
Sorting and Selection on Dynamic Data∗

Aris Anagnostopoulos† Ravi Kumar‡ Mohammad Mahdian‡ Eli Upfal§

Abstract

We formulate and study a new computational model for dynamic data. In this model, the
data changes gradually and the goal of an algorithm is to compute the solution to some problem
on the data at each time step, under the constraint that it only has limited access to the data
each time. As the data is constantly changing and the algorithm might be unaware of these
changes, it cannot be expected to always output the exact right solution; we are interested in
algorithms that guarantee to output an approximate solution. In particular, we focus on the
fundamental problems of sorting and selection, where the true ordering of the elements changes
slowly. We provide algorithms with performance close to the optimal in expectation and with
high probability.

1 Introduction

In the classic paradigm, an algorithm receives all the input at the start of the computation and
computes a function of that input. As computing became more interactive, researchers developed
the theory of online algorithms, focusing on the tradeoff between the timely availability of the
input and the performance of the algorithm. In this paper, we study another important aspect of
online, interactive computing: computing and maintaining global information on a data set that
is constantly changing. While algorithms and models to study dynamic data have been in vogue,
our work formulates and studies a new model of computing in the presence of constantly changing
data.

For concreteness we present our work through one specific motivation, the online voting website
Bix (bix.com), owned by Yahoo!;1 this partially inspired us to study the particular problem of
sorting. We comment later on more general applications. The Bix website hosts online contests
for various themes such as the most entertaining sport or the most dangerous animal or the best
presidential nominee, in which users vote to select the best amongst a pre-specified set of candidates.
For a given contest, Bix displays a pair of candidates to a user visiting the website and asks the
user to rank-order this pair. As the contest progresses, Bix aggregates all the pairwise comparisons
provided by users to pick the leader (or the top few leaders) of the contest thus far; the goal is
to reflect the current aggregated opinion as faithfully as possible. For simplicity, we will ignore

∗The research leading to these results has received funding from the EU FP7 Project N. 255403 – SNAPS and by
the NSF award IIS-0905553.

†Department of Informatics and System Sciences, Sapienza University of Rome, Italy, aris@dis.uniroma1.it
‡Yahoo! Research, Sunnyvale, CA, {ravikumar,mahdian}@yahoo-inc.com
§Dept. Computer Science, Brown University, Providence RI, eli@cs.brown.edu
1Yahoo! acquired the Bix contest site in the end of 2006 and kept it operative until June 2009 when it decided to

terminate it as part of its prioritization efforts.

1

issues such as malicious user behavior and assume that each user is able to compare any pair of
candidates. In fact, we will assume something more general: each user has access to the global
total order (“the public opinion”) and when Bix shows a pair of candidates, the user consults this
total order to rank-order the given pair.

There are two factors that make this setting both interesting and challenging. First, as the
contest progresses, users’ voting patterns might change, perhaps slowly, at an aggregate level. This
can be caused by an intrinsic shift in public opinion about the candidates or factors external to the
contest. While one cannot assume there is a fixed total order that the contest is trying to uncover,
it is reasonable to assume that the total order changes slowly over time. Second, whenever a user
visits the website, Bix has to choose a pair of candidates to show to the user in order to elicit the
comparison. A visiting user is thus a valuable resource and hence Bix has to judiciously utilize this
by showing a pair of candidates that yields the most value. Note that this is not a trivial problem:
for example, it is not hard to show that asking the user to rank a random pair of candidates is
quite “wasteful” and leads to considerably weaker guarantees.2

One way to model the above scenario is as follows. We have a set of n elements and an underlying
total order πt, at time t, on the elements. The ordering slowly changes over time and we model
the slow change by requiring that the change from πt and πt+1 is local. The goal is to design an
algorithm that, at any point in time, tracks the top few elements of the underlying total order or
more generally, maintains a total order π̃t that is close to πt. The only capability available to the
algorithm is pairwise comparison probes: at any time t, given one or more pair of elements, it can
obtain the pairwise ranking of them according to the underlying total order currently in effect, (i.e.,
πt). Clearly, there is a tradeoff between the number of probes that can be made at time t and the
quality of π̃t (e.g., if the number of probes is large enough, then π̃t = πt is easily achievable).

Another motivation for the sorting problem is that of ranking in settings such as web search, rec-
ommendation systems, and online ad selection. A significant factor in ranking is the use of historic
data. However, what may have been a good ranking in the past may not remain so perpetually,
and the ranking changes are typically gradual over time (e.g., the query “vacation spots” might
connote differently depending on the time of the year). The ranking system would like to track
the changing perception of ranking by selecting what feedback (in the form of clicks) to request
from the user. In addition to the above applications, which are mostly in the Internet domain, the
problem has applications in sociology under the topic of the method of “paired comparisons” in
the measurement of social values [13, Ch. 7].3

Of course, except for the aforementioned motivations for the sorting problem, similar issues
arise in scenarios other than sorting. Consider, for example, a web crawler, whose goal is to track
the highest quality pages on the web. The notion of quality, however, is (slowly) time-varying and
the crawling algorithm, which is usually resource-constrained, has only limited access to the web
graph at any point in time. The goal of the crawler would then be to track pages whose quality is
reasonably close to the current best. Another graph application is maintaining routing tables with
fastest (least congested) routes. The load on routes changes gradually, and the router receives new
information on route’s load only when a packet is sent along that route. Yet another setting can
be that of a company that wants to track popular social network users with lots of friends, so as to

2In the language of the model defined in Section 2, this algorithm leads to a guarantee of O(n2) for the Kendall tau
distance (only a constant factor better than an oblivious algorithm that always outputs the same ranking), whereas
we are able to achieve O(n ln lnn).

3We thank Matthew Salganik for pointing out this application.

2

use this information for viral marketing. Social networking systems such as Facebook and LinkedIn
allow one to query and find the contacts of a given user (unless the user explicitly disallows) but
limit the number of queries so as to prevent abuse. Overall, our setting is fairly general and can
capture real-life scenarios such as continually updated remote databases, hashing, load balancing,
polling, etc.

1.1 A General Framework

The nature of the problems described above suggests the following general framework to study
dynamic data. Let U and V be (possibly infinite) universes of objects. Let f : U → V be a
function. Let d : U × U → R

+ and d′ : V × V → R
+ be pairwise distance functions. U t ∈ U is the

object at time t while V t ∈ V will be the estimate of the output of function f at time t.
(1) We have an implicit sequence of objects U1, U2, . . . such that d(U t, U t+1) is small, that is,

the object changes slowly over time. The change can be arbitrary or stochastic (which is the case
considered in this paper).

(2) At each time t, portions of the object U t can be accessed by a certain number of probes.
(3) The goal is to output a sequence V 1, V 2, . . . such that for each t, d′(f(U t), V t) is small, that

is, we have a good approximation to the function of the true object at each point in time.
In the case of the Bix sorting problem, which is the main focus of this paper, U = V = Sn, the

set of permutations on n elements, d = d′ is the Kendall tau distance, and f is the identity function.
For the selection problems, we have that V is the set of elements, d′ is the absolute rank difference
between two elements, and f is the element at a particular rank. The slow changing of the objects
in (1) is captured by permitting, say, only pairwise swaps (corresponding to a Kendall distance of 1)
and the access to the object in (2) is captured by rank-ordering a given pair of elements according to
the current total order. Even though in this paper we only focus on ranking and selection problems,
this framework applies to many other settings as well, such as graph algorithms [1].

1.2 Related Work

Models for dealing with dynamic and uncertain data have been extensively studied in the algo-
rithmic community, from various points of view. However, none of these captures the two crucial
aspects of the above scenario: the slow changing of the underlying object and the probe model of
exposing only a limited portion of the object to an algorithm. We now discuss some of the models
most related to ours.

Dynamic graph algorithms [5]. In the setting of dynamic graph algorithms a graph changes
over time and the goal is to keep track of the changes so as to be able to efficiently answer
graph queries. The main difference is that here when a change is performed to a graph it
is known to the algorithm; instead in our setting the algorithm does not know the change
but it has to perform queries to learn it. In addition, the expensive resource in our setting
is the number of queries, while we do not pose any additional restrictions on the time/space
complexity of the algorithms.

Multi-armed bandit algorithms [6]. This is a setting for studying exploration-exploitation trade-
offs. In the standard multi-armed bandit setting there exist k slot machines (one-armed ban-
dits). Pulling a lever in a slot machine gives a reward, which depends on the machine, and
reveals information about the machine. The objective is to select which machines to query so

3

as to maximize the total reward. Similar to our case, the number of queries in every time step
is limited. In particular, similar tradeoffs with those in our setting are studied in the work of
Slivkins and Upfal [11] where the distribution of the rewards changes over time. The setting
studied in the current paper is more general as the underlying structure can be arbitrary.

Data stream algorithms [8]. Here the algorithm observes a sequence of events (for example,
edge addition or deletion) and has to maintain an approximate solution. Here there are
some limited computational resources, typically space, and the algorithm should maintain an
approximate solution under the resource’s limitations, while being able to observe the entire
stream of changes. Instead our limited resource is the number of queries to the data.

Property testing [9, 10]. Here the goal is to find whether some structure (e.g., a graph) contains
some property or is far from containing the property using a limited number of queries. As
opposed to our setting, the model is static. Furthermore, in the dynamic-data model the
underlying problem does not have to be a YES/NO question and there are no restrictions
placed on the input (such that if the structure does not satisfy the property then it is far
from satisfying it).

Online algorithms [2]. In online algorithms the input is revealed over time and the algorithm
must make decisions without the knowledge of future requests. Again, the main difference
is that all the underlying changes are revealed to the algorithm, as opposed to our setting
where changes have to be discovered by performing the appropriate queries.

Stochastic optimization algorithms [12]. In stochastic optimization, decisions should be made
anticipating future events, which take place according to distributional assumptions. Yet
again, the algorithm is able to learn the changes as they take place as opposed to the dynamic-
data setting.

1.3 Our Results

For the problem of maintaining a sorted order using a single probe at each time step when the
permutation changes slowly and randomly and where the notion of distance is the Kendall tau
(number of pairwise disagreements), first we show an Ω(n) lower bound on the expected distance
between the true ordering and the order maintained by any algorithm. Our conjecture is that this
lower bound is tight. Subsequently, we give an algorithm that guarantees that for every time step
t, the distance between the underlying true ordering and the ordering maintained by the algorithm
is at most O(n ln lnn), in expectation and with high probability. This builds upon an algorithm
that has a distance guarantee of O(n lnn), in expectation and with high probability.

To show the upper bound result, we first develop an algorithm that is based on periodically
running the quicksort algorithm on the data. We use properties specific to quicksort to show that
this algorithm can guarantee a distance of O(n lnn). We then give a more sophisticated algorithm
that runs a copy of the above quicksort-based algorithm in parallel with multiple copies of faster
though less accurate “local quicksorts.” These local quicksorts will be able to give us the desired
distance guarantee of O(n ln lnn) in the first few runs; however, their weakness is that they could
accumulate the errors and lead to considerably worse distance guarantees later. This weakness is
overcome by occasionally resetting the algorithm using the slower quicksort, which is run in parallel.

We then consider selection problems: finding an element of a given rank. We provide algorithms
that track the target elements to within distance 1. The basic idea is similar to the one we used for

4

sorting: we adapt a static algorithm to the online setting by repeated executions. Furthermore, to
ensure that the result returned is always close to the true value, we decompose the algorithm into
two processes that are executed independently and in parallel, where the slower process prepares
the data structures that the faster process uses over and over to compute the output. For the special
case of finding the minimum element, we give a simpler algorithm by modeling the evolution of the
process as a Markov chain.

1.4 Roadmap

In Section 2 we present the results for sorting. We present the precise model and in Section 2.1 we
give the lower bound of Ω(n). In Section 2.2 we give the simple algorithm guaranteeing an error
of O(n lnn) and in Section 2.3 we present our main result, which gives an error of O(n ln lnn).
In Section 3 we study selection problems. In Section 3.1 we give the simple algorithm for finding
the minimum element and in Section 3.2 we present the algorithms for finding the median (or any
element of a given rank). Finally, we conclude in Section 4.

2 Sorting Dynamic Elements

Consider a set U = {u1, . . . , un}. Throughout most of this paper, our focus is on the problem
of sorting the elements of U . In a static setting, where the correct ordering of the elements of U
is given by a permutation π, there are numerous well-known sorting algorithms that can find the
permutation π after comparing O(n lnn) pairs in U [3]. We are interested in a dynamic setting,
where the true ordering π changes over time. To make this precise, consider a discretized time
horizon with time steps indexed by positive integers. Let πt be the true ordering at time t. We
assume that the true ordering changes gradually, and we model this by assuming that for every
t > 1, πt is obtained from πt−1 by swapping a constant number α ≥ 1 of random pairs of consecutive
elements.

Our objective is to give an algorithm that can estimate the true ordering πt. Unlike the familiar
notion of algorithms that terminate in finite time, the algorithms we study run for ever; we often
refer to them as protocols. In every time step t, the algorithm can select two elements of U to
compare. The ordering of these two elements according to πt is given to the algorithm, and then
the algorithm computes an estimate π̃t of the true ordering. The algorithm has a memory, that
is, it is allowed to store any information, and the information will be carried over to the next time
step. Note that we did not impose any constraint on either the amount of memory required by
the algorithm or its running time. While such constraints seem natural in practice, it turns out
that the running time and the memory are not major concerns, at least for the algorithms that we
propose in this paper. Also, we need to specify whether the algorithm knows the initial ordering
π1. For convenience, we assume that the algorithm knows π1, although our results hold without
this assumption as well.4

Notice that unlike in the static setting where the algorithm can find the permutation π after a
finite time, in the dynamic setting the algorithm can never expect to find the exact true ordering
πt. Therefore, we need a way to measure how close the estimate is to the true ordering. For
this purpose, we use the classical Kendall tau distance function between permutations. For a

4We only need to be careful to require t ≥ cn lnn, for a constant c, in our upper bounds (Theorems 2 and 7) if
the algorithm does not know π1.

5

permutation π we write x <π y if x is ordered before y according to permutation π. The Kendall
tau distance KT(π1, π2) between permutations π1 and π2 is defined as follows:

KT(π1, π2) = |{(x, y) : x <π1
y ∧ y <π2

x}| .
The maximum Kendall tau distance between two permutations (and furthermore, the distance

between two random permutations) is Θ(n2). In fact, no algorithm can guarantee that in every time
step the distance between πt and π̃t is less than O(n) (Section 2.1). Our main result in Section 2.3
shows that there is an algorithm that can guarantee with high probability that this distance is at
most O(n ln lnn). We start with an easier result of O(n lnn) in Section 2.2, which will be used in
our main result.

2.1 Lower Bound

We first prove an Ω(n) lower bound on the expected Kendall tau distance between the estimated
order computed by any algorithm for our problem and the actual order at any time t.

Theorem 1. For every t > n/8, KT(π̃t, πt) = Ω(n) in expectation and whp.5

Proof. We prove the result for α = 1, then it clearly holds for higher rates of change (the proof
has to be modified only slightly, to prove it rigorously). The intuition of the proof is as follows.
Consider the time interval I = [t − n/100, t]. The algorithm compares pairs involving at most
n/50 elements in this time interval. Therefore, every time the nature6 swaps a pair of consecutive
elements of the permutation π, there is a constant probability that this pair does not involve any
of the elements touched by the algorithm. This means that there is a linear number of swaps that
the algorithm does not “know” about.

To formalize this idea, we use the principle of deferred decisions. First, we change the process
as follows: in every step, after the algorithm selects a pair and asks for their comparison, the nature
first picks two disjoint pairs of consecutive elements in π (i.e., π(i), π(i+1) and π(j), π(j +1) for i
and j such that {i, i+ 1} ∩ {j, j + 1} = ∅) uniformly at random, and then selects one of these two
pairs at random and swaps them. We call this random experiment process B. Clearly, the outcome
of process B is exactly the same as the outcome of the original process, since choosing two pairs
and then randomly choosing one of them is equivalent to choosing just one pair at random. The
choice of the two pairs and the selection of one of them is called the nature’s decision in this step.

Next, we change the process again by deferring some of nature’s decisions. The idea is to fix
all the decisions that involve at least one of the elements touched by the algorithm and defer the
rest. However, since each swap by the nature will affect which pairs are candidates for swaps in the
future, we also need to fix the decisions involving overlapping pairs picked by the nature. So, the
process described below maintains the invariant that the deferred decisions at any time constitute a
random set of disjoint pairs from among the elements that are not involved in any of the algorithm’s
comparisons or nature’s fixed decisions so far.

The process, which will be denoted by C, is as follows: initially, the set of touched elements is
empty, and the set of deferred decisions is also empty. In every time step during the interval I, the

5We say that an event holds with high probability, abbreviated whp., if it holds with probability that tends to 0
as n → ∞.

6We use the term “nature” to refer to the agent or the mechanism performing the random changes in the underlying
ranking.

6

algorithm selects a pair of elements to compare. If any of these elements is previously untouched,
we mark it as touched and for any of the deferred decisions, we flip a coin with the appropriate
probability to determine if the decision involves that element. If it does, we fix the decision according
to the appropriate conditional distribution, i.e., we pick both pairs involved in the decision, and
the one among them that should be swapped. These pairs can involve other previously untouched
elements. We mark all these elements as touched, and again, flip coins to determine if any of the
deferred decisions should involve any of those elements. This process is continued until for all the
deferred decisions and all the elements newly marked as touched, we determine that the decision
does not involve the element. After this, the query asked by the algorithm is answered (note that
this can be done since the deferred decisions are irrelevant to the query asked by the algorithm),
and then the nature needs to make a new decision (i.e., pick two more pairs). Again, we flip a
coin to determine if any of these two pairs overlaps with the the set of touched elements, and if
the outcome of the coin flip determines that it does, we fix this decision, update the set of touched
elements to include the elements involved in the newly fixed decision, and iterate as before. Also,
we flip a coin to determine if the new decision overlaps with any of the deferred decisions, and
if it does, we fix both of the decisions by picking the corresponding pairs from the appropriate
distribution and selecting one of the two pairs in each decision for the swap.

At the end of the interval I (i.e., at time t), this process has fixed some of the nature’s decisions
and has deferred the rest. At this point, we start a second phase and fix all the deferred decisions
by picking a random set of disjoint pairs (two pairs for each deferred decision) and swapping a
random one of the two pairs for each decision. Clearly, at the end of this phase, the distribution of
the state of the process is exactly the same as process B.

The last step of the proof is to show that the number of deferred decisions at the end of the
first phase of process C is Θ(n) in expectation. This is done as follows: a decision in process C will
be deferred until the end of phase 1, if and only if the corresponding decision in process B consists
of two pairs that are disjoint from all the other pairs picked by the nature and all queries asked
by the algorithm. The set of all such elements is of size at most 6n/100, since in each round the
algorithm is picking 2 elements and the nature is picking 4. Let us now compute the probability
that a decision is defered. A decision in process B consist of two pairs. For each of these pairs, we
need to randomly pick the first element of the pair among any of the n − 1 possible choices. Out
of these n − 1 pairs, fewer than 12n/100 would lead to a pair that includes a ”touched” element
(since there are 6n/100 touched elements, and we cannot pick the element before any of the touched
elements either). So, at least a (1− 12/100) fraction of the choices would lead to a pair that does
not include a touched element. This gives an overall probability of at least (1 − 12/100)2 > 1/2
that a given decision is deferred. Thus, in expectation, at least half of the decisions are deferred
until the end of phase 1. However, the algorithm has to output a permutation at the end of phase
1 before the deferred decisions are fixed. Taking the probability only over the random choices in
the second phase, the expected distance between the permutations π̃t and πt is at least half the
number of deferred decisions. Thus, the overall expected distance between π̃t and πt is at least
n/400 = Ω(n).

2.2 An Algorithm with O(n lnn) Distance Guarantee

In this section, we give an algorithm that guarantees the following: for every time step t, the
distance between the orderings πt and π̃t is O(n lnn), whp. We will use this result in the next
section to get an improved bound of O(n ln lnn).

7

The algorithm proceeds in phases, where each phase consists of O(n lnn) time steps (in ex-
pectation and whp.). In each phase, the algorithm runs a randomized quicksort algorithm to sort
all elements. At any time step, the algorithm outputs the ordering that is obtained at the end of
the last phase. Notice that since this algorithm outputs the same permutation for O(n lnn) steps,
it cannot provide a distance guarantee better than O(n lnn). The next theorem shows that the
distance guarantee of this algorithm is in fact O(n lnn) whp.

Theorem 2. For every t, KT(π̃t, πt) = O(n lnn) in expectation and whp.

Before proving the above theorem, we note that in our algorithm, the quicksort algorithm
may not be replaced by an arbitrary O(n lnn) sorting algorithm. The reason being that in our
setting the algorithm can receive inconsistent data (since the true ordering is changing), and such
inconsistencies can lead to large errors in general. In the case of quicksort, we will use its specific
properties to argue that the inconsistencies can result in only a small number of additional errors
(these errors will correspond to the set B in the following proof).

We also need to clarify what we mean by a randomized quicksort algorithm. The randomized
quicksort algorithm picks a random element as the pivot, compares all other elements against this
pivot and divides them into two sets S1 and S2, where S1 are those elements that are less than the
pivot and S2 are those that are greater than the pivot. Then, it recursively sorts the set S1, and
after the completion of this part, it recursively sorts S2. This is the natural way to implement the
classical randomized quicksort algorithm [3], but while in the classical framework of sorting, it is
permissible if the recursive run of the algorithm on S1 is interleaved with the recursive run on S2,
in our setting it is not.

Before proving Theorem 2, we give the following proposition according to which, randomized
quicksort is executed in time O(n lnn) in expectation and whp. under the dynamic-data model.

Proposition 3. The running time of the standard randomized quicksort algorithm in the dynamic-
data model is O(n lnn) in expectation and whp.

Proof. The standard proof for the runtime of quicksort consists of the following main steps [4,
Section 2.4]:

1. Call a pivot element good if it separates the corresponding array to two parts such that each
of them has at least a constant fraction γ of the elements. This implies that for a given path
in the quicksort execution tree the total number of good pivot elements is O(lnn).

2. Since a pivot element has a constant probability to be good, the number of bad (i.e., not
good) pivots in a given path follows a negative binomial distribution and using a Chernoff
bound we obtain that this number of bad pivots is a constant times the number of good pivot
elements whp. This means that the total length of each path is O(lnn) whp.

3. Since there are at most n different search tree paths, a union bound shows that the running
time is O(n lnn) whp. (and in expectation).

In the case of dynamic data, the proof is almost the same. For step 1, we define a pivot
element to be good if at the moment it is chosen it splits (according to the true permutation) the
corresponding array into two parts each containing at least a fraction γ of the elements. Since
elements might swap when the pivot is partitioning the array, a good pivot might split the array
into two parts such that one might have fewer than a γ fraction of the total elements of the array.

8

However, whp. each part will contain at least a fraction γ/2 of the elements, thus the number of
good pivots in a given path is O(lnn) whp. The second and the third steps continue holding true
unmodified.

We can now prove Theorem 2.

Proof of Theorem 2. Consider one phase of the algorithm from time t0 to t1. We have that t1−t0 =
Θ(n lnn), in expectation and whp.

To bound the Kendall tau distance we have to bound the number of pairs (ui, uj) that are
ordered differently in the two permutations π̃t1 and πt1 . We divide these pairs into two disjoint
sets, A and B, where the set A contains the pairs for which the algorithm’s order at time t1 is in
accordance with the true ordering at some time point t ∈ [t0, t1):

A = {(ui, uj) | ui <π̃t1 uj , ui >πt1 uj ,∃t ∈ [t0, t1) s. t. ui <πt uj},
and the set B contains the pairs for which there was a disagreement between the algorithm’s order
estimate (at time t1) and the true order throughout the execution of the algorithm in this phase:

B = {(ui, uj) | ui <π̃t1 uj ,∀t ∈ [t0, t1) ui >πt uj}.
Since KT(π̃t, πt) = |A ∪B| = |A|+ |B|, Lemmas 4 and 5 will complete the proof.

First we bound the cardinality of A by the running time of the algorithm.

Lemma 4. |A| = O(n lnn) in expectation and whp.

Proof. For the set A, note that if we let A′ be the set of pairs for which the true order changed in
[t0, t1), i.e.,

A′ = {(ui, uj) | ui >πt1 uj,∃t ∈ [t0, t1) s.t. ui <πt uj},
then we have that A ⊆ A′. Now notice that since the true order of the pair (ui, uj) was swapped
during [t0, t1), it has to be the case that at some point in [t0, t1), the pair (ui, uj) was chosen to
swap. Since only α pairs swap their ordering at each timestep and since t1 − t0 = O(n lnn) in
expectation and whp., we have that |A| ≤ |A′| ≤ t1 − t0 = O(n lnn) in expectation and whp.

For the set B, the counting is more involved. By definition, for a pair (ui, uj) ∈ B we have
that ui > uj according to the true ordering during [t0, t1], however, at t1 the algorithm concluded
otherwise. This means that during one of the recursive calls of the quicksort algorithm, elements
ui and uj belonged to the same subarray that was then sorted, a pivot element uk was chosen
(uk 6= ui, uj), and after element uk was compared with all the elements of the subarray, the result
was ui < uk < uj. For this to have happened, the element uk would have to be swapped with each
of the elements ui and uj at least once while it was a pivot. After the element uk terminates being
a pivot, the algorithm’s perception of the ordering between ui and uj does not change. (Note that
the above arguments crucially rely on the fact that the algorithm is quicksort.)

From the previous discussion we see that if we can bound the number of swaps of the pivot
elements during the period they were acting as pivots, then we will be able to bound the number
of pairs in the set B. Since the probability that a pivot element is chosen for a swap at a given
time step is small (at most 2/n), we expect the set B to be small. We prove this formally below.

9

Lemma 5. |B| = O(n lnn) in expectation and whp.

Proof. We will charge the error due to pair (ui, uj) to the corresponding pivot uk. Let Xk be the
number of steps that element uk was a pivot during [t0, t1); note that Xk ≤ n. Let E be the event
that

n
∑

k=1

Xk ≤ c0n lnn, (1)

for some constant c0 > 0. Note that since the randomized quicksort algorithm has exactly one
pivot at any time step,

∑n
k=1Xk is the running time of the algorithm. Since, by Proposition 3,

the running time of quicksort is O(n lnn) in expectation and whp., E holds whp., if we let c0 be
sufficiently large. Also, the running time of quicksort is O(n2) in the worst case. The event ¬E will
only contribute a negligible (inverse polynomial) amount to the calculations below; therefore, for
ease of exposition, we will condition on E being true for the rest of the proof.

Since Xk ≤ n and
∑

Xk ≤ c0n lnn, by convexity,
∑

X2
k is maximized if c0 lnn of the Xk’s are

equal to n and the rest are equal to 0. Hence,

n
∑

k=1

X2
k ≤ c0n

2 lnn. (2)

Let Yk be the number of steps that element uk was a pivot element and it was chosen to swap.
Given Xk, we have that Yk ∼ Binomial(Xk, p) where p = 2α/n (with the exception of the case that
the pivot is or becomes the first or last element in the order, in which case p = α/n). We argued
earlier that for the pair (ui, uj) to become misordered, the corresponding pivot was swapped with
both ui and uj. Therefore, if a pivot swapped Yk times, then it could have led to at most

(

Yk

2

)

≤ Y 2
k

misordered pairs. We can then bound the number of pairs in the set B by S
4
=

∑n
k=1 Y

2
k ≥ |B| .

The proof is complete if we upper bound E[S]. Now,

E[S] = E

[

n
∑

k=1

Y 2
k

]

= E

[

E

[

n
∑

k=1

Y 2
k

∣

∣

∣

∣

Xk

]]

= E

[

n
∑

k=1

E
[

Y 2
k |Xk

]

]

= E

[

n
∑

k=1

(Var [Yk|Xk] +E[Yk|Xk]
2)

]

= E

[

n
∑

k=1

(Xkp(1− p) +X2
kp

2)

]

= E

[

p(1− p)
n
∑

k=1

Xk + p2
n
∑

k=1

X2
k

]

(1),(2)

≤ (2αc0(1− p) + 4α2c0) ln n ≤ c1 lnn,

for some constant c1 > 0.
To bound the probability that the set B is large, first note that given Xk’s, the Yk’s are

independent binomial random variables. We apply Azuma’s inequality and finish the proof.7 For

7The following is a consequence of Azuma’s inequality [7]. Assume that 0 < Xi < di are independent random
variables, and let S =

∑

n

i=1
Xi. Then

Pr(S −E[S] > λ) ≤ exp

(

−2λ2/

n
∑

i=1

d2i

)

.

10

some sufficiently large constant c2 > 0, we have

Pr(S −E[S] > c2n lnn) ≤ exp

(

−2c22n
2 ln2 n

∑n
k=1X

2
k

)

(2)

≤ n−2c22/c0 .

The following lemma is also proved similarly and will be used later.

Lemma 6. Given an element ui, the number of pairs (ui, uj) that the permutations πt1 and π̃t1

rank differently is bounded by c3 lnn in expectation and whp., for some constant c3 and sufficiently
large n.

Proof. Similarly to the previous proof, we partition the set of incorrectly ordered pairs to two sets,
A and B, A containing elements that are incorrectly ordered with ui but at some point during the
period [t0, t1) were correctly ordered, and B elements that have been ordered incorrectly with ui
throughout the entire period [t0, t1]:

A = {uj : ui <π̃t1 uj , ui >πt1 uj ,∃t ∈ [t0, t1) : ui <πt uj}
⋃

{uj : uj <π̃t1 ui, uj >πt1 ui,∃t ∈ [t0, t1) : uj <πt ui},

B = {uj : ui <π̃t1 uj,∀t ∈ [t0, t1) : ui >πt uj}
⋃

{uj : uj <π̃t1 ui,∀t ∈ [t0, t1) : uj >πt ui}.

Note that the size of set A can be bounded by the number of times element ui was chosen
to switch. Since at every timestep it is chosen with probability at most 2α/n and since the total
running time is bounded by c0n lnn, the expected number of times that element ui is chosen to
switch is bounded by 2αc0 lnn, therefore, by applying the Chernoff bound, we obtain that the size
of set A is bounded by 4αc0 lnn in expectation and whp.

The size of set B can also be bounded by a similar way as before. In order for element ui and
element uj to be ranked incorrectly even though they had always the same relative rank in the true
ordering (say ui < uj), it must be the case that some pivot element, uk, at some point was uk < ui
and while it was a pivot it became uk > uj > ui (or vice versa). The difference from the situation
before is that we need to count only the pivots along the path (in the quicksort execution tree) of
element ui. If a pivot switched Yk times, then it has added at most Yk elements to the set B.

As before, we assume that the event E holds. We let Xk be the number of steps that element uk
was a pivot element and Yk be the number of steps that element uk was a pivot and switched order
with another adjacent element. Let Pi ⊆ U be the set of elements that acted as pivots along the
path in the quicksort tree of element ui. Then, by properties of the quicksort algorithm, we have

E

∑

k:uk∈Pi

Xk

 = O(n), (3)

and
∑

k:uk∈Pi

Xk ≤ c4n lnn, (4)

11

Blocki+1

m

Blocki

Figure 1: The partition into blocks.

whp., for a constant c4. As before, since Xk, Yk ∼ Binomial(Xk, 2α/n) (again with the exception
of the first and last elements where the probability is α/n), we have

E[|B|] ≤ E

E

∑

k:uk∈Pi

Yk

∣

∣

∣

∣

Xk

 ≤ E

∑

k:uk∈Pi

Xk
2α

n

 = O(1),

by (3), andE[|B|] = O(lnn), whp., by (4). Since |B| is bounded above by Binomial(
∑

k:uk∈Pi
Xk, 2α/n),

by the Chernoff bound, |B| = O(lnn), whp. Therefore the size of A ∪B, is O(lnn), whp. and the
proof is complete for c3 = 2c0 + c4.

2.3 Main Result

Now we present a more complicated protocol that maintains an error of O(n ln lnn). The main idea
is to exploit the fact that after the quicksort execution, which due to its running time has an error
of Ω(n lnn), the rank of each element in the algorithm’s estimate is within O(lnn) of its actual
rank. Therefore, for sorting such an ordering, it is not necessary to run an O(n lnn) algorithm
from scratch; instead, we can use sorting algorithms that are faster than O(n lnn). In particular,
by performing several (O(n/ ln n)) local quicksorts on blocks of size m = Θ(lnn) we can correct
the ordering. The total running time of this sorting algorithm is O(n/ ln n) · (lnn) ln lnn, therefore
after this step terminates, the total error will be O(n ln lnn).

There are some issues that we have to address though. First, since elements might have moved to
neighboring blocks, we make the blocks overlapping thus allowing the comparison of all neighboring
elements (see Figure 1). First we sort the first m elements. From the resulting order we maintain
the first m/2 of the elements. The second half of the block is sorted along with the next m/2
elements. Again we maintain the first m/2 elements and proceed in the same way.

Second, while we would like to sequentially execute a full set of local quicksorts after the
termination of the previous one so as to maintain the error of O(n ln lnn), eventually elements
will move far. Thus it is necessary to occasionally execute a full quicksort to recover the global
order. The problem, however, is that during the execution of the global quicksort the error will
become n lnn. Therefore, we use the following idea: execute two sets of quicksorts independently.
During the odd timesteps we execute a regular quicksort, and after its termination we restart, as
in Section 2.2. The previous analysis applies to this case as well with the difference that in every
step there are 2α pairs whose order swaps. During the even steps, we execute the set of Θ(n/ lnn)
quicksorts on overlapping blocks of length m = Θ(lnn). The input to the set of quicksorts is the

12

1.Function BlockSort(ρ)
2. Input: Permutation ρ = Output of the full quicksort at time t0
3. B : Array of size m
4. for j = 1 to m

2
5. B(j)← ρ−1(j)
6. end for
7. for i = 1 to 2n

m − 1
8. for j = 1 to m

2
9. B

(

m
2 + j

)

← ρ−1
(

im2 + j
)

10. end for
11. quicksort(B)
12. for j = 1 to m

2
13. σ−1

(

(i− 1)m2 + j
)

← B(j)
14. B(j)← B

(

m
2 + j

)

15. end for
16. end for
17. for j = 1 to m

2
18. σ−1

(

n− m
2 + j

)

← B(j)
19. end for

Figure 2: A set of block sorts that lasts for Θ(n ln lnn) steps. The algorithm is executed only
during even time steps. The input permutation ρ is the latest output from a full (global) quicksort
(the output of the full quick soft at time t0 in Figure 3 if the BlockSort algorithm starts execution
at time t1). In every step the output of the algorithm is the output of the last BlockSort that is
completed.

output of the last full quicksort that has terminated. After the termination of the set of quicksorts
we rerun them, again with the same input. The two processes are executed independently with
their own data structures. In every time step, the “output” of the protocol is the output of the
latest successfully completed set of quicksorts. We present the even steps of the algorithm Figure 2,
while in Figure 3 we present a schematic representation.

The next theorem proves the main result of the paper.

Theorem 7. For every t, KT(π̃t, πt) = O(n ln lnn) in expectation and whp.

Proof. We consider a period of execution of the algorithm [t0, tf], which is of length at most c5n lnn
(for c5 = 2c0) whp., and during which, at the odd time steps a full quicksort is executed, while
during the even time step a series of sets of block quicksorts is executed. We have analyzed the
behavior of the protocol during the odd steps, so now we want to analyze the behavior of the
protocol during the even steps. We focus on a single set of quicksort runs, which has a duration
of (2n/m − 1) · c5m lnm = O(n ln lnn). Let t1 ∈ [t0, tf) be the starting time and t2 be the ending
time of the sequence of 2n/m− 1 quicksorts (see Figure 3).

Recall that while this set starts executing at time t1, its input will be the ordering ρ that is the
output of the full quicksort algorithm at time t0. So, first we want to show that for every element
ui, the true rank at time t1, π

t1(ui), and the rank according to the output of the full quicksort at

13

tf

c1n ln n

2n
m

· c1m ln m

c1n ln n

c1m ln m Set of 2n
m

block quicksorts

Full quicksort

Block quicksort

t0 t1 t2

Figure 3: The periods of the execution of the sorting algorithm.

time t0, ρ(ui), are within O(lnn) to each other. Let us, therefore, generally consider a time point
t ∈ [t0, tf]. We then have whp.

∣

∣πt(ui)− ρ(ui)
∣

∣ ≤
∣

∣πt(ui)− πt0(ui)
∣

∣+
∣

∣πt0(ui)− ρ(ui)
∣

∣

≤ c6 lnn+ c7 lnn,

for appropriate constants c6 and c7. To see why the above expression is true, the first inequality
follows from the Kendall tau being a metric. Let us now see why the second inequality is true. The
first term expresses the difference in the (true) rank of element ui between time points t0 and t.
Since t ∈ [t0, tf] and since tf − t0 ≤ c5n lnn we conclude that in expectation the rank of element
ui changes (by one) at most 2αc5 lnn times, since the probability for element ui to be selected to
swap is at most 2α/n in every time step. Therefore, by an application of the Chernoff bound, we
conclude that for some constant c6 the rank of element ui does not change more than c6 lnn whp.
The second term of the inequality is bounded by making use of Lemma 6 (for c7 ≥ 2c3, since in
Lemma 6 we assumed that the quicksort algorithm is executed in all time steps while here it is
executed only in the odd time steps): if the two ranks πt0(ui) and ρ(ui) differ by some value d,
then it has to be the case that element ui is incorrectly ordered with at least d other elements at
time t0.

Therefore, by applying a union bound over all elements and all time points t ∈ [t0, tf], we can
conclude that event Ẽ is true whp., where Ẽ is the event that “for all elements ui and all time steps
t ∈ [t0, tf], we have that

∣

∣πt(ui)− ρ(ui)
∣

∣ ≤ c8 lnn,” for some constant c8. Also we define the block
size to be m = 6c8 lnn.

We will estimate the error at time t2, and prove that it is at most O(n ln lnn). Since the running
time of each BlockSort is at most O(n ln lnn), this implies that the error until the end of the next
BlockSort is at most O(n ln lnn). As in the proof of the simpler algorithm, we assume that the
event Ẽ is true (since Ẽ holds whp., the expected error introduced if Ẽ does not hold is o(n)) and
count the number of pairs (ui, uj) ordered incorrectly at time t2. We divide these pairs into three
groups:

1. (ui, uj) whose ordering (according to π) has changed at least once during [t1, t2].

2. (ui, uj) for which there is a pivot uk in one of the quicksorts runs during [t1, t2] that was
swapped with both ui and uj while it was the pivot.

14

3. all other (ui, uj)’s that are misordered at time t2, that is, all pairs whose ordering does not
change during [t1, t2], and no quicksort pivot has swapped its order with both of them.

As in the previous section, since in each time step only one pair is swapped in π, the number
of pairs (ui, uj) in the first group is bounded by t2 − t1, which is O(n ln lnn) whp. For the second
group, we use an argument similar to the one used in the previous section to bound |B|: since each
element uk is a pivot for at most 2m = O(lnn) steps, the number of pairs (ui, uj) that a pivot
uk can be swapped with can be bounded by Y 2

k , where Yk ∼ Binomial(O(ln n), 2α/n). Therefore,
the expected number of pairs in the second group is at most E[

∑

k Y
2
k] = nO(lnn/n) = O(lnn).

Furthermore, for each constant c, the probability that Yk is greater than c is at most O((ln n/n)c),
and hence, whp., each Yk is at most a constant. Also,

∑

k Yk ∼ Binomial(O(n lnn), 2α/n), and
therefore by the Chernoff bound, whp., it is at most O(lnn). Putting these together, we obtain
∑

k Y
2
k ≤ maxk{Yk} ·

∑

k Yk = O(lnn), whp.
Finally, we bound the number of pairs in the third group. In fact, we will show that there

is no such pair. Let (ui, uj) be a pair in the third group, and assume, without loss of generality,
that ρ(ui) < ρ(uj), that is, ui is placed before uj in the input to the algorithm BlockSort. By the
argument in the proof of Theorem 2, since no pivot has swapped with both ui and uj, if they ever
end up in the same quicksort block, they are ordered correctly at time t2. Therefore, ui and uj
must never end up in the same block. Thus, their ordering in the output of BlockSort is the same
as their ordering in the input, i.e., ui is ordered before uj in π̃t2 . This means that since ui and uj
are misordered at time t2 and their correct ordering (i.e., according to π) has not changed during
[t1, t2], uj must be ordered before ui in πt for every t ∈ [t1, t2] (π

t(uj) < πt(ui)). Given that the
event Ẽ is true, this implies:

|ρ(ui)− ρ(uj)| = ρ(uj)− ρ(ui) ≤ ρ(uj)− πt(uj) + πt(ui)− ρ(ui) ≤ 2c8 lnn.

Therefore, since the length of each block is m = 6c8 lnn, the only way ui and uj are not sorted
in the same quicksort block is if at some point in BlockSort, ui is selected to be included in a block
B while uj is not (which happens if the right limit of a block B is at some rank r ∈ [ρ(ui), ρ(uj))),
and in the output of the quicksort on this block, ui is among the first m/2 elements (and hence
is not included in the next block, which would contain uj). For this to happen, from the first 2

3m
elements in the block B according to their ordering before running quicksort, at least m/6 must be
ordered after ui by the quicksort algorithm on this block (otherwise, ui would not be among the
first m/2 elements in the output of quicksort). Let uk be any such element. Since uk is among the
first 2m/3 elements of the block B, we must have ρ(uk) ≤ r −m/3 (recall that r is the right limit
of the block B). Since the event Ẽ holds, we must have:

πt(uk) ≤ r −m/3 + c8 lnn = r − c8 lnn, (5)

for any t ∈ [t1, t2]. On the other hand, since uj is ordered before ui according to πt, we have

πt(ui) > πt(uj) ≥ ρ(uj)− c8 lnn > r − c8 lnn. (6)

By inequalities (5) and (6), the element uk is before the element ui in the ordering at any time
t while the quicksort algorithm is running. So, the only way that the quicksort algorithm can
make a “mistake” and rank ui before uk is if at some point during the running of this quicksort,
a pivot swaps with both ui and uk. However, with high probability at most a constant number

15

of elements in the block B are chosen for a swap while the quicksort on this block is in progress
(since B contains O(lnn) elements and (by Proposition 3) quicksort lasts for O(lnn ln lnn) steps,
the probability that more than c elements of this block are chosen for a swap while quicksort is
running is at most O(((ln2 n ln lnn)/n)c)). Therefore, whp. the quicksort does not make such a
mistake for all the m/6 possible uk’s. This means that whp. there is no pair in the third group.

Putting everything together, we showed that whp. the number of pairs that are misordered at
time t2 is at most O(n ln lnn) +O(lnn) + 0 = O(n ln lnn).

As me mentioned previously, we assume that the algorithms know the initial permutation π1;
in that case Theorems 2 and 7 hold for every t. If π1 is unknown then the algorithms do not have
sufficient information during the first period. However, we are interested in the long-term behavior
of the process and our results continue to hold after a full period, that is, for t ≥ cn lnn, for a
constant c.

Naturally, the reader might wonder if by applying our technique one more time one can improve
the bound from O(n ln lnn) to O(n ln ln lnn). While such a result might be obtainable, it would
require new techniques, since we cannot prove a result similar to Lemma 6 for the algorithm in this
section. The reason is that the probability that an element moves more than O(ln lnn) steps from
its original position can be bounded by 1/polylog(n), instead of 1/poly(n), as it was the case in
Lemma 6. This bound is insufficient to show that with high probability, the rank of every element
in π and π̃ differ by at most O(ln lnn).

3 Selection Problems

As we mentioned earlier, the dynamic data setting can capture many scenarios. In this section,
we illustrate this by providing two more examples. First we show a simple algorithm for finding
the element with minimum (or maximum) rank; for a fairly realistic application of this setting,
consider the social network example presented in the Introduction. We then present a more general
algorithm that can be used to find the element of a given rank. By combining this algorithm with
the previous result on sorting, one can find the top-k ranked elements.

3.1 Finding the Minimum

Assume a slightly different dynamic perturbation model than before where each pair swaps in
every time step with probability α/(n− 1), where α > 0 is a constant (α = 1 in the simplest case).
Instead of sorting all the elements we only want to estimate the smallest element. The following
simple algorithm outputs at any given step an element that is either the minimum or very close to
minimum. The algorithm maintains the current minimum estimate m and in every step compares
it with an element ui chosen uniformly at random from all the elements except for m. If ui < m,
it replaces m with ui.

Theorem 8. Let mt be the rank of the estimate at time t. In the steady state Pr(mt ≥ i) ≤
(

α
1+α

)i
,

and E[mt] ≤ 1 + α.

Proof. We can model the evolution of the rank π(m) as a Markov chain on the nonnegative integers.
The evolution of the value π(m)−1 is dominated by the following Markov chain with states labeled
from 0 to n− 1: with probability 1/(n − 1), the chain moves to state 0 (if it is not already there)

16

1.Algorithm Median(U)
2. Input: A set of elements U
3. while (true)
4. Execute in odd steps:
5. Pick a (multi-)set R of n

36 lnn elements from U chosen independently uniformly at
random with replacement

6. quicksort(R)
7. Let d be the (n

72 lnn −
√
n)th smallest element in the sorted set R

8. Let u be the (n
72 lnn +

√
n)th smallest element in the sorted set R

9. By comparing every element in U to d and u, compute the set C = {x ∈ U : d ≤ x ≤ u}
and the number `d = |{x ∈ U : x < d}|

10. Execute in even steps using the set C computed last
11. quicksort(C)
12. µ̃← (bn/2c − `d + 1)th element in the sorted order of C
13. end while

Figure 4: Algorithm for computing the median. In every step the output of the algorithm is the
latest element µ̃ that has been computed in step 12.

and with probability α/(n− 1), it moves from state i to state i+1, otherwise it remains at state i.
It is easy to verify that the stationary probability of being at state 0 ≤ i < n− 1 is

pi =
1

1 + α

(

α

1 + α

)i

,

and that for i = n− 1 the probability is

pn−1 =
1

1 + α

(

α

1 + α

)n−2

.

3.2 Finding the Element of a Given Rank

In this section, we give an algorithm for solving the problem of finding the element of rank k for
k = 1, 2, . . . , n. Given k, our goal is to find an element ui that minimizes the distance

∣

∣πt(ui)− k
∣

∣,
where πt(ui) is the rank of ui at time t. For k = 1 the problem is that of finding the minimum,
while for k = dn/2e the problem is that of finding the median. To make the exposition clearer we
present the case of the median; the algorithm and the proof can be easily generalized for any k.
Figure 4 is a dynamic version of the median algorithm in [7], with a few modifications to adapt it
to our dynamic setting. As in the case of the elaborate sorting algorithm, we run two algorithms
in an interleaved manner. In the odd steps we prepare a set C, while in the even steps we use the
last set C computed in the odd steps to output the median estimate. At time t during a sorting
phase of the set C, the output estimate µ̃t is the element µ̃ computed in the previous run of the
sorting. We now show that the difference in the rank of the element returned by the algorithm is
negligible.

17

Administrator
高亮

Theorem 9. Let µ̃t be the output of algorithm Median at time t. For any time step t after the
algorithm is run at least once (i.e., after Θ(n) steps), we have that Pr

(∣

∣π(µ̃t)− n
2

∣

∣ = 0
)

≥ 1−o(1),
and E

[∣

∣π(µ̃t)− n
2

∣

∣

]

= o(1).

Proof. The proof is based on the proof of the static version presented, for example, in [7].
We partition time into periods of length Θ(n), where each period corresponds to a full execution

of steps 4–9 in Figure 4. (Executing the full set of steps 4–9 (odd time steps) requires time Θ(n)
while the set of steps 10–12 (even time steps) requires Θ(

√
n ln2 n), whp., as we will see later.) In

the odd time steps of a period we compute a set C to be used to compute the median in the next
period. In the even time steps we use the set C computed in the previous period.

We first note that the length of each period is linear with high probability, therefore in a given
period the rank of a given element (and in particular that of the median) changes by a constant
in expectation. Furthermore, no element’s rank changes more than c lnn during a period, for some
constant c, whp. Also, since the quicksort call in line 6 of the algorithm takes O(n) time and each
element is a pivot for at most O(n/ lnn) steps during this call, the probability that a pivot passes
over more than one element during this call is at most O(1/ ln n), and therefore by the analysis
of quicksort in Section 2.2, with probability 1 − o(1), apart from pairs that change their relative
position while line 6 is in progress, quicksort does not make any additional mistake.

The analysis of the static case as presented in [7] reduces to proving that the following two facts
(adapted to our case) hold whp.:

1. The set C computed at a given period contains all the elements that are medians during the
next period.

2. |C| = O(
√
n lnn) whp.

If those two facts hold then step 11 can be executed in sublinear time and in addition the algorithm
can output an estimate in step 12.

We prove the first fact by using a similar argument as the one used in [7], but adapted to the
case of dynamic data: For set C to contain all the elements that are medians in the entire next
period, it means that for every time step t we have that πt(d) < dn/2e. Taking into account that
the rank of element d during two periods does not change more than 2c ln n whp., we have that in
order to maintain πt(d) < dn/2e it suffices that at least n

72 lnn −
√
n samples in R had rank smaller

than n
2 −2c ln n, when they were selected. We define Xi = 1 if the ith sample had rank smaller than

n
2 −2c lnn, and 0 otherwise. Then we have that Pr(Xi = 1) = 1

2− 2c lnn
n and E [

∑

Xi] =
n

72 lnn− c
18 .

We can apply the Chernoff bound and obtain:

Pr

|R|
∑

i=1

Xi <
n

72 ln n
−√n

 = Pr
(

∑

Xi −E
[

∑

Xi

]

<
c

18
−√n

)

≤ e−
72 lnn

n
(
√
n− c

18)
2

≤ 1

n3
.

A similar argument shows that we maintain that πt(u) > dn/2e throughout the execution of the
entire period, therefore, the set C created at step 8 will contain whp. all elements that are medians
in the next period. We note that even though some of the elements that are included in the set
C in step 9 of the algorithm may become less than d or more than u in the subsequent period
when the set C is in use (or conversely, elements that were less than d or more than u might move

18

Administrator
高亮

Administrator
高亮

to [d, u]), as long as these elements are not the median at any point (which whp. is true, since a
median of C leaving [d, u] or an element outside [d, u] becoming the new median would require this
element to move |C| /2 positions, which will not happen whp.), this does not affect our calculation
of the median.

Next we show the second fact, that |C| = O(
√
n lnn). Again we adapt the argument of [7] to

our case. Assume that we show that in the beginning of the period, call it time t0, we have that

πt0(u) <
n

2
+ 72
√
n lnn− c lnn (7)

whp. This, combined with the fact that the rank of element u during a period does not change
more than c lnn whp., implies that for the entire period we have that

πt(u) <
n

2
+ 72
√
n lnn,

which in turn means that during the entire period fewer than 72
√
n lnn elements of C have rank

higher than dn/2e. A similar argument can show that whp. during the entire period fewer than
72
√
n lnn elements of C have rank lower than dn/2e. These two facts imply that |C| ≤ 144

√
n lnn.

From the discussion of the previous paragraph, it remains to show that whp. at time t0 Equa-
tion (7) holds. For this to happen it means that the set R has fewer than n

72 lnn −
√
n samples

among the largest
n

2
− 72
√
n lnn− c ln n

elements. Now define Xi to be 1 if the ith sample of R is among the n
2 − 72

√
n lnn− c lnn largest

elements, and 0 otherwise. Then we have that

Pr(Xi = 1) =
1

2
− 72 ln n√

n
− c ln n

n
,

and

E

|R|
∑

i=1

Xi

 =
n

72 ln n
− 2
√
n− c

36
.

Then the probability that Equation (7) does not hold is bounded by

Pr

|R|
∑

i=1

Xi ≥
n

72 ln n
−√n

 = Pr
(

∑

Xi −E
[

∑

Xi

]

≥ √n+
c

36

)

≤ e
− 2(

√
n+ c

36)
2

n

36 lnn

≤ 1

n3
.

We have now established that whp. |C| = O(
√
n lnn) and that C contains all elements that

are medians during the next period. Since sorting in step 8 takes O(
√
n ln2 n) steps whp., the

probability that either the median at the beginning of a sorting phase, or the O(lnn) pivots that
it is compared to during the sorting move during the sorting phase is bounded by O(ln3 n/

√
n).

Thus, with probability 1 − O(ln3 n/
√
n) the sorting returns the correct median at that step. The

19

probability that the median changes place during the next sorting round (before a new median is
computed) is bounded by O((

√
n ln2 n)/n). Thus, at any given step, with probability 1−o(n−1/2+ε)

the algorithm returns the correct median. The expectation result is obtained by observing that
when the output is not the correct median, its distance to the correct median is with high probability
O(lnn).

4 Conclusions

In this paper, we study a new computational paradigm for dynamically changing data. This
paradigm is rich enough to capture many natural problems that arise in online voting, crawling,
social networks, etc. In this model, the data gradually changes over time and the goal of an
algorithm is to compute some property of it by probing, under the constraint that the amount
of access to the data at each time step is limited. In this simple framework, we consider the
fundamental problems of sorting and selection, where the true ordering slowly changes over time
and the algorithm can probe the true ordering once each time step using a pair of elements it
chooses. We obtain an algorithm that maintains, at each time step, an ordering that is at most
O(n ln lnn)–Kendall tau distance away from the true ordering, with high probability. For selection
problems, we provide algorithms that track the target element to within distance 1. Revisiting
classical algorithmic problems in this paradigm will be an interesting direction for future line of
research [1].

References

[1] A. Anagnostopoulos, R. Kumar, M. Mahdian, E. Upfal, and F. Vandin. Algorithms on dynamic
graphs. Manuscript, 2010.

[2] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, 2001.

[4] D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomzed
Algorithms. Cambridge University Press, 2009.

[5] D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graph algorithms. In M. J. Atallah, editor,
Algorithms and Theory of Computation Handbook, chapter 8. CRC Press, 1999.

[6] R. Kleinberg. Online Decision Problems with large Strategy Sets. PhD thesis, MIT, 2005.

[7] M. Mitzenmacher and E. Upfal. Probability and Computing. Cambridge University Press,
2005.

[8] S. Muthukrishnan. Data Streams: Algorithms and Applications. Now Publishers Inc., 2005.

[9] D. Ron. Property testing: A learning theory perspective. In Foundations and Trends in
Machine Learning, volume 1, pages 307–402. 2008.

20

[10] D. Ron. Algorithmic and analysis techniques in property testing. In Foundations and Trends
in Theoretical Computer Science, volume 5, pages 73–205. 2009.

[11] A. Slivkins and E. Upfal. Adapting to a changing environment: The Brownian restless bandits.
In Proc. 21st Annual Conference on Learning Theory, pages 343–354, 2008.

[12] C. Swamy and D. B. Shmoys. Approximation algorithms for 2-stage stochastic optimization
problems. SIGACT News, 37(1):33–46, 2006.

[13] L. L. Thurstone. The Measurement of Values. The University of Chicago Press, 1959.

21

