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@ Reduction: understanding the relationship between different
problems. A <p B implies "B is harder than A”".

Problem classes: P, NP, coNP, L, NL, PSPACE, EXP, etc.

CIRCUIT SATISFIABILITY is one of the hardest problems in
NP class.

NP-Complete problems

2/50



Complexity classes

@ A complexity class of problems is specified by several
parameters:

@ Computation model: multi-string Turing machine;
@ Computation mode: When do we think a machine accepts its
input? deterministic or non-deterministic?
© Computation resource: time, space.
© Bound: a function f to express how many resource can we use.
@ The complexity class is then defined as the set of all languages

decided by a multi-string Turing machine M operating in the
deterministic/non-deterministic mode, and such that, for
input x, M uses at most f(|z|) units of time or space.

(See ppt for description of Turing machine.)
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Deterministic versus nondeterministic

@ DTM: In a deterministic Turing machine, the set of rules
prescribes at most one action to be performed for any given
situation.

e NTM: A non-deterministic Turing machine (NTM), by
contrast, may have a set of rules that prescribes more than
one actions for a given situation.

@ For example, a non-deterministic Turing machine may have
both " If you are in state 2 and you see an 'A’, change it to a
'B’ and move left” and "If you are in state 2 and you see an
'A’, change it to a 'C’ and move right” in its rule set.
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Example: NFA and DFA

Figure: NFA and DFA

@ Perhaps the easiest way to understand determinism and
nondeterminism is by looking at NFA and DFA.

@ In a DFA, every state has exactly one outgoing arrow for every
letter in the alphabet.

@ However, the NFA in state 1 has two possible transitions for
the letter "b".
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DTM vs. NTM: the difference between
a solution

o Consider the INDEPENDENT SET problem: does the given
graph have an independent set of 9 nodes?

@ If your answer is “Yes”, you just need to provide a certificate
having 9 nodes.

o Certifier: it is easy to verify whether the certificate is correct,
i.e., the given 9 nodes form an independent set for this graph
of 24 vertices.
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Another example

@ Consider the following problem: does the formula
f(z) =25 —32% + 523 — 722 + 11z — 13 = 0 have a
real-number solution?

@ If your answer is “Yes", you just need to provide a
certificate, say x = 0.834....

o Certifier: it is easy to verify whether the certificate is correct,
ie., f(x)=0.

@ Solver: however, it is not easy to get a solution.
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P class

@ P: decision problems for which there is a polynomial-time
algorithm to solves it.

@ Here, we say that an algorithm A solves problem X if for all
instance s of X, A(s) = YES iff s is a YESinstance.

Time-complexity: A runs in polynomial-time if for every
instance s, A(s) ends in at most polynomial(|s|) steps.

STABLE MATCHING problem: O(n?).
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@ NP: decision problems for which there exists a
polynomial-time certifier. 2

@ Here we say that an algorithm C'(s,t) certificates problem X
if for each “YES" instance s, there exists a certificate ¢ such
that C(s,t) =YES, and |t| = polynomial(|s|).

@ Certificate: an evidence to demonstrate this instance is YES;

o Note: a certifier approach the problem from a managerial
point of view as follows:
e It will not actually try to solve the problem directly;
o Rather, it is willing to efficiently evaluate proposed “proof”.

2NP denotes “non-deterministic polynomial-time”. This is just simple but

equivalent definition.
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Certificate and certifier for HAMILTON CYCLE problem

Problem: s there a Hamiltonian cycle in the give graph?

If your answer is YES, you just need to provide a certificate,
i.e. a permutation of n nodes;

Certifier: checking whether this path forms a cycle;
Example:

Certifier: it takes polynomial time to verify the certificate.
Thus HAMILTON CYCLE is in NP class.
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Certificate and certifier for SAT problem

Problem: Is the given CNF satisfiable?

If your answer is YES, you just need to provide a certificate,
i.e. an assignment for all n boolean variables;

Certifier: checking whether each clause is satisfied by this
assignment;

Example:

e Aninstance: (1 V —xza Va3) A (—x1 Vas Vxs)

o Certificate: 2y = TRUE, 2o = TRUE, x3 = FALSE;

o Certifier: it takes polynomial time to verify the certificate.
Thus SAT is in NP class.
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The “certificate” idea is not entirely trivial.

@ For UNSAT problem, it is difficult to provide a short
“certificate”:

e Suppose we want to prove a SAT instance is unsatisfiable,
what evidence could convince you, in polynomial time, that the
instance is unsatisfiable?

@ In addition, we can also transform a certifier into an
algorithm.

o A certifier can be used as the core of a “brute-force” algorithm
to solve the problem: enumerate all possible certificate ¢ in
O(2'") time, and run C(s,t). It will take exponential-time.
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Problem classes: P, NP, and EXP

Three classes of problems:
@ P: decision problems for which there is a polynomial-time
algorithm;
@ NP: decision problems for which there is a polynomial-time
certifier;
@ EXP: decision problems for which there is an exponential-time
algorithm;
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Proof.
@ Consider any problem X in P;
@ There is an algorithm A to solve it;

@ We design a certifier C' as follows: when presented with input
(s,t), simply return A(s).
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NP C EXP

NP C EXP.

Proof.
e Consider any problem X in NP ;

@ There is a polynomial-time certifier C' to certificate it;
e For an instance s, run C(s,t) on all possible certificates ¢,
|t| = polynomial(|s|);

@ Return Yes if C(s,t) returns Yes for any certificate ¢.
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Question 1: P = NP?
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P vs. NP

@ The main question: P = NP7 [S. Cook]
@ In other words, is solving a problem as easy as certificating an
evidence?

e If P = NP, then for a “Yes" instance, an efficient “verifying”
a certificate means an efficient “finding” a solution, and there
will be efficient algorithms for SAT, TSP, HAMILTON
CYCLE, etc.

o If P # NP: there is no efficient algorithms for these problems;

e Clay $7 million prize. (See
http://www.claymath.org/millennium/P_vs_ NP/ )

If P= NP If P=NP
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A first NP-Complete problem

Dae
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NP — complete class: the hardest problem in NP class

@ Due to the absence of progress of P=NP? question, a more
approachable question was posed:
What is the hardest problems in NP?

@ This is approachable since by using polynomial-time
reduction, one can find connection between problems, and
gain insight of the structure of NP class.

@ The hardest problems in the NP class:

e NP-hard: a problem Y is NP-hard if for any NP problem X,
X <Y
o NP-complete: a problem Y is in NP, and is NP-hard.
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Suppose Y is a NP-complete problem. Y is solvable in
polynomial-time iff P=NP

| \

Proof.
@ Let X be any problem in NP ;

@ Since X <p Y, X can be solved in polynomial-time through
the “reduction algorithm”.
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@ Consequence: if there is any problem in NP that cannot be
solved in polynomial-time, then no NP-Complete can be
solved in polynomial-time.
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The first NP-Complete problem [Cook, Levin 1971]

@ It is not at all obvious that NP-complete problems should
even exist.
@ Two possible cases:
@ two incomparable problem X’ and X", and there is no
problem X such that X' <p X, and X" <p X7
@ an infinite sequence of problems X; <p X, <p ...;
@ The difficulty is to prove that any NP problem X can be
reduced to a NP-complete problem.
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S. Cook and L. Levin

Figure: Stephen Cook and Leonid Levin

In 1982, Cook received the Turing award. His citation reads: For
his advancement of our understanding of the complexity of computation
in a significant and profound way. His seminal paper, The Complexity of
Theorem Proving Procedures,..., laid the foundations for the theory of
NP-Completeness. The ensuing exploration of the boundaries and nature
of NP-complete class of problems has been one of the most active and

important research activities in computer science for the last decade. 22/50



Let's show CIRCUIT SATISFIABILITY is NP-complete

e CIRCUIT: a labeled, directed acyclic graph to simulate
computation process on physical circuit.

CIRCUIT SATISFIABILITY problem

INPUT: a circuit;
OUTPUT: is there an assignment of input making output to be 17

Outputél Outputa)
1

A A

1 L1 1 1 gf 1
AT 4 O T 4
=% =4

Input: x1 x2 x3  x1  x2 x3

Figure: Left: satisfiable. Right: unsatisfiable.
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CIRCUIT SATISFIABILITY cont'd

CIRCUIT SATISFIABILITY problem

INPUT: a circuit;
OUTPUT: is there assignment of input that cause the output to
take the value 17

OUTPUT

O O

INPUT: s to be determlned
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CIRCUIT SATISFIABILITY is the most natural problem.
@ For example, INDEPENDENT SET problem can be reducible to
CIRCUIT SATISFIABILITY.
@ In other words, a circuit can be designed to simulate certifier

of INDEPENDENT SET problem, i.e., the circuit can be
satisfied iff the INDEPENDENT SET instance is a “Yes"

instance. )

25 /50



CIRCUIT SATISFIABILITY problem

CIRCUIT SATISFIABILITY problem can be used to represent a
large family of problems, say INDEPENDENT SET <p CIRCUIT

SATISFIABILITY.
Exists an mdependent set?
Have both ends of some edge Have at ‘eaS:tWO nodes
been chosen? b(eoe': C:f:en D gotes)
(an edge cannot be chosen, of three gates,
vV W
u
select 2 nodes
1 0 1 CERTIFICATE: t
INPUT: s

o Existing an independent set = C' is satisfiable.
@ No independent set = C' is unsatisfiable.
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CIRCUIT SATISFIABILITY is the most natural problem.

@ In fact, besides INDEPENDENT SET problem, ALL NP
problems can be reducible to CIRCUIT SATISFIABILITY.

@ In other words, specific circuits can be designed to simulate
the certifiers of ALL NP problems.

@ CIRCUIT SATISFIABILITY is NP-Complete.
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CIRCUIT SATISFIABILITY is NP-Complete.

@ Simply paste 7'(n) copies of M to generate a single circuit K.
@ When inputed with initial configuration, K will generate ALL configurations.
@ The output (a specific bit in working memory) appears on a pin.
DJ

We will show for any problem X € NP, X <p CIRCUIT-SAT.

Remember that X € NP implies a certifier C(s,t) running in T'(|s|) = poly(|s|)
time.

And s is a “Yes” instance of X < there is a certificate ¢ of length p(|s|) such
that C(s,t) = Yes.

Our objective is to design a circuit that generates same output to the certifier
C(s,t).

Key idea: Represent the computation process of certifier C(s,t) as a sequence
of configurations. Here, configuration refers to any particular state of
computer, including program C(s,t), program counter PC, memory, etc. ( You
can image configuration as the tape of a universal Turing machine.)

The i-th configuration is transformed to the (i + 1)-st configuration by a
combinatorial circuit M simulating CPU (in a single clock cycle).
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Certifier = circuit: an example

Computation Process of C(s,t) -
] ) OUTPUT: Yes/No Circuit K
Configuration T(|s|)

IProgram C(s,t) | PC|Input 5‘ Certiﬁcatet‘Workmg mem l

M simulating a single step of CPU
Configuration 2

IProgram Cis,t) | PC|input s‘ Certificate t ‘Workmg mem ]

M simulating a single step of CPU

Configuration 1

IProgram C(s,t)l PC ‘ Input sl Certificate t‘Workmg mem ]

Configuration 0 M simulating a single step of CPU

IProgram C(s,t)| PC|Input s‘ Certificate t ‘Working mem l

@ Configuration: any particular state of computer, including program
C(s,t), program counter PC, working memory, etc.

@ Transformation: simply connecting T'(n) copies of physical circuit M to
generate a single circuit.

@ Note that both #configuration and #working_memory-are polynomial.
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Certifier = circuit: an example

Computation Process of C(s,t) -
) 4 OUTPUT: Yes/No Circuit K
Configuration T(|s|)

Program C(s,t) | PC|input s‘ Certificate t‘Working mem ]

M simulating a single step of CPU
Configuration 2

IProgram C(s,til PC‘Input 5|Certiﬁcate t ‘Workmg mem ]

M simulating a single step of CPU
Configuration 1

IProgram C(s,t) | PC|Input s‘ Certiﬁcatet‘Workmg mem l

Configuration 0

M simulating a single step of CPU

Ingram c1s,t)l PC ‘ Input sl Certificate t‘Working mem ]

IProgram c(s.t)| Pc|input s| certificate ¢ |working mcml

Configuration 0

Equivalence: When inputed with the initial configuration, ALL
configurations will appear step-by-step (as how CPU does in a single
clock cycle). Finally a specific pin outputs Yes/No.
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Certifier = circuit: Step 1

Computation Process of C(s,t) L
o OUTPUT: Yes/No Circuit K
Configuration T(|s|)

|Program C(s,t) I PC‘ Input leemﬁcate t ‘Working mem l A

Configuration 2
IProgram C(s,t) | PC|Input s‘ Certificate t ‘Workmg mem l

Configuration 1
IProgram C(s,t)l PC‘Input sl Certificate t‘Workmg mem l I'

Cprlfiguyratidn |1
simulating a single step of CPU

Configuration 0

IProgram C(s,t)l PC‘Input s‘ Certificate t ‘Working mem ]

Ingram C(s,t)| PC|Input s‘ Certificate t‘Wo/kmg mem l

Configuration 0

@ Equivalence: configuration 1 will appear in the second layers of pins when

inputed with initial configuration.
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Certifier = circuit: Step 2

Computation Process of C(s,t)

. OUTPUT: Yes/No Circuit K
Configuration T(|s|) / A
|Program C(s,t) I PC‘ Input leemﬁcate t ‘Working mem l A
g g po
Configuration 2
J |Pr3ga”nCs,|P|nusC:':iar_-riv.u -nml
IProgram C(s,t) | PC|Input s‘ Certificate t ‘Workmg mem l q 3
ohfigyrafti
Configuration 1 "
IProgram C(s,t)l PC‘Input leertiﬁcate t‘Workmg meml I' 7\C sy )I P I npuf s| Certificate o A |

Cprlfiguyratidn |1

Configuration 0 simulating a single step of CPU

IProgram C(s,t)l PC‘Input s‘ Certificate t ‘Working mem ]

Ingram C(s,t)| PC|Input 5‘ Certificate t‘Wo/kmg mem l

Configuration 0

@ Equivalence: configuration 2 will appear in the third layers of pins when
inputed with initial configuration.

32/50



Certifier = circuit: Step T'(|s|)

Computation Process of C(s,t) Circuit K
Configuration T(|s|) OUTPUT: Yes/No OUTPUT: Yes/No

Program C(s,t) | PC|Input s‘ Certificate t ‘Working mem l

Configuration 2
IProgram C(s,t)l PC‘Input sl Certificate t‘Workmg mem l

|Prga C5,|P nusCr'u‘a:xlv,u ml

Configuration 1

IProgram C(s,t) | PC[Input s‘ Certificate t{WOrking mem l I

ulating a single step of CPU

Configuration 0

IProgram C(s,t) | PC|Input s‘Cemﬁcate t {Working mem l

IP!’Dgram C(s,t) PC} Input 5‘ Certificate t ‘ Working mem l

Configuration 0

@ Equivalence: configuration T'(|s|) will appear in the topest layers of pins.
A specific pin reports Yes/No. Thus, circuit K outputs “Yes" < certifier
C(s,t) reports “Yes".
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Proving further NP-Complete problems

Dae
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Proving further NP-Complete problems

@ Once we have a first NP-complete, we can discover many
more via the following property:

IfY is an NP-complete, and X is in NP with the property
Y <p X, then X is also NP-Complete.

@ General strategy for proving new problem X NP-Complete:
@ Prove that X is in NP;
@ Choose an NP-Complete problem Y;
© Consider an arbitrary instance y of Y, and show how to
construct, in polynomial-time, an instance = of X, such that y
is a “Yes” instance < x is a “Yes" instance.
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SAT is NP-complete. \

(Part 1: SAT belongs to NP.)

o Certificate: assignment of variables.

@ Certifier: simply evaluate each clause and .

e.g., ® = (z1VxoVx3) Certificate: 21 =T xo =T 23 ="T.
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SAT is NP-Complete.

(Part 2: SAT is NP-hard. In particular, CIRCUIT
SATISFIABILITY <p SAT)

@ each wire in C = a variable;

@ a gate in C' = a formula involving variables of incident wires;
@ & is the AND of output variable with the conjunction of
clauses of all gates.

@ The CIRCUIT SATISFIABILITY instance is satisfied iff the
constructed SAT instance is satisfied.
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CIRCUIT SATISFIABILITY <p SAT

X7 [
x8 phi=x9 A
(X9 <-> X7TA X8BAX6 ) A

| | |__Xx6 (X7 <-=>x3VxXx5)A
(x8 <->x3Vx6)A
» (X6 <-> XLAX2AX4) A
(
(

x5 <->x1Vx2) A
x4 <-> NOT x3)

Input: x1 x2 X3
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3SAT is NP-Complete.

3 (3SAT: each clause has exactly 3 literals.)

Proof.

o 1 literal: (z1) <~
(z1VpV @A (@1 VpV—og)A(z1V=pVg) A1V -pV-g)
o 2 literals: (x1 Vaxa) <= (z1 Va2 Vp)A(x1Vx2V-p)

@ 3 literals: simply copy it.
o 4 literals:
(r1 Vo VasVaxy)
<= (21 Vaz2 VD) A (p 4> 23V 24)
< (x1VzaVP)A(—-pVagVaa) A(pV-z3)A(pV—z4) ...

@ and so on....

Ol

v

32SAT belongs to P. See slides by D. Moshko.
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Thus the following problems are NP-Complete.

CIRCUIT-SAT

SAT

C 3D-MATCHING )( INDEPENDENT-SET )C HAMILTON-CYCLE )( COLORING )C SUBSET-SUM )
i

VERTEX-COVER

( CLIQUE ) ( SET-COVER )
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A partial taxonomy of hard problems

Given a collection of objects,

@ PACKING problems: to choose at least k of them.
Restrictions: conflicts among objects, e.g. INDEPENDENT
SET

@ COVERING problems: to choose at most k of them to meet a
certain goal, e.g., SET COVER, VERTEX COVER.

© PARTITIONING problems: to divide them into subsets so that
each object appears in exactly one of the subsets, e.g.,
3-COLORING.

@ SEQUENCING problems: to search over all possible
permutations of objects under restrictions that some objects
cannot follow certain others, e.g., HAMILTON CYCLE, TSP;

© NUMERICAL problems: objects are weighted, to select objects
to meet the constraint on the total weights, e.g., SUBSET
SuM

O CONSTRAINT SATISFACTION problems. e.g., 3SAT,

CIRCUIT SATISFIABILITY.
41/50



The asymmetry of NP and coNP
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The asymmetry of NP

NP is fundamentally asymmetry since:
@ For a “Yes” instance, we can provide a short “certificate” to
support it is “Yes";
@ But for a “No" instance, no correspondingly short
“Disqualification” is guaranteed,;

Example: SAT vs. UNSAT.

o Certificate of a "Yes” instance: an assignment;

@ Disqualification of a “No" instance: ?
Example: HAMILTON CYCLE vs. NO HAMILTON CYCLE

o Certificate of a “Yes” instance: a permutation of nodes;

e Disqualification of a “No" instance: ?
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Problem X and its complement X

e X has different property: s is a “Yes” instance of X iff for
ALL t of length at most p(|s|), we have C(s,t) = No.

@ co-NP: the collection of X if X is in NP.
Example: UNSAT, No HAMILTON CYCLE.

Problem X Problem?

=

e YES
®NO
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Question 2: NP = coNP?

If yes, then the existence of short certificates for “Yes" instances
means that we can find short disqualifications for all “No”
instances.
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NP = coNP?

@ Widespread belief: No.

@ Just because we have a short certificate for all “Yes"
instances, it is not clear why we should believe that the “No”
instances also have a short certificate.

@ Proving NP=coNP is a bigger step than P=NP.

P=NP = NP=coNP.

@ Key idea: P is closed under complementation, i.e.,
XeP&sXeP.

e XeNP=XecP=XecP=XeNP= X € coNP,
and

e Xecco—-NP=XecNP=XecP=XecP=XecNP.
O

v
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Good characterizations: the class NP N coNP

If X is in both NP and coNP, it has a nice property:
@ if an instance is “Yes" instance, we have a short proof;

@ if the input instance is a “No" instance, we have a short
disqualification, too.

Example: MAxiMuM FLow
o Certificate for “Yes” instance: list a flow of value > v directly;
o Certificate for “No” instance: list a cut whose capacity < v;

Duality immediately implies that both problems are in NP and
coNP.
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Question 3: P = NP N coNP?

If yes, a problem with good characterization always has an efficient
algorithm.

48/50



Good characterizations: the class NP N coNP

Mixed opinions:
o finding good characterization is usually easier than designing
an efficient algorithm;

@ good characterization = conceptual leverage in reasoning
about problems;

@ good characterization = efficient algorithm: There are many
cases in which a problem was found to have a nontrivial good
characterization; and then (sometimes many years later) it
was discovered to have a polynomial-time algorithm.

Examples:
— linear programming [Khachiyan 1979]

— primality testing [Agrawal-Kayal-Saxena, 2002]
4

*These slides are excerpted from the presentation by Kevin Wayne.
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Four possibilities for the relationships among P, NP, and

coNP.

D 53
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