CS711008Z Algorithm Design and Analysis

Lecture 5. FFT and DivIDE AND CONQUER

Dongbo Bu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

1/57

@ DFT: evaluate a polynomial at n special points;
@ FFT: an efficient implementation of DFT,;

e Applications of FFT: multiplying two polynomials (and
multiplying two n-bits integers); time-frequency transform;
solving partial differential equations;

@ Appendix: relationship between continuous and discrete
Fourier transforms.

2/57

DFT: Discrete Fourier Transform

o DFT evaluates a polynomial A(7) = ap + a1z + ... + ap_17" "

27
at n distinct points 1,w,w?,...,w™ !, where w = e™ ! is the
n-th complex root of unity.
@ Thus, it transforms the complex vector ag, a1, ..., a,_1 into

another complex vector 4o, 1, ..., Yn_1, Where y = A(w"),

ie.,
Yo = ag + o + a2 cer Foan—
= + gt + agw? cir F o™t
Yno1 = ap + aw" ! + aw?™ D 4+ g, qw™D’
@ Matrix form:
1 1 1 1
Yo 1 ol W2 W1 o
n 9 4 2(n—1) a
=11 w w W)
Yn—1 1 w1 wQ(n—l) o w(n—l)z Ap—1

3/57

FFT: a fast way to implement DFT [Cooley and Tukey,

1965]

Direct matrix-vector multiplication requires O(n?) operations
when using the Horner's method, i.e.,

A(z) = ap + (a1 + z(ag + . .. + zan—1)).
FFT: reduce O(n?) to O(nlog, n) using divide-and-conquer
technique.
How does FFT achieve this? Or what calculations are
redundant in the direct matrix-vector multiplication approach?

Note: The idea of FFT was proposed by James Cooley and
John Tukey in 1965 when analyzing earth-quake data, but the
idea can be dated back to F. Gauss.

4/57

Let's evaluate A(x) at four special points

@ It is easy to evaluate any 1-degree polynomial
A(z) = ap + a1z at two points 1, —1. Now let's evaluate a
3-degree polynomial A(z) = ap + a1z + a22® + az2® at four
special points 1,4, —1, —1.
o Divide: Break the polynomial into even and odd terms, i.e.,
o Acyen(z) = ao + asz
° Aodd(a:) = a1 + as3x
Then we have the following equations:
o A(x) = (ap + a27®) + (a1 + a37?) = Acven(2?) + A sq4(7%)
o A(—1z) = (ag + a22?) — z(a1 + a37°) = Acpen(7®) — 1A oqa(7?)
@ Combine: For the 4 special points 1,4, —1, —i, we have
A(l) = Aeven()+ Aodd()
A(Z) = Aeven() + ondd()
() euen() - Aodd(l)
A(=1) = Aeven(—1) — iAsqqa(—1)
@ In other words, the values of A(z) at 4 points 1,4, —1, —i can
be calculated based on the values of Acyen (), Apgq(z) at 2
points 1, —1.

5/57

An example: n =4

Yo = Qo
= ao
Y2 = ao
Ys = ao

@ Objective: Evaluate A(z) at

l .
w = e1?™

+ a1

+ a1w1
+ a1w2
+ a1w3

&2

+ az + ag

+ a2w2 + a3w3
+ a2w4 + a3w6
+ a2w6 + a3w9

4 points: 1,w,w?, w3, where

6/57

Step 1: Simplification

Yo=a + a + a + a3

Y= ay -+ a1w1 + agw + a3w3
yo=ao + amw?® +az + azw?
ys=ap + aw® + aw? + aw!

7/57

Step 2. Divide into odd- and even-terms

Yo=ay —+ a + a1 + a3

v =a + aw? + aw' + aw?
Yo =ay + a2 + qw? 4 azw?
y3=ay + mw? + aqw® + aw!

8/57

Key observation: redundant calculations

Yo =|ap + a2 +|a1 + a3

y1 =lag + apw?| +|aw! + azw?
Y2 =|apg + a2 +laiw® + azw
3 =lag + apw? | +law® + azw?

Note that the calculations in the two red frames are identical, and
the calculations in the blue frames are also 2identical after

multiplying by w?. Here w? = —lasw =e4 .

9/57

Step 3: Divide-and-conquer

Yo=ay -+ a2 + a + as

y=a + aw® +aw' + aw
w=a +a + aw® + aw
Y3 = ag + agwg + a1w3 + (],3(,01

Thus the calculations in the top-left and bottom-right frames are
redundant. We need only 2 44 + 2 = 4 X log, 4 calculations.

10/57

Another example: n =8

Yo
Y1
Y2
Y3
Ya
Ys
Yo
y7

o Objective: Evaluate A(z) at 8 points: 1,w,w?,...,w", where

= ap
= ao
= ao
= ap
= ao
= ao
= ap
= aop

+ m

+ aqiw
+ aw
+ alwr
+ aiw
+ aiw
+ aw
+ aiw

w N =

N o ooa

2mi

1
W = es8 .

+ a2

+ a2w2
+ a2w4
—+ agw6
+ a2

—+ asw
+ a2w1
+ gt

10
2

+ a3

+ a3w3
+ ang
-+ agwg
+ a3w12
+ a3w15
+ a3w18
+ a3w21

+ a4

+ a4w4
+ a4w8
+ a4w1
+ a4w1
+ a4w2
+ a4w2
+ a4w2

2
6
0
4
8

R
2+1
w e wl
w4 ®. ® 1
-1 w3
w T w’
.6 1

+ as

+ asw
+ asw
+ asw
+ a5w20
+ a5w25
+ a5w30
+ a5w35

5
10
15

+ ag

+ asw
—+ agw
-+ a(,-wl
+ a6w24
+ a5w30
+ aGwBG
+ a6w42

6
12
8

+ a7

+ arw
—+ arw
-+ a7w2
+ szs
+ a7w35
+ ar w2
+ arw

7
14
1

49

11/57

Step 1: Simplification

Yo=0a + a1 + az + a3 + a4 + as + ag + a7

Y =ay + aw' + aw?® + aw® + aw? + e’ + e’ + e’
Yo = a9 + a1w2 + a2w4 + a3w6 + ag + a5w2 + a6w4 + a7w6
ys = ap + aw? + apwb® 4+ azw! 4+ aw? + asw’ + agw? + an®
Y =ay + awt + ap + asw? 4+ ay + asw? + ag + a7w?t
UYs = ap + a1w5 + a2w2 + a3w7 + a4w4 + a5w1 + a6w6 + a7w3
Y = Qg + a1w6 + a2w4 + a3w2 + a4 + a5w6 + a6w4 + a7w2
yr=ay + aw’ + aw® + asw® + aw? + asw? + agw? + apw!

12/57

Step 2. Divide into odd- and even-terms

Yo=ap + a4 + az + as + a + as + a3 + ar

= + a4w4 + a2w2 + a wb + alwl + asw® + a3w3 + a7w7
Y1 0 6 5

=ay —+ a4 + a2w4 + a6w4 + a1w2 + a5w2 + a3w6 + a7w6
Y2

=ay —+ a4w4 + agwﬁ + a6w2 + a1w3 + a5w7 + (13(,01 + a7w5
Ys
yw=a +a +a +a +awt +aw' +awt + g

= q + a4w4 + a2w2 + agw® + a1w5 + asw! + a3w7 + a7w3
Ys 0 6 5

= q + a4 + a2w4 + a wt -+ a1w6 + a wb + a3w2 + a7w2
Ye 0 6 5

=ay —+ a4w4 + a2w6 + a6w2 + a1w7 + a5w3 + a3w5 + a7w1
Y7

The specific order of these terms will be explained later.

13/57

Key observation: redundant calculations

Yo =|ao + a4 + a2 + ag +| a1 + as + as + ar

i =la0 + aw® + aw® + aw’®| +Haw' + aw® 4+ aw® + aw”
Y2 =|ao + as + aw? F aew?| Haw® + asw? + azw® + arw®
ys =lag 4+ aaw® + apw® + aw®| +law® + asw” 4 asw' + a7
va =[a0 T aa T a T ae Haw T aw F sw T oo
ys =lao + aaw® + aw® + aw®| +Haw® + asw' 4 aw’ + aw?
Y6 =|a0 + aa + aew® 4+ aew’ | +Haw® + asw® + azw® + arw?
yr =lao + asw? + aw® + aew?| Haw' 4 asw® 4+ azw® + arw’

Note that the calculations in the two red frames are identical, and
the calculations in the blue frames are also 2identical after

.
multiplying by w?. Here w* = —1asw =¢e8".

14 /57

Step 3: Divide-and-conquer

Yo = a0 + a4 + a2 + ag + a + as + as + ar

yi=a0 + aw' + aw’® + aw® + aw' + e’ + aw® + aw’
Yo =ao + as + aw? F aw? 4 ww® + asw? + e’ + arl®
ys=ao + aw® + aw® + aw® + aw® + aw’ + aw' + aw®
Ya=ao + as + a2 + a6 + aw! 4+ aswt + aw? + et
Ys = a0 + aw® + aw® + aw® + aw® + asw' 4+ aw’ + aw?
Yo = a0 + ag + aew® 4+ agw® + aw® + asw® 4+ azw® + arw?
yr=ao + aw? + aw® + aw? + aw’ + asw® 4 aw® + anw?

Thus the calculations in the top-left and bottom-right frames are
redundant.

15/57

Step 3: Divide-and-conquer

Yo = a0 + a4 + a2 + ag + + as + a3 + ar

y=a0 + aw' + aw’® +aw® + aw' + e’ + aw® + aw’
Yo =ao + as + aw? F aw? 4 ww® + asw? + a3’ + arw®
ys=ao + aw® + aw® + aw® + aw® + aw’ + aw' + aw®
Ya=ao + as + a2 + a6 + aw! 4+ aswt + aw? + et
Ys = a0+ aw® + aw® + aw® + aw® + asw' 4+ aw’ + aw?
Yo = a0 + aa + aew® 4+ agw® + aw® + asw® + azw® + arw?
yr=ao + aw? + aw® + aw? + aw’ + aw® 4 aw® + aw’

Finally, we need only 2+4+4+2+8+2+4+2 =8 xlog, 8
calculations.

16 /57

The final order

0,1,2,3,4,5,6,7

0 4 2 6 1 5 3 7
000 100 010 110 001 101 011 111

17/57

FFT Algorithm

FFT(TL, g, A1y ... an,l)
if n==1 then

return qg ;
end if
: (Eo, El, ceey ngl) :FFT(%L, ap, ag, ..., an,g);
: (00, 01, ceey Og_1> = FFT(%, al, ag, ..., an_1>;
cfork=0to 5 —1 do

Wk = 627"1%;

yk = B+ w* Oy
Yok = B — w*O;
10: end for
return (Yo, Y1, ey Yn—1);

o Here FFT(Z, ag, az, ..., an) computes the polynomial

N g s

©°

[y
=

n .
Acven(T) = ap + agx+ ... + a,22 at § points
1,w?,w?, ...,w™ 2, and FFT(§, a1, a3, ..., an—1) computes the
n
polynomial A,44(z) = a1 + a3z + ... + a,—122 at these points.
18/57

Inverse Discrete Fourier Transform

@ Inverse Discrete Fourier Transform: to determine coefficients
of a polynomial ag, a1, ..., a,—1 based on n point-value pairs
(1, 90), (W, ¥1), oy (WL, Y1), where gy, = A(w¥), and
A(z) = ap + 17+ a2 + ... + ap_12" L

@ Matrix form

1 1 1 1
Yo 1 wl w? oo ownt “
y.l =11 w? w? e w?(nD) “
Yn—1 1 w1l 21 w(n—1)2 Ap—1

o It takes O(n?) to calculate the inverse matrix when using the
Gaussian elimination technique.

19/57

Inverse Discrete Fourier Transform cont'd

@ Matrix form

o 1 1 1 .. 1 Y
al 1 ! @ @ " Y1
n
ap—1 1 onl 21 (ne1)? Yn—1

@ Reason: it turns out that it is nearly its own inverse. More
precisely, the conjugate transpose of this matrix is its own
inverse.

20/57

IFFT Algorithm

IFFT(”) Yo, Y1, ---5 yn—l)
1: if n==1 then

2: return 1 ;
3: end if
4: (E()yEl)"'aEg—l) = IFFT(%7yO7y27"')yn—2);
5: (00,01,...,03_1) = IFFT(%,yl,yg,...,ynfl);
6: for k=0to 5 —1 do
7. Wwh= 67277]“';
8 ap= Ep+wFOy;
. — k .
9: angk =, — w0y
10: end for

11: return }L(a,g,al,...,an_l) :

Here we assume n is the power of 2 for simplicity. The
normalization factors multiplying FFT and IFFT (here 1 and %)
and the signs of exponents are merely conventions, and differ in
some treatments.

21/57

Application: fast multiplication of two polynomials (or two
integers)

Dae
22 /57

Multiplify two polynomials: convolution

Given two polynomials

A(z) = ap + a17+ ap® + ... + a,_17" 1, and

B(SC) =by+ bz + bQ:Ez + ...+ bnflxn_l

Let's calculate its product

C(z) = A(2)B(z) = co + a1+ 22 + ... + copo2®" 2

Brute-force (convolution): ¢ = Z?:o a;ibr_;.

It costs O(n?) time if using the convolution technique.

23/57

Conversion between two representations of polynomials

@ An efficient conversion between these two representations is
extremely useful when multiplying two polynomials.

ag, a1, ---; p—1 (107yo),~~,(xnf17yn71)

24/57

Using FFT to speed up multiplication

@ Given two polynomials
A(z) = ap + 17+ a2 + ... + a,_12" 1, and
B(x) =by+ b+ b2$2 + ...+ bn_lxnfl
@ Let's calculate its product
O(z) = A(2)B(z) = co + c17+ ca2® + ... + cop 02?2
@ Brute-force: ¢; = Zf:o aiby_;. Cost O(n?) time
@ Using FFT and IFFT: O(nlogn)

G0t €0,C1yeesCan1
bo,b1,...,bn—1
FFT: O(nlogn) IFFT: O(nlogn)

A1), A(w),\.’.., A(w?n~1) | Multiply: O(n)

| (1), Cw),..., C(w?™1)

An example

o Alz) =142z
e B(z) =3+ 4z
o O(x) = A(7)B(1) = co + c17+ ca2? + c32°
x 1 - —1 i
A(m) | 3 1-2i -1 1+2i
Blz) | 7 3-4i -1 344
Oz) |21 —-5-10i 1 -5+ 10i

@ By running IFFT(4, (21,—5 — 10i,1, —5 + 10i)), we obtained
the coefficients as ¢ = 3, ¢; = 10,2 = 8, and ¢3 = 0.

@ Extension: given two n-bit integers a = a,—1...a1a9, and
b= bp_1...b1 by, it takes O(nlogn) complex arithmetic steps
to calculate ¢ = a x b.

@ In 1971, A. Schénhage and V. Strassen proposed an algorithm
for multiplication that uses O(nlog nloglogn) bit operations.

26 /57

Application: time-frequency transform

Do
27 /57

Analogy: Prisms

@ One analogy for the type of thing a Fourier Transform does is
a prism which splits white light into a spectrum of colors.

@ Extension: Integer factorization using quantum computing

28 /57

DFT: time-domain vs. frequency-domain

e DFT, denoted as X = F{x}, transforms a sequence of N
complex numbers zp, 21, ..., zy—1 (time-domain) into a
N-periodic sequence of complex numbers Xy, X1, ..., Xn_1
(frequency-domain):

Xp=Y mpe T E=0,1, N-1

@ Here, X} encodes both amplitude and phase of a sinusoidal
component e~ Wkni of the function x, (the sinusoid’s

frequency is k cycles per N samples).
@ Inverse transform of DFT:

1 N-1
27 s
_ = Xkeﬁkm
N
k=0

An interpretation of DFT is that its inverse transform is the
discrete analogy of the formula for a Fourier series:

+o00
Z Fnenzi7 n — / f _"mdx

n=-—oo
29/57

Time-frequency transformation

e FFT transforms the input data ag, a1, ..., a,—1 (time-domain
samples) into yo, 1, ..., Yn—1 (frequency domain). For

example,

Yo =ao + a1 + a2 + a3 + a4 + as + ag + ar

n=a + aw' + aw’® +aw® +waw' + e’ 4 aw® + e’
p=a + aw® +aw' + aw® + w® + 6w’ + ew'? + '
ys=a0o + aw® + aw® 4 azw’ + ww® + aw® 4+ aw'® + aw?!
w=a + aw' + a + azw'? + aw'® + aw®® 4 aew® + aw®
s =a0 + aw® + aw' + aw’® + ww®® + aw”® 4+ aw® + aw®
o =a0 + aw® + aw? + aw® 4+ ww* 4 6 + e +
yr=a0 + aw’ + aw'? +aw? + waw® + ew® 4+ e + aw?

@ Here y; encodes both amplitude and phase of a sinusoidal
component of the time-domain samples ag, ay, ..., a7.

30/57

FFT: an example

N = 8;

t = 0:1/N:1-1/N;

a = 1*cos(2xpixlxt) + 2%sin(2xpi*3%t);
Freq = 0:N-1;

bar(Freq, abs(fft(a)), "b", 0.2);

Lhhowmo

S Lo wnw

oM s o w3
]
[
]
|

31/57

yr encodes amplitude and phase of a sinusoidal component

@ yp = ap + a1w® + aw? + ... + a7w™ computes the dot product of

two vectors: the time-domain samples ayg, a1, ..., a7, and a sinusoid

27 .
signal 1,w”, w?* .., w™. Here w = ¢8 "' and thus the sinusoid has

g eeny

frequency of k cycles per 8 samples.

@ The dot product y; = 0 if the time-domain samples ag, a1, ..., ay do
not consist of any sinusoidal component of such frequency. The
reason is that:

e The dot product of these two vectors y. = Z;zo ajwjk is
essentially a discrete analogy of the integral of two sinusoids,

2
say [, " cos ma - cos nadz.

e The orthogonality of sinusoids states that for two integers
m, n,

2m
/ cos mz - sin nadz = 0, and
0

27 27
/ sin mz - sin nzdx = 0, / cos mz - cos nzdz = 0 (m # n)
0 0

32/57

Calculation of

@ 1,w!,w?,...,w” represents a sinusoidal signal of frequency 1 cycle
per 8 samples, and the existence of such sinusoidal component in
the time-domain samples ag, a1, ..., a7 is encoded by the dot product
Y1 = ap + alwl + a2w2 + ...+ a7w7.

@ a=1[12.1-20.7-1-2.12-0.7]

c [1 0.7 0-0.7 -1 -0.700.71]
s [00.710.70-0.7 -1 -0.7 1]

sqrt((axc')A2 + (a*xs')N2) = 4

3
2
1
0
A
2
3

0 1 2 3 4 5 6 7

1 T
B ¢ - (1070-07-1-07007]
05 3
0

05+

A
0 1 2 3 4 5 6 7

1 T T T T
Es-007107007107
05 I:I D .

v

A

0 1 2 3 4 5 6 7

33/57

Calculation of

o 1,w?,w, ...,w' represents a sinusoidal signal of frequency 2
cycles per 8 samples, and the existence of such sinusoidal
component in time-domain samples ag, a1, ..., a7 is encoded by
the dot product 5 = ag + aw? + apw* + ...+ apw's.

@ a=1[121-20.7-1-2.12-0.7]
c=[010-1010-10]1
s=[010-1010-1]
sqrt((axc')A2 + (a*xs')A2) =0

B a-(121-207-1-212-07]

0 1 2 3 4 5 6 7

1 T T T T
B c-(10-1010-10]
05 3
4
4 . n n .
0 1 2 3 4 5 6 7

1 T T T
‘ ‘ ‘ ‘ El:- (01010101

0
4 L L L L L

0 1 2 3 4 5 6 7

34/57

Calculation of 3

o 1,w3, Wb, ...,w?! represents a sinusoidal signal of frequency 3

cycles per 8 samples, and the existence of such sinusoidal
component in time-domain samples ag, a1, ..., a7 is encoded by
the dot product y3 = ag + aw? + apwb + ... + azw?'.

@ a=1[12.1-20.7-1-2.12-0.7]
¢=1[1-0.700.7-10.70 -0.7]
s [00.7 -1 0.7 0-0.7 1 -0.7]
sqrt((axc')A2 + (a*xs')A2) = 8

B a-(121-207-1-212-07]

B ;- (1-07007-1070-07]

0 1 2 3 4 5 6 7

_ ' _ j " [ERs-j00r 107007107
05t I_I H g
0
0.5 H U |_| -
7

0 1 2 3 4 5 6

35/57

transforms

Appendix: Relationship between continuous and discrete Fourier

J

D¢

36/57

Fourier series, Fourier transform, DTFT, and DFT

@ Fourier series decomposes a periodic function into a set of
sine/cosine waves, and one of the motivations of Fourier
transform comes from the extension of Fourier series to
non-periodic functions.

@ DTFT uses discrete-time samples of a continuous function as
input, and generates a continuous function of frequency.

@ Using a finite sequence of equally-spaced samples of a
function as input, DFT computes a sequence of identical
length, representing equally-spaced samples of DTFT. The
interval at which the DTFT is sampled is reciprocal of the
duration of the input sequence.

@ The inverse DFT is a Fourier series using the DTFT samples
as coefficients of corresponding frequency, and it is essentially
a periodic summation of the original input sequence.

37/57

Fourier series: history

Figure: Jean-Baptiste Joseph Fourier (1768-1830)

@ In 1807, Joseph Fourier proposed the idea of Fourier series
when solving heat equation, a partial differential equation.

@ Prior to Fourier's work, no solution to heat equation was
known in the general case. However, when the heat source
was a simple sine or cosine wave, solutions were known (called
eigensolutions).

@ Thus, Fourier modelled complicated heat source as a
superposition of simple sine/cosine waves, and rewrote the

solution as superposition of corresponding eigensolutions.
38/57

Fourier series

@ Fourier series is a way to represent a periodic function of
time as the sum of a set of simple sines and cosines (or,
equivalently, complex exponentials). For example, the Fourier
series of a periodic function f(z) (period 27) is:

fz) = ap + Z(an cos nx + by, sin nx)

n=1
where
1 271'
= — t)dt
ag 27?/0 f(t)
1 27T
an:f/ f(H)cosntdt (n=1,2,...)
™ Jo
1 27‘(‘
by, = 7/ f(t)sinntdt (n=1,2,...)
™ Jo

39/57

Fourier series: orthogonality of basis functions

@ Unlike Taylor's expansion, the basis functions of Fourier series
are orthogonal over [0, 2], i.e., for two integers m, n,

2m 2
/ 1-sinadz =0, / 1.-cosadz=0
0 0
27 2
/ sin mz - sin nadz = 0, / cosmz-cosnzdz=0 (m# n)
0 0

27
/ cos mz - sin nadzx = 0
0

@ The orthogonality plays an important role in solving
coefficients ag, Gy, by.

40/57

Fourier series: complex exponential form

@ According to the Euler's formula ¢ = cos z + isin z, we have

cosz = 3(?+ e71%), sinz = £ (e — e7I%), and

fle) = a+ Z(an cos nz + by, sin nx)
n=1
= ap+ i(a l(eim + e) 1 b i(ei"x — e7inT))
n=1 n2 n2Z

- 1 : nx 1 : —inz
= ao—|—Z(§(an—1bn)e +§(an+1b")e)
n=1

o Define Fy = ag, and F,, = %(an —1ib,) (n > 0). We have
F.,= %(an +ib,), and thus rewrite the Fourier series as:

+oo 27
inT _ 1 . _ 1 —int
flz) = n;w Fre'™, Fo = (an = iby) = o~ i f(t)e~™dt
@ Complex exponential form is necessary as the complex
coefficients F,, (called frequency spectrum) could encode both

amplitude and phase of basic waves. w5t

Fourier series: example 1

Hr—2) O<z<or

flz+27m) otherwise

27 3m T

@ Periodic function f(z) = {

fx)

L
\ 2
—27 -

2

—37 0 T

o Fourier series: f(z) = Yo7, Lsinna (since a, =0, b, = 1)

f(=)

42/57

Fourier series: extension to f(x) with period of 2L

e For a periodic function f(z) with period of 2L, the Fourier
series is:

[e.e]
flz) = ag + Z(an cos %nqu by, sin %nx)

n=1

@ The coefficients are:

43 /57

Fourier series: example 2

Periodic function f(z) — 4 - 4 <5 d f(z) h
@ Periodic function f(z) = , and f(x) has a
0 j<la<g
period T = 1.
f(z)

—3 —2 —1 ‘O 1 2 3 T

@ Fourier series:
1 21, o« 2
flz) = a7t = ; %sm(ﬁn) cos(7nx)

44 /57

Convergence of Fourier series: Dirichlet's conditions

@ Dirichlet's theorem states the sufficient conditions for the
convergence of Fourier series, i.e., if f(z) satisfies the following
conditions:

@ f(x) is periodic, and absolutely integrable over a period;

@ f(z) must have a finite number of maxima and minima in any
bounded interval;

© /f(x) must have a finite number of discontinuities in any
bounded interval, and the discontinuity cannot be infinite.

Then

m

ap + Z(ancos nx + by, sin nx) — %(f(:r—i— 0) + flz—0))

n=1

when m — oo.

@ A succinct proof using Dirac's § function can be found in
Mathematical Methods for Physics (by Q. Gu).

45/57

Proof.

@ Since a,cosnz+ bysinnz= + f(t) cos n(x — t)dt, the partial

sum of Fourier series is:

f(1+ 22008 n(z— t)|d¢

Sm(x) = 2
& sin((m+ L) (z—
_ f(t) 2(71'(sin 12()3:(— t)t)) !

" J() D~)t

—T

@ Here Dy, (2) = 5= (14 2cosz+ 2cos2z + ... + 2 cos ma).

s

@ Note that lim,, o0 Di(2) = §(x) since / Dy, (2)dz=1 and
Dyn(0) = oL (2m+1) = oo -
@ Thus, we have lim Sm(z) = f() (z—t) = fx) (when flz) is

continous at x). Please refer to /\/Iathemat/ca/ Methods for Physics

(bv O Gu) for comnlete proof

46 / 57

Fourier transform (in terms of angular frequency w)

e Fourier transform of a function of time (a signal) is a
complex-valued function of frequency (represented as angular
frequency w), whose absolute value represents the amount of
that frequency present in the original function.

R = [e o= 5 [e

e Fourier transform, denoted as F(w) = F{f(z)}, is called
frequency representation of the original signal, and F(w) is
called spectral density.

. 1 <i
@ For example, the Fourier transform of f(z) = ol < 4 s
0 otherwise

o° i 2 w
F — 71wzd — 2 hadt
@ = [ferar= Zsin(5)
f(z) F(w)
1

-2 —1 0 1 2 —8m —4m 0 47 8w W

47 /57

Fourier transform (in terms of ordinary frequency v)

@ For a sinusoidal wave with period 7' (measured in seconds),
its frequency can be measured using angular frequency w
(measured in radians per second) or using ordinary frequency
v (measured in cycles per second, or hertz), where w = 27v,

_ 1
and v = 7.
@ When using angular frequency w, Fourier transform is defined
as:

Flw) = /:: flz)e ™ dx
1 oo

flz) = > [_ Flw)e“dw

@ Replacing w with w = 27, we obtain another representation
of Fourier transform in terms of ordinary frequency v:

Fv) = /_O:C fz)e ™™ dg

flz) = [o:o F(v)e™™dv

48 /57

Connection between Fourier series and Fourier transform

@ For a function that are zero outside an interval, we can calculate
Fourier series on any larger interval. As we lengthen the interval,

the coefficients of Fourier series will approach Fourier transform.

p — F,
fla) o T=1 2n Lo
— —— — 1
Aw =27
-] [~ _
— 1 _ - = _LC =
-2 -1 0 1 2z —8m —4r lo ar 87 w
f(@) o T=2 27 o
— —— — 1
Aw =1
\\
A]
T T T
-2 -1 0 1 2 T —8m ™ [o ar 87 w
fl@) o T = oo F(w)
[;—‘ 1
-2 -1 0 1 2 T —8m —drm 0 ar

49 /57

Fourier transform: deduction

e Consider a periodic function f(z) with period 2L. lts Fourier
series flz) = ag + >~ (ancos Fnz+ b, sin Fnx) can be
rewritten as f(z) = ag + >, (an cOSwyT+ by sinw,z), where
wp = Tn represents angular frequency.

o Intuitively, when L — oo, f(z) becomes a non-periodic
function over (—o0, 00), and

; Aw—>/

o In particular, we have ay = 57 f_Lf(t)dt L2 0 since flz) is
absolutely integrable, and

E Qp COSWRT =

n=1

l f(cos wy tdt| coswnT
T t)

MS ANk

AT/ f(1) cos wntdt] cos wnz

v

i
8»—'

— [; /_oof(t) cos widt] coswz

50 /57

Fourier transform: deduction cont’'d

@ Similarly, we have

ansinwnx—)/ dw[l/ f(t) sinwbdt] sin wzx
n=1 0 TJ—o0

and rewrite Fourier series as:

7/ / f(t)(coswzcos wt + sin wzsin wt)ditdw
t=—o00

/ /) cosw(z — t)didw

=0Jt
1 / uu(z t)+ —iw(z— t))dtdw
t

271— / =0 Jt=—o00

S / [/ f(t) e dw + / e D dw]de
2 J_oo " Jo 0

QL / / f(t) eV dwdt

T J—ood—oco

1 oo

—o0

51/57

Fourier transform: properties

@ Linear operations performed in one domain (time or
frequency) have corresponding operations in the other domain.

o Differentiation in time domain corresponds to multiplication in
the frequency domain, usually making it easier to analyze.

@ Convolution in the time domain corresponds to the ordinary
multiplication the frequency domain.

@ Functions that are localized in one domain have Fourier
transforms that are spread out across the other domain,
known as the uncertainty principle.

@ The Fourier transform of a Gaussian function is another
Gaussian function.

52/57

Fourier transform: Poisson summation formula

e For a function f(x) with its Fourier transform (in terms of
ordinary frequency) F(v) :/ f(z)e~*™™dx, the Poisson

—0o0

summation formula states § f(k) = i F(k).

k=—oc0 k=—oc0
. 1o <t .
@ For example, the Fourier transform of f(z) = . s
0 otherwise
Fv) = = f(z)ef%i”dx— L sin(Ly)
I T v 2
@ Poisson summation formula states that
5 f=1= 5 .
) F(v)
1
-2 —1 0 1 2 —87 —47 0 47 8w W

53 /57

DTFT

@ Discrete-time Fourier transform (DTFT) refers to Fourier
analysis on the uniformly-spaced samples of a continuous
function, i.e., a Fourier series with z,, as coefficients:

X(w) = i Tpe” ™

n—=—oo

Here, the frequency variable w has normalized units of

radians/ sample.
f(z) F(w)
—— 1
-2 -1 0 1 2z —8m —4m 0 4m 87 W
Zn X(w)
T 5[5
-2 -1 0 1 2z —8m 4 8 W

54/57

Inverse transform of DTFT

e DTFT is itself a periodic function of frequency X(w). From
this function, the original samples x,, can be readily recovered
as below:

1 o0
T o
@ For example, the DTFT is X() =1+2cosw-+2cos2w. The
original samples can be recovered as:

Tn =

Xw) ¢ dw

1 o0
1:0:/ (1+2cosw+ 2cos2w)dw =1
27 J_

Similarly, we obtained z_ 1 =21 =1, = 25 = 1.

Ty, X(w)

I |

-2 -1 ‘ 0 1 2z —8m 4 87 W

55 /57

DTFT and DFT

@ From these samples, DTFT produces a function of frequency
that is a periodic summation of the Fourier transform of the
original continuous function.

@ The sampling theorem states the theoretical conditions under
which the original function can be perfectly recovered from
DTFT of the samples.

@ When the input data sequence z,, is N-periodic, DTFT
reduces to DFT, i.e.,

@ Alternatively, DTFT is itself a continuous function, and the
discrete samples of it can be efficiently calculated using DFT.

56 /57

Appendix: Dirac’'s § function

@ Dirac’s ¢ function has the following two properties:

o -]

oo =0
0 otherwise

+oo
(2] / d(z)dz=1

@ We can prove the following properties:
e For any contineous function f(z),

+oo
/ [2)5(z — 20)dz = flzo)

— 00

e 0(z) is the Fourier transform of 1 since

—+oo
F{5(2)} = / 5(z)e ™ dz = 1
e According to the inverse Fourier transform of 1, we have:

1 R 1 *° .
o(x) = — eY"dw = — e "“Tdw
27 27 J_ oo

— 00

57 /57

