CS711008Z Algorithm Design and Analysis Lecture 4. NP and intractability (Part II) 1

Dongbo Bu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

 1 The slides were prepared based on Introduction to algorithms, Algorithm design, Computer and Intractability, and slides by K[evin](#page-0-0) [W](#page-1-0)[ayn](#page-0-0)[e](#page-1-0) [wit](#page-0-0)[h p](#page-49-0)[er](#page-0-0)[mis](#page-49-0)[sio](#page-0-0)[n.](#page-49-0) $\circ \circ \circ$

- Reduction: understanding the relationship between different problems. $A \leq_{P} B$ implies "B is harder than A".
- Problem classes: P, NP, coNP, L, NL, PSPACE, EXP, etc.
- CIRCUIT SATISFIABILITY is one of the hardest problems in NP class.

2 / 50

 QQ

イロト 不優 ト 不差 ト 不差 トー 差し

• NP-Complete problems

- A complexity class of problems is specified by several parameters:
	- **1** Computation model: multi-string Turing machine;
	- 2 Computation mode: When do we think a machine accepts its input? deterministic or non-deterministic?
	- **3** Computation resource: time, space.
	- \bullet Bound: a function f to express how many resource can we use.
- The complexity class is then defined as the set of all languages decided by a multi-string Turing machine M operating in the deterministic/non-deterministic mode, and such that, for input x, M uses at most $f(|x|)$ units of time or space.

(See ppt for description of Turing machine.)

- **DTM**: In a deterministic Turing machine, the set of rules prescribes at most one action to be performed for any given situation.
- \bullet NTM: A non-deterministic Turing machine (NTM), by contrast, may have a set of rules that prescribes more than one actions for a given situation.
- For example, a non-deterministic Turing machine may have both "If you are in state 2 and you see an 'A', change it to a 'B' and move left" and "If you are in state 2 and you see an 'A', change it to a 'C' and move right" in its rule set.

Example: NFA and DFA

Figure: NFA and DFA

- Perhaps the easiest way to understand determinism and nondeterminism is by looking at NFA and DFA.
- In a DFA, every state has exactly one outgoing arrow for every letter in the alphabet.
- However, the NFA in state 1 has two possible transitions for the letter "b".

DTM vs. NTM: the difference between finding and verifying a solution

- Consider the INDEPENDENT SET problem: does the given graph have an independent set of 9 nodes?
- If your answer is "Yes", you just need to provide a certificate having 9 nodes.
- **Certifier:** it is easy to verify whether the certificate is correct, i.e., the given 9 nodes form an independent set for this graph of 24 vertices. \overline{m} > \rightarrow \overline{m} > \rightarrow

 QQ

 \sim Solver: However, it is not easy to find this independent set. $6/50$

- Consider the following problem: does the formula $f(x) = x^5 - 3x^4 + 5x^3 - 7x^2 + 11x - 13 = 0$ have a real-number solution?
- If your answer is "Yes", you just need to provide a certificate, say $x = 0.834....$
- **Certifier:** it is easy to verify whether the certificate is correct, i.e., $f(x) = 0$.

7 / 50

K ロ X K @ X K 경 X X 경 X X 경

Solver: however, it is not easy to get a solution.

- P: decision problems for which there is a polynomial-time algorithm to **solves** it.
- Here, we say that an algorithm A solves problem X if for all instance s of X, $A(s)$ = YES iff s is a YESinstance.

8 / 50

イロト 不優 ト 不重 ト 不重 トー 重

- \bullet Time-complexity: A runs in polynomial-time if for every instance s, $A(s)$ ends in at most $polynomial(|s|)$ steps.
- STABLE MATCHING problem: $O(n^2)$.
- NP: decision problems for which there exists a polynomial-time certifier. ²
- Here we say that an algorithm $C(s,t)$ certificates problem X if for each "YES" instance s , there exists a **certificate** t such that $C(s,t)$ =YES, and $|t|$ = $polynomial(|s|)$.
- **Certificate:** an evidence to demonstrate this instance is YES;
- Note: a certifier approach the problem from a **managerial** point of view as follows:
	- It will not actually try to solve the problem directly;
	- Rather, it is willing to efficiently evaluate proposed "proof".

 2 NP denotes "non-deterministic polynomial-time". This is just simple but equivalent definition. K ロンス 御 > ス 할 > ス 할 > () 할 >

Certificate and certifier for HAMILTON CYCLE problem

- Problem: Is there a Hamiltonian cycle in the give graph?
- **If your answer is YES, you just need to provide a certificate,** i.e. a permutation of n nodes;
- Certifier: checking whether this path forms a cycle;
- Example:
- Certifier: it takes polynomial time to verify the certificate. Thus HAMILTON CYCLE is in **NP** class.

Certificate and certifier for SAT problem

- Problem: Is the given **CNF** satisfiable?
- If your answer is YES, you just need to provide a certificate, i.e. an assignment for all n boolean variables;
- **•** Certifier: checking whether each clause is satisfied by this assignment;
- **•** Example:
	- An instance: $(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_2 \vee x_3)$
	- Certificate: x_1 = TRUE, x_2 = TRUE, x_3 = FALSE;
	- Certifier: it takes polynomial time to verify the certificate. Thus SAT is in NP class.

The "certificate" idea is not entirely trivial.

- **1** For UNSAT problem, it is difficult to provide a short "certificate":
	- Suppose we want to prove a SAT instance is **unsatisfiable**, what evidence could convince you, in polynomial time, that the instance is unsatisfiable?
- **2** In addition, we can also transform a **certifier** into an algorithm.
	- A certifier can be used as the core of a "brute-force" algorithm to solve the problem: enumerate all possible certificate t in $O(2^{|t|})$ time, and run $C(s,t)$. It will take exponential-time.

Three classes of problems:

- **P:** decision problems for which there is a polynomial-time algorithm;
- NP: decision problems for which there is a polynomial-time certifier;
- **EXP**: decision problems for which there is an exponential-time algorithm;

Theorem

 $P \subseteq NP$.

Proof.

- Consider any problem X in P ;
- There is an algorithm A to solve it;
- \bullet We design a certifier C as follows: when presented with input (s, t) , simply return $A(s)$.

Theorem

 $NP \subseteq EXP$.

Proof.

- Consider any problem X in NP ;
- \bullet There is a polynomial-time certifier C to certificate it;
- For an instance s, run $C(s, t)$ on all possible certificates t, $|t| = polynomial(|s|);$
- Return Yes if $C(s, t)$ returns Yes for any certificate t.

Question 1: $P = NP?$

P vs. NP

- The main question: $P = NP?$ [S. Cook]
- In other words, is solving a problem as easy as certificating an evidence?
	- If $P = NP$, then for a "Yes" instance, an efficient "verifying" a certificate means an efficient "finding" a solution, and there will be efficient algorithms for SAT, TSP, HAMILTON Cycle, etc.
	- If $P \neq NP$: there is no efficient algorithms for these problems;

• Clay \$7 million prize. (See http://www.claymath.org/millennium/P_vs_NP/ $)$

A first NP-Complete problem

18 / 50

 -990

K ロンス (個) > スミンス(ミン) () ミ

 NP – complete class: the hardest problem in NP class

- \bullet Due to the absence of progress of $P=NP?$ question, a more approachable question was posed: What is the hardest problems in NP?
- This is approachable since by using polynomial-time reduction, one can find connection between problems, and gain insight of the structure of **NP** class.
- \bullet The hardest problems in the NP class:
	- NP-hard: a problem Y is NP-hard if for any NP problem X, $X \leq_p Y$;
	- NP-complete: a problem Y is in NP, and is NP-hard.

Theorem

Suppose Y is a NP-complete problem. Y is solvable in polynomial-time iff $P=NP$

Proof.

- Let X be any problem in NP ;
- Since $X \leq_P Y$, X can be solved in polynomial-time through the "reduction algorithm".

• Consequence: if there is any problem in NP that cannot be solved in polynomial-time, then no NP-Complete can be solved in polynomial-time.

- It is not at all obvious that NP-complete problems should even exist.
- Two possible cases:
	- $\textbf{1}$ two incomparable problem X' and X'' , and there is no problem X such that $X' \leq_P X$, and $X'' \leq_P X$?
	- 2 an infinite sequence of problems $X_1 \leq_P X_2 \leq_P \dots$;
- The difficulty is to prove that **any NP** problem X can be reduced to a NP-complete problem.

21 / 50

K ロ X K @ X K 할 X K 할 X (할

S. Cook and L. Levin

Figure: Stephen Cook and Leonid Levin

In 1982, Cook received the Turing award. His citation reads: For his advancement of our understanding of the complexity of computation in a significant and profound way. His seminal paper, The Complexity of Theorem Proving Procedures,..., laid the foundations for the theory of NP-Completeness. The ensuing exploration of the boundaries and nature of NP-complete class of problems has been one of the most active a[nd](#page-0-0) important research activities in computer scienc[e fo](#page-20-0)[r t](#page-22-0)[h](#page-20-0)[e l](#page-21-0)[a](#page-22-0)[st](#page-0-0) [dec](#page-49-0)[ad](#page-0-0)[e.](#page-49-0) $\frac{2}{22/50}$

Let's show CIRCUIT SATISFIABILITY is NP-complete

• CIRCUIT: a labeled, directed acyclic graph to simulate computation process on physical circuit.

CIRCUIT SATISFIABILITY problem

INPUT: a circuit;

OUTPUT: is there an assignment of input making output to be 1?

Figure: Left: satisfiable. Right: unsatisfiable.

CIRCUIT SATISFIABILITY problem

INPUT: a circuit; OUTPUT: is there assignment of input that cause the output to take the value 1?

CIRCUIT SATISFIABILITY is the most natural problem.

- For example, INDEPENDENT SET problem can be reducible to CIRCUIT SATISFIABILITY
- • In other words, a circuit can be designed to simulate certifier of INDEPENDENT SET problem, i.e., the circuit can be satisfied iff the INDEPENDENT SET instance is a "Yes" instance.

CIRCUIT SATISFIABILITY problem

CIRCUIT SATISFIABILITY problem can be used to represent a large family of problems, say INDEPENDENT $SET \leq_P CIRCUIT$ SATISFIABILITY

- \bullet Existing an independent set $\Rightarrow C$ is satisfiable.
- \bullet No independent set \Rightarrow C is unsatisfiabl[e.](#page-24-0)

CIRCUIT SATISFIABILITY is the most natural problem.

- . In fact, besides INDEPENDENT SET problem, ALL NP problems can be reducible to CIRCUIT SATISFIABILITY.
- In other words, specific circuits can be designed to simulate the certifiers of ALL NP problems.
- **CIRCUIT SATISFIABILITY is NP-Complete.**

Theorem

CIRCUIT SATISFIABILITY is NP-Complete.

Proof.

- We will show for any problem $X \in NP$, $X \leq_P \text{CIRCUIT-SAT}$.
- **•** Remember that $X \in NP$ implies a certifier $C(s,t)$ running in $T(|s|) = poly(|s|)$ time.
- And s is a "Yes" instance of $X \Leftrightarrow$ there is a certificate t of length $p(|s|)$ such that $C(s,t) = Yes$.
- Our objective is to design a circuit that generates same output to the certifier $C(s,t)$.
- \bullet Key idea: Represent the computation process of certifier $C(s, t)$ as a sequence of configurations. Here, configuration refers to any particular state of computer, including program $C(s, t)$, program counter PC, memory, etc. (You can image configuration as the tape of a universal Turing machine.)
- **•** The *i*-th configuration is transformed to the $(i + 1)$ -st configuration by a combinatorial circuit M simulating CPU (in a single clock cycle).
- Simply paste $T(n)$ copies of M to generate a single circuit K.
- \bullet When inputed with initial configuration, K will generate ALL configurations.
- The output (a specific bit in working memory) appears on a pin.

Certifier \Rightarrow circuit: an example

- Configuration: any particular state of computer, including program $C(s, t)$, program counter PC, working memory, etc.
- **•** Transformation: simply connecting $T(n)$ copies of physical circuit M to generate a single circuit.
- Note that both #configuration and #working [me](#page-27-0)[mo](#page-29-0)[r](#page-27-0)[y a](#page-28-0)[re](#page-29-0) [p](#page-0-0)[oly](#page-49-0)[no](#page-0-0)[mia](#page-49-0)[l.](#page-0-0) \bullet QQ

Certifier \Rightarrow circuit: an example

Equivalence: When inputed with the initial configuration, ALL configurations will appear step-by-step (as how CPU does in a single clock cycle). Finally a specific pin outputs Yes[/N](#page-28-0)o[.](#page-30-0) ∢ ロ ▶ (何) ((ヨ) (ヨ) (

Certifier \Rightarrow circuit: Step 1

Equivalence: configuration 1 will appear in the second layers of pins when inputed with initial configuration.

Certifier \Rightarrow circuit: Step 2

• Equivalence: configuration 2 will appear in the third layers of pins when inputed with initial configuration.

Certifier \Rightarrow circuit: Step $T(|s|)$

• Equivalence: configuration $T(|s|)$ will appear in the topest layers of pins. A specific pin reports Yes/No. Thus, circuit K outputs "Yes" \Leftrightarrow certifier $C(s, t)$ reports "Yes". メロメ メ御き メミメ メミメ

Proving further NP-Complete problems

34 / 50

 -990

イロト 不優 ト 不思 ト 不思 トー 温

Proving further NP-Complete problems

• Once we have a first **NP-complete**, we can discover many more via the following property:

Theorem

If Y is an NP-complete, and X is in NP with the property $Y \leq_P X$, then X is also NP-Complete.

- General strategy for proving new problem X NP-Complete:
	- **1** Prove that X is in NP;
	- **2** Choose an NP-Complete problem Y ;
	- **3** Consider an arbitrary instance y of Y , and show how to construct, in polynomial-time, an instance x of X, such that y is a "Yes" instance $\Leftrightarrow x$ is a "Yes" instance.

Theorem

SAT is NP-complete.

(Part 1: SAT belongs to NP.)

Proof.

- **•** Certificate: assignment of variables.
- Certifier: simply evaluate each clause and Φ .

e.g., $\Phi = (x_1 \vee \neg x_2 \vee x_3)$ Certificate: $x_1 = T$ $x_2 = T$ $x_3 = T$.

K ロンス 御 > ス ヨ > ス ヨ > ニ ヨ 36 / 50

Theorem

SAT is NP-Complete.

(Part 2: SAT is NP-hard. In particular, CIRCUIT SATISFIABILITY \leq_P SAT)

Proof.

- each wire in $C \Rightarrow$ a variable:
- a gate in $C \Rightarrow$ a formula involving variables of incident wires;
- \bullet Φ is the AND of output variable with the conjunction of clauses of all gates.
- The CIRCUIT SATISFIABILITY instance is satisfied iff the constructed SAT instance is satisfied.

CIRCUIT SATISFIABILITY \leq_P SAT

Theorem

3SAT is NP-Complete.

 3 $(3\mathrm{SAT:}$ each clause has exactly 3 literals.)

Proof.

 \bullet

• 1 literal:
$$
(x_1) \iff
$$

\n $(x_1 \lor p \lor q) \land (x_1 \lor p \lor \neg q) \land (x_1 \lor \neg p \lor q) \land (x_1 \lor \neg p \lor \neg q)$

- 2 literals: $(x_1 \vee x_2) \iff (x_1 \vee x_2 \vee p) \wedge (x_1 \vee x_2 \vee \neg p)$
- 3 literals: simply copy it.
- 4 literals:

$$
(x_1 \vee x_2 \vee x_3 \vee x_4)
$$

\n
$$
\iff (x_1 \vee x_2 \vee p) \wedge (p \leftrightarrow x_3 \vee x_4)
$$

\n
$$
\iff (x_1 \vee x_2 \vee p) \wedge (\neg p \vee x_3 \vee x_4) \wedge (p \vee \neg x_3) \wedge (p \vee \neg x_4) \dots
$$

\nand so on...

 32SAT belongs to P. See slides by D. Moshko. **E** 209 39 / 50

Thus the following problems are NP-Complete.

K ロンス 御 > ス ヨ > ス ヨ > ニ ヨ QQQ 40 / 50

A partial taxonomy of hard problems

Given a collection of objects,

- \bullet PACKING problems: to choose at least k of them. Restrictions: conflicts among objects, e.g. INDEPENDENT **SET**
- \bullet Covering problems: to choose at most k of them to meet a certain goal, e.g., SET COVER, VERTEX COVER.
- **3** PARTITIONING problems: to divide them into subsets so that each object appears in exactly one of the subsets, e.g., 3-Coloring.
- **4** SEQUENCING problems: to search over all possible permutations of objects under restrictions that some objects cannot follow certain others, e.g., $HAMI LTON$ CYCLE, TSP ;
- **•** NUMERICAL problems: objects are weighted, to select objects to meet the constraint on the total weights, e.g., $SUBSET$ **SUM**
- **CONSTRAINT SATISFACTION problems. e.g., 3SAT,** CIRCUIT SATISFIABILITY. 4 ロ X イラ X イミ X イミ X コ ミ

The asymmetry of NP and coNP

42 / 50

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The asymmetry of NP

NP is fundamentally asymmetry since:

- For a "Yes" instance, we can provide a short "certificate" to support it is "Yes";
- But for a "No" instance, no correspondingly short "Disqualification" is guaranteed;

Example: SAT vs. $UNSAT$.

- Certificate of a "Yes" instance: an assignment;
- Disqualification of a "No" instance: ?

Example: Hamilton Cycle vs. No Hamilton Cycle

- Certificate of a "Yes" instance: a permutation of nodes;
- Disqualification of a "No" instance: ?

Problem X and its complement X

- \bullet \bar{X} has different property: s is a "Yes" instance of \bar{X} iff for ALL t of length at most $p(|s|)$, we have $C(s,t) = No$.
- co-NP: the collection of X if \bar{X} is in NP.

Example: UNSAT, No HAMILTON CYCLE.

Question 2: $NP = coNP?$

If yes, then the existence of short certificates for "Yes" instances means that we can find short disqualifications for all "No" instances.

45 / 50

 Ω

K ロンス 御 > ス ヨ > ス ヨ > ニ ヨ

$NP = coNP?$

- Widespread belief: No.
- Just because we have a short certificate for all "Yes" instances, it is not clear why we should believe that the "No" instances also have a short certificate.
- Proving $NP=coNP$ is a bigger step than $P=NP$.

Theorem

```
P=NP \Rightarrow NP=coNP.
```
Proof.

- Key idea: **P** is closed under complementation, i.e., $X \in P \Leftrightarrow X \in P$.
- $\bullet X \in \mathbf{NP} \Rightarrow X \in P \Rightarrow \bar{X} \in P \Rightarrow \bar{X} \in \mathbf{NP} \Rightarrow X \in \mathbf{coNP}.$ and
- $\bullet X \in co-NP \Rightarrow \bar{X} \in \mathbf{NP} \Rightarrow \bar{X} \in P \Rightarrow X \in P \Rightarrow X \in NP.$

Good characterizations: the class $NP \cap coNP$

If X is in both NP and $coNP$, it has a nice property:

- **1** if an instance is "Yes" instance, we have a short proof;
- **2** if the input instance is a "No" instance, we have a short disqualification, too.
- Example: Maximum Flow
	- Certificate for "Yes" instance: list a flow of value $> v$ directly;

 \bullet Certificate for "No" instance: list a cut whose capacity $\leq v;$ Duality immediately implies that both problems are in NP and coNP.

Question 3: $P = NP \cap coNP?$

If yes, a problem with good characterization always has an efficient algorithm.

48 / 50

 QQ

画

メロメ メ部 メメ きょうくきょう

Mixed opinions:

- finding good characterization is usually easier than designing an efficient algorithm;
- o good characterization \Rightarrow conceptual leverage in reasoning about problems;
- \bullet good characterization \Rightarrow efficient algorithm: There are many cases in which a problem was found to have a nontrivial good characterization; and then (sometimes many years later) it was discovered to have a polynomial-time algorithm.

Examples:

- linear programming [Khachiyan 1979]
- primality testing [Agrawal-Kayal-Saxena, 2002]

4

⁴These slides are excerpted from the presentatio[n by](#page-47-0) [K](#page-49-0)[e](#page-47-0)[vin](#page-48-0)[Wa](#page-0-0)[yne](#page-49-0)[.](#page-0-0)

Four possibilities for the relationships among P, NP, and coNP.

