,1 −A1,1)(B1,1 + B1,2)
M7 := (A1,2 −A2,2)(B2,1 + B2,2)

C1,1 = M1 + M4 −M5 + M7

C1,2 = M3 + M5

C2,1 = M2 + M4

C2,2 = M1 −M2 + M3 + M6

(3)

Instead of using the 8 multiplications of the trivial approach, Strassen’s algorithm only uses 7.
Applying a divide and conquer strategy recursively (view Ai,j , Bi,j and Ci,j as matrices instead
of scalars) allows matrix multiplication over n = 2N size matrices to be performed using only
7N = 7log2 n = nlog2 7 = O(n2.81) multiplications.

3 Background

We need to introduce a more complex formalism to discuss CW.

Definition 4 (bilinear map). Let U, V,W be F-spaces. φ : U × V → W , is a bilinear map for all
u1, u2 ∈ U, v1, v2 ∈ V and λ1, λ2, µ1, µ2 ∈ F, φ(λ1u1 + λ2u2, µ1v1 + µ2v2) =

∑
i,j λiµjφ(ui, vj).

2

In particular, we get a linear map by holding the first entry of the bilinear map fixed, while
letting the second entry vary. Similarly if we hold the second entry fixed we again get a linear map.
For matrix multiplication U = V = W = Fn×n, and we write this bilinear map as φ = 〈n, n, n〉.
Definition 5 (rank). Let φ be a F-bilinear map. Then the rank of φ, R(φ) is the smallest r ∈ N
such that

φ(u, v) =
r∑
i

fi(u)gi(v)wi (4)

For wi ∈ W and f and g are F-linear forms (a linear transformation from a vector space to its
scalar field).

The following proposition shows that R(〈n, n, n〉) is related to M(n):

Proposition 1 ([BCS97] Prop 15.1).

ω = inf{τ ∈ R|R(〈n, n, n〉) = O(nτ)}. (5)

Proof. Let the RHS in the statement of the proposition be θ and φ = 〈n, n, n〉. Then

φ(a, b) =
|M(n)|∑

i

fi(a, b)gi(a, b)wi

=
|M(n)|∑

i

(fi(a, 0) + fi(0, b))(gi(a, 0) + gi(0, b))wi

=
|M(n)|∑

i

fi(a, 0)gi(0, b)wi +
|M(n)|∑

i

fi(0, b)gi(a, 0)wi

(6)

The first step follows by bilinearity of φ and the second does also because the cross terms
fi(a, 0)gi(a, 0) and fi(0, b)gi(0, b) are not bilinear.

This shows that 1
2R(〈n, n, n〉) ≤M(n), which by the definition of ω immediately gives θ ≤ ω.

By definition of θ for ε > 0, there is some m > 1 such that r = R(〈m,m,m〉) ≤ mθ+ε. Then
there are linear forms fi, gi: Km×m → K and matrices wi ∈ Km×m. Such that for all A,B ∈ Km×m:

AB =
r∑
i

fi(A)gi(B)wi. (7)

However, K does not need to be a field (i.e. K = F); K could, in fact, be a matrix algebra:
K = Fmi×mi

for some i ∈ N. Recall, an algebra over a field is a vector space equipped with a bilinear
vector product. Then two K matrices A and B can be multiplied over K using r multiplications
between elements of K, a number of additions between elements of K and some multiplications
between elements of F and elements of K.

Notice that Km×m ' Fmi+1×mi+1
, as F-algebras (block decomposition). This gives rise to the

following recurrence: M(mi+1) ≤ rM(mi)+cm2i, where c is proportional to the number of additions
and scalar multiplications used to compute fi and gi. Because c,m and r are constants, we can
solve this recurrence in terms of i, getting M(mi) = O(ri) (the multiplications are not easier than
addition and scalar multiplication).

Because M is monotone: M(n) = O(rlogm n) = O(nlogm r) = O(nθ+ε). This gives ω ≤ θ.

3

U × V U ⊗ V

W

t

τ
ψ

Figure 2: Universality of tensor product

Thus, bounding R(〈n, n, n〉), implies efficient multiplication algorithms.
Note that we showed R(〈2, 2, 2〉) ≤ 7 in our discussion of Strassen’s algorithm. Also R is sub-

additive and sub-multiplicative (under direct sums and direct products respectively). In particular,
R(〈nl, nl, nl〉) = R(

⊗l〈n, n, n〉) ≤ R(〈n, n, n〉)l. So R(〈2, 2, 2〉) ≤ 7, immediately gives ω < 2.81, by
the previous lemma.

This can be stated more generally:

Proposition 2 ([BCS97] Prop 15.3). If R(〈n, n, n〉) ≤ r, then nω ≤ r.

4 Approximation

Strassen’s algorithm is exact. Can we use fewer multiplications if we only want to approximate the
product of two matrices? We will show that the answer is yes and that even more remarkably, if
you can approximate matrix multiplication efficiently you can also efficiently compute it exactly.
The notion of border rank R(〈n, n, n〉) is introduced to make this precise.

In the following discussion a tensor t is approximated instead of the bilinear map 〈n, n, n〉.
Approximating a tensor with r “operations” in effect implies an approximation for 〈n, n, n〉. This
follows from the fact that any bilinear map ψ : U × V → W , for vector spaces U ,V and W can
be uniquely expressed as ψ = τ ◦ t, (Figure 2) where t is the tensor product t : U × V → U ⊗ V
and τ : U ⊗ V → W is a linear transformation (see Theorem 14.2, pp. 346 [Rom05]). Overall the
rank (and border rank) of the bilinear map can be characterized in terms of its associated tensor t
(Proposition 14.44, pp 366 [BCS97]).

The notion extends to trilinear forms. In particular, for any trilinear ψ : U × V ×W → Z, we
have ψ = τ ◦t for the tensor t : U×V ×W → U⊗V ⊗W and a linear transform τ : U⊗V ⊗W → Z.

Definition 6. A tensor t ∈ Fn×n×n is said to degenerate (of order q) to 〈r〉 iff there exists vectors
ui(ε), vi(ε), wi(ε) ∈ F[ε]n for 1 ≤ i ≤ r such that

εq−1t+ εqt′(ε) =
r∑

ρ=1

uρ(ε)⊗ vρ(ε)⊗ wρ(ε) (8)

for some t′(ε) = Fn×n×n

In essence, a tensor t degenerates to 〈r〉 suggests that it can be computed by determining the
coefficient of εq−1 (the error term) in the expansion of the right hand side of Equation 8.

4

We show that it is possible to obtain exact algorithms from approximate ones. With ε as the
indeterminate in Fn[ε] say we have the following representations

uρ(ε) =
∑
i

uiρε
i ; vρ(ε) =

∑
j

vjρε
j ; wρ(ε) =

∑
k

wkρε
k (9)

where coefficients uiρ, v
j
ρ, wkρ ∈ Fn. Thus expanding for t, the coefficient of εq−1, in equation 8 we

get

t =
r∑

ρ=1

∑
i+j+k=q−1

uiρv
j
ρw

k
ρ (10)

There are
(
q
2

)
ways of setting i, j, k such that i + j + k = q − 1, so t can be expressed exactly

using (q(q + 1)/2)r terms. Overall we have that if a tensor t degenerates (of order q) to 〈r〉 then
its rank, R(t) ≤ q2r.
Definition 7. The border rank of t, denoted as R(t), is the smallest r to which t degenerates, for
some q.

Intuitively, this suggests that if multiplication can be efficiently approximated, then it can be
efficiently computed as well, because of the connection between rank, R, and ω. Formally, this
gives:

Proposition 3 ([BCS97] Prop 15.10). If R(〈n, n, n〉) ≤ r, then nω ≤ r.
Bini et al. [BCRL79] showed that R(〈3, 2, 2〉) ≤ 5 and extend this construction to achieve

R(〈12, 12, 12〉) ≤ 1000
Border rank, like rank, is sub-additive and sub-multiplicative under direct sums and direct

products respectively. In particular, R(〈12N , 12N , 12N 〉) = R(〈12, 12, 12〉)N .
Hence we get the following inequality, R(〈12N , 12N , 12N 〉) ≤ 103N . Applying Proposition 3, we

have 12Nω ≤ 103N . With sufficiently large N we get 12ω ≤ 1000, implying the following proposition.

Proposition 4 ([BCS97] Prop 15.9). ω ≤ log12 1000 = 2.78

This can be further extended to direct sums with some effort (not stated in generality):

Theorem 1 (Schönhage’s Theorem - [BCS97] 15.11). If R(
⊕s

i=1〈n, n, n〉) ≤ r then snω ≤ r.
The intuitive meaning of this theorem is that if multiplication of many independent matrices

(s sets) can be approximated efficiently then we can those approximate multiplications to compute
exact multiplication more efficiently on single matrices. This can viewed as a generalization of
Strassen’s divide and conquer approach. We will not prove this theorem however the background
and proof appears in [BCS97] Sections 15.3-5.

5 CW

Our goal is to get into a situation where we can apply Theorem 1, to get a bound on ω. We need
to show that we can approximately compute many independent matrix multiplications in parallel
efficiently. We start by looking at the trilinear version of Strassen’s algorithm (which boils down
to rewriting it):

5

(A1,1 + A2,2)(B1,1 + B2,2)(C1,1 + C2,2)
+(A2,1 + A2,2)B1,1(C2,1 −C2,2)
+A1,1(B1,2 −B2,2)(C1,2 + C2,2)
+A2,2(B2,1 −B1,1)(C1,1 + C2,1)
+(A1,1 + A1,2)B2,2(C1,1 + C1,2)
+(A2,1 −A1,1)(B1,1 + B1,2)C2,2

+(A1,2 −A2,2)(B2,1 + B2,2)C1,1

=(A1,1B1,1 + A1,2B2,1)C1,1

+(A1,1B1,2 + A1,2B2,2)C1,2

+(A2,1B1,1 + A2,2B2,1)C2,1

+(A2,1B1,2 + A2,2B2,2)C2,2

(11)

The sum of the 7 multiplication lines is exactly the trilinear form for 2-by-2 matrix multiplica-
tion.

As we stated previously Strassen algorithm shows R(〈2, 2, 2〉) ≤ 7, and applying Theorem 1
gives ω < 2.81. We take the analogous approach in the next few subsections where we will prove
the following theorem:

Theorem 2. For q,N ∈ N, R(
⊕s〈qN , qN , qN 〉) ≤ (q+2)3N . Where s ≥ 1

4

((
2N
N

)
+ 1
)−1−o(1) (

3N
N,N,N

)
.

With this in hand we can plug into Theorem 1 to get a bound on ω (in Subsection 5.5).

5.1 CW’s construction

Now we write down the analogous trilinear form construction from CW (this discussion is presented
in Section 5 of [CW87] or Section 6 of [CW90]):

q∑
i=1

ε−2(a0
0 + εa1

i)(b
0
0 + εb1i)(c

0
0 + εc1i)

− ε−3(a0
0 + ε2

q∑
i=1

a1
i)(b

0
0 + ε2

q∑
i=1

b1i)(c
0
0 + ε2

q∑
i=1

c1i)

+ (ε−3 − qε−2)a0
0b

0
0c

0
0

=
q∑
i=1

(a0
0b

1
i c

1
i + a1

i b
0
0c

1
i + a1

i b
1
i c

0
0) +O(ε) ≡ t+O(ε).

(12)

Observe several things:

1. This identity is entirely symmetric in a, b, c.

2. There are 3(q + 1) variables, q + 1 for each of a, b, c.

6

3. The superscripts are in direct correlation with the subscript. If the subscript is 0 the su-
perscript is 0, if the subscript is in {1, ..., q}, the superscript is 1. Let A0 = {a0} and
A1 = {a1, ..., aq}, with B and C defined symmetrically. Then AI , BJ , CK are blocks of
variables.

4. The RHS of the identity contains only terms with exactly one 0 superscript. So when looking
at the sums individually, for example,

∑q
i=1 a

0
0b

1
i c

1
i represents the matrix product 〈1, 1, q〉 (a

scalar times a row vector), the other two sums represent 〈q, 1, 1〉 and 〈1, q, 1〉 respectively.
Thus, the RHS of the identity does not represent a matrix multiplication, like it does in
Strassen’s algorithm.

5. This identity implies that the border rank of the RHS is at most q + 2, since there are q + 2
multiplications being used to represent it approximately.

This construction does not meet our goal yet (to efficiently approximate many independent
matrix multiplication), by Observation 4, the RHS of the identity is not a matrix multiplication.
However we can make it one. We will take the tensor product of this construction with itself 3N
times, t′ = t⊗3N ,for some N ∈ N.

Lets consider the impact of the 3N tensor power (symmetric things happen for the objects
associated with b and c):

t→ t⊗3N

AI , I ∈ {0, 1} → AI , I ∈ {0, 1}3N
aIi , i ∈ {0, 1, ..., q}, I ∈ {0, 1} → aIi , i ∈ {0, 1, ..., q}3N , I ∈ {0, 1}3N

R(t) ≤ q + 2→ R(t⊗3N) ≤ R(t)3N ≤ (q + 2)3N

(13)

So now we’re using (q+2)3N multiplications to represent t′, and there are (q+1)3N variables aIi ,
for a total of 3(q + 1)3N variables among a, b, c. We consider the capital letters blocks of variables
in the same sense as before (aIi ∈ AI

′
iff I = I ′), moreover, each variable is in exactly one block.

5.2 Restriction 1

t′ is still not sufficient to apply Theorem 1, we need to massage t′ and remove some terms so that
it actually represents the sum of independent multiplications. To accomplish this goal we will zero
some of the blocks AI , BJ and CK . If AI is zeroed all variables in it will be set to 0 (i.e. every
variable with a superscript that matches). The first restriction that we apply is to set to zero every
block whose superscript has hamming weight not equal to 2N : AI = 0 if |I| 6= 2N , similar for BJ ’s
and CK ’s. Call this restriction R1. Notice that under this restriction every block contains exactly
q2N variables.

Now, before we proceed with the rest of the algorithm let us consider how this restriction effects
t′. The case for N = 1 will be illuminating:

7

t =
q∑
i=1

(a0
0b

1
i c

1
i + a1

i b
0
0c

1
i + a1

i b
1
i c

0
0)

t⊗ t =
q∑
i=1

(a0
0b

1
i c

1
i + a1

i b
0
0c

1
i + a1

i b
1
i c

0
0)⊗

q∑
j=1

(a0
0b

1
jc

1
j + a1

jb
0
0c

1
j + a1

jb
1
jc

0
0)

=
q∑

i=1,j=1

(a00
00b

11
ij c

11
ij + a01

0jb
10
i0 c

11
ij + a01

0jb
11
ij c

10
i0

+ a10
i0 b

01
0jc

11
ij + a11

ij b
00
00c

11
ij + a11

ij b
01
0jc

10
i0

+ a10
i0 b

11
ij c

01
0j + a11

ij b
10
i0 c

01
0j + a11

ij b
11
ij c

00
00)

(14)

Before we continue, note that for N = 1, a00
00, b00

00 and c00
00 will be zeroed by our restriction

(this eliminates the three diagonal terms in the last step of the previous equation). Keeping the
restriction in mind, we have that:

(t⊗t⊗t)|R1 =
q∑

i=1,j=1,k=1

(a011
0jkb

101
i0k c

110
ij0 +a011

0jkb
110
ij0 c

101
i0k+a101

i0k b
011
0jkc

110
ij0 +a110

ij0 b
011
0jkc

101
i0k+a101

iok b
110
ij0 c

011
0jk+a

110
ij0 b

101
i0k c

011
0jk).

(15)
Looking more closely at the first term

∑q
i,j,k a

011
0jkb

101
i0k c

110
ij0 = A011B101C110. This is exactly the

trilinear form of multiplication for q by q matrices. A similar situation occurs in the remainder of
the terms.

(t⊗t⊗t)|R1 = A011B101C110+A011B110C101+A101B011C110+A110B011C101+A101B110C011+A110B101C011.
(16)

It is easy to see that this generalizes to the 3N th tensor power for arbitrary N . So t′|R1 is
the sum of matrix multiplications, however, not all the products are independent. In the previous
equation A011 occurs in both the first and second term. The remainder of the argument will show
that it is possible to zero a few terms to make the remaining products independent while not
eliminating too many products.

Thus, t′|R1 consists of matrix products AIBJCK , in trilinear form, for |I| = |J | = |K| = 2N .

5.3 Restriction 2

Set M = 2
(
2N
N

)
+ 1 and let H be the dense 3-arithmetic progression free subset of [M], with

|H| > M1−o(1). Select integers 0 ≤ wj < M , for j = 0, ..., 3N uniformly at random. Define for
AI , BJ and CK , the follow hash functions ({0, 1}3N → (Z/M)):

8

hA(I) ≡
3N∑
j=1

Ijwj(mod M)

hB(J) ≡ w0 +
3N∑
j=1

Jjwj(mod M)

hC(K) ≡ (w0 +
3N∑
j=1

(2−Kj)wj)/2(mod M)

(17)

Then we have that hA(I) + hB(J) − 2hC(K) ≡ 0(mod M). This is because Ij + Jj + Kj = 2
for all j = 1, ..., 3N , by the basic construction of t (Observation 4).

Now we introduce a second restriction, R2. For all I, (respectively J,K) such that hA(I) 6∈ H
(hB(J) 6∈ H,hC(K) 6∈ H), set AI to zero (BJ , CK).

This means that the remaining products AIBJCK in t′|R1,R2 have h = hA(I) = hB(J) = hC(K)
for some h ∈ H, because hA(I) + hB(J) ≡ 2hC(K)(mod M) and hA(I), hB(J), hC(K) ∈ H; so by
the definition of an ap-3 free set we have equality.

5.4 Restriction 3

Recapping after two restrictions t′ looks like:

t′|R1,R2 =
∑

|I|=|J |=|K|=2N,I∩J∩K=∅,hA(I),hB(J),hC(K)∈H

AIBJCK . (18)

For a fixed h ∈ H, let Lh be the list of all products of the form AIBJCK in t′|R1,R2 with
h = hA(I) = hB(J) = hC(K).

Claim 1. Ew[|Lh|] =
(

3N
N,N,N

)
M−2.

Proof. Recalling that R1 forces |I| = |J | = |K| = 2N and Observation 4 we can see that number of
way to assign superscripts to A,B and C is so that each index exactly one is zero, is

(
3N

N,N,N

)
. The

probability that hA(I) = hB(J) = h is M−2, since the hash functions are independent (w0 is not
present in hA). Then R2 forces hC(J) = h because the other two are. By linearity, the expected
number of items in Lh is as claimed.

We need another probabilistic claim:

Claim 2. The expected number of unordered pairs of products (AIBJCK), (AI
′
BJ ′

CK
′
) ∈ Lh with

K ′ = K is
1
2

(
3N

N,N,N

)((
2N
N

)
− 1
)
M−3. (19)

Proof. Again
(

3N
N,N,N

)
is the number of valid superscript combinations for I, J,K. Fix AIBJCK .(

2N
N

) − 1 counts the number of the other J ′ such that are compatible with CK (I ′ is forced by K
and J ′). Then the probability that hC(K) = hB(J) = hB(J ′) = h is M−3, like the argument in the
previous claim. The factor of 1

2 follows because we’re counting unordered pairs. This completes
the claim.

9

The previous claim is symmetric around the choice of which variable block has to be the same,
so there are at most 3 times as many pairs sharing any block.

The final restriction, R3, will be to zero blocks so that there are no pairs of products in the list
which share a block, if we do is for all Lh, the products remaining in t′|R1,R2,R3 will all be disjoint.
To this end, suppose we wish to zero a block BJ be because the pair of products AIBJCK and
AI

′
BJ ′

CK conflict (sharing a C-block). If v products are eliminated from Lh by setting BJ to zero,
then at least

(
v
2

)
+ 1 pairs are removed from the list, the ones between the v products containing

BJ and the original conflict between AIBJCK and AI
′
BJ ′

CK . Since
(
v
2

)
+ 1 ≥ v more pairs are

removed than products. We get the following lemma by combining the previous discussion and the
two claims (and noting that (

(
2N
N

)− 1)/M < 1
2).

Lemma 1.

Ew[|Lh|] ≥
(

3N
N,N,N

)
M−2 − 3

2

(
3N

N,N,N

)((
2N
N

)
− 1
)
M−3 ≥ 1

4

(
3N

N,N,N

)
M−2. (20)

The preceding lemma say that we can eliminate the sharing of blocks without eliminating too
many products.

Then Ew[
∑

h∈H |Lh|] ≥ 1
4 |H|

(
3N

N,N,N

)
M−2 = 1

4

(
3N

N,N,N

)
M−1−o(1). Fix w such which realizes at

least this expectation. Because of the restrictions we applied the only products remaining within
t′|R1,R2,R3 are variable disjoint, represent qN square matrix products and must number at least
1
4

(
3N

N,N,N

)
M−1−o(1). Thus we have completed the proof of Theorem 2.

5.5 The Final Step

Now we apply Theorem 1 to Theorem 2, with r = (q + 2)3N , s = 1
4

(
3N

N,N,N

)
M−1−o(1) and n = qN .

This immediately gives

(q + 2)3N ≥ 1
4

(
3N

N,N,N

)
M−1−o(1)qNω. (21)

What remains is to optimize ω with respect to the choice of q. Expand the binomial coefficient
using Stirling’s approximation, take N to infinity and then take the N th root gives:

(q + 2)3 ≥ 33

22
qω. (22)

Picking q = 8 will optimize the this inequality resulting in ω ≤ log8(4000/27) < 2.404.

Theorem 3 ([CW87],[CW90]). ω < 2.404.

6 Conclusion

The more complex version presented in [CW90] Sections 7-8 achieves ω < 2.376.

References

[BCRL79] D. Bini, M. Capovani, F. Romani, and G. Lotti, O(n2.7799) complexity for n×n approx-
imate matrix multiplication, Inf. Process. Lett. 8 (1979), 234–235.

10

[BCS97] P. Bürgisser, M. Clausen, and M.A. Shokrollahi, Algebraic complexity theory, Springer
Verlag, 1997.

[CW87] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions,
Proceedings of the nineteenth annual ACM symposium on Theory of computing, ACM
New York, NY, USA, 1987, pp. 1–6.

[CW90] , Matrix multiplication via arithmetic progressions, Journal of Symbolic Compu-
tation 9 (1990), no. 3, 251–280.

[Rom05] S. Roman, Advanced Linear Algebra, Springer Verlag, 2005.

[Str69] V. Strassen, Gaussian elimination is not optimal, Numerische Mathematik 13 (1969),
no. 4, 354–356.

[Wik09] Wikipedia, Strassen algorithm — wikipedia, the free encyclopedia, 2009, [Online; ac-
cessed 1-December-2009].

11

