
CS711008Z Algorithm Design and Analysis
Lecture 4. NP and intractability (Part II) 1

Dongbo Bu

Institute of Computing Technology

Chinese Academy of Sciences, Beijing, China

1The slides were prepared based on Introduction to algorithms, Algorithm
design, Computer and Intractability, and slides by Kevin Wayne with permission.

1 / 50

Outline

Reduction: understanding the relationship between different
problems. A ≤P B implies “B is harder than A”.

Problem classes: P, NP, coNP, L, NL, PSPACE, EXP, etc.

Circuit Satisfiability is one of the hardest problems in
NP class.

NP-Complete problems

2 / 50

Complexity classes

A complexity class of problems is specified by several
parameters:

1 Computation model: multi-string Turing machine;
2 Computation mode: When do we think a machine accepts its

input? deterministic or non-deterministic?
3 Computation resource: time, space.
4 Bound: a function f to express how many resource can we use.

The complexity class is then defined as the set of all languages
decided by a multi-string Turing machine M operating in the
deterministic/non-deterministic mode, and such that, for
input x, M uses at most f(|x|) units of time or space.

(See ppt for description of Turing machine.)

3 / 50

Deterministic versus nondeterministic

DTM: In a deterministic Turing machine, the set of rules
prescribes at most one action to be performed for any given
situation.

NTM: A non-deterministic Turing machine (NTM), by
contrast, may have a set of rules that prescribes more than
one actions for a given situation.

For example, a non-deterministic Turing machine may have
both ”If you are in state 2 and you see an ’A’, change it to a
’B’ and move left” and ”If you are in state 2 and you see an
’A’, change it to a ’C’ and move right” in its rule set.

4 / 50

Example: NFA and DFA

Figure: NFA and DFA

Perhaps the easiest way to understand determinism and
nondeterminism is by looking at NFA and DFA.

In a DFA, every state has exactly one outgoing arrow for every
letter in the alphabet.

However, the NFA in state 1 has two possible transitions for
the letter ”b”.

5 / 50

DTM vs. NTM: the difference between finding and
verifying a solution

Consider the Independent Set problem: does the given
graph have an independent set of 9 nodes?
If your answer is “Yes”, you just need to provide a certificate
having 9 nodes.
Certifier: it is easy to verify whether the certificate is correct,
i.e., the given 9 nodes form an independent set for this graph
of 24 vertices.
Solver: However, it is not easy to find this independent set.

6 / 50

Another example

Consider the following problem: does the formula
f(x) = x5 − 3x4 + 5x3 − 7x2 + 11x− 13 = 0 have a
real-number solution?

If your answer is “Yes”, you just need to provide a
certificate, say x = 0.834....

Certifier: it is easy to verify whether the certificate is correct,
i.e., f(x) = 0.

Solver: however, it is not easy to get a solution.

7 / 50

P class

P: decision problems for which there is a polynomial-time
algorithm to solves it.

Here, we say that an algorithm A solves problem X if for all
instance s of X, A(s) = YES iff s is a YESinstance.

Time-complexity: A runs in polynomial-time if for every
instance s, A(s) ends in at most polynomial(|s|) steps.

Stable Matching problem: O(n2).

8 / 50

NP class

NP: decision problems for which there exists a
polynomial-time certifier. 2

Here we say that an algorithm C(s, t) certificates problem X
if for each “YES” instance s, there exists a certificate t such
that C(s, t) =YES, and |t| = polynomial(|s|).

Certificate: an evidence to demonstrate this instance is YES;

Note: a certifier approach the problem from a managerial
point of view as follows:

It will not actually try to solve the problem directly;
Rather, it is willing to efficiently evaluate proposed “proof”.

2NP denotes “non-deterministic polynomial-time”. This is just simple but
equivalent definition.

9 / 50

Certificate and certifier for Hamilton Cycle problem

Problem: Is there a Hamiltonian cycle in the give graph?

If your answer is YES, you just need to provide a certificate,
i.e. a permutation of n nodes;

Certifier: checking whether this path forms a cycle;

Example:

Certifier: it takes polynomial time to verify the certificate.
Thus Hamilton Cycle is in NP class.

10 / 50

Certificate and certifier for SAT problem

Problem: Is the given CNF satisfiable?

If your answer is YES, you just need to provide a certificate,
i.e. an assignment for all n boolean variables;

Certifier: checking whether each clause is satisfied by this
assignment;

Example:

An instance: (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)
Certificate: x1 = TRUE, x2 = TRUE, x3 = FALSE;
Certifier: it takes polynomial time to verify the certificate.
Thus SAT is in NP class.

11 / 50

The “certificate” idea is not entirely trivial.

1 For UNSAT problem, it is difficult to provide a short
“certificate”:

Suppose we want to prove a SAT instance is unsatisfiable,
what evidence could convince you, in polynomial time, that the
instance is unsatisfiable?

2 In addition, we can also transform a certifier into an
algorithm.

A certifier can be used as the core of a “brute-force” algorithm
to solve the problem: enumerate all possible certificate t in
O(2|t|) time, and run C(s, t). It will take exponential-time.

12 / 50

Problem classes: P, NP, and EXP

Three classes of problems:

P: decision problems for which there is a polynomial-time
algorithm;

NP: decision problems for which there is a polynomial-time
certifier;

EXP: decision problems for which there is an exponential-time
algorithm;

13 / 50

P ⊆ NP

Theorem

P ⊆ NP.

Proof.

Consider any problem X in P;

There is an algorithm A to solve it;

We design a certifier C as follows: when presented with input
(s, t), simply return A(s).

14 / 50

NP ⊆ EXP

Theorem

NP ⊆ EXP.

Proof.

Consider any problem X in NP ;

There is a polynomial-time certifier C to certificate it;

For an instance s, run C(s, t) on all possible certificates t,
|t| = polynomial(|s|);

Return Yes if C(s, t) returns Yes for any certificate t.

15 / 50

Question 1: P = NP?

16 / 50

P vs. NP

The main question: P = NP? [S. Cook]

In other words, is solving a problem as easy as certificating an
evidence?

If P = NP, then for a “Yes” instance, an efficient “verifying”
a certificate means an efficient “finding” a solution, and there
will be efficient algorithms for SAT, TSP, Hamilton
Cycle, etc.
If P 6= NP: there is no efficient algorithms for these problems;

Clay $7 million prize. (See
http://www.claymath.org/millennium/P vs NP/)

17 / 50

A first NP-Complete problem

18 / 50

NP− complete class: the hardest problem in NP class

Due to the absence of progress of P=NP? question, a more
approachable question was posed:
What is the hardest problems in NP?

This is approachable since by using polynomial-time
reduction, one can find connection between problems, and
gain insight of the structure of NP class.

The hardest problems in the NP class:

NP-hard: a problem Y is NP-hard if for any NP problem X,
X ≤p Y ;
NP-complete: a problem Y is in NP, and is NP-hard.

19 / 50

Theorem

Suppose Y is a NP-complete problem. Y is solvable in
polynomial-time iff P=NP

Proof.

Let X be any problem in NP ;

Since X ≤P Y , X can be solved in polynomial-time through
the “reduction algorithm”.

Consequence: if there is any problem in NP that cannot be
solved in polynomial-time, then no NP-Complete can be
solved in polynomial-time.

20 / 50

The first NP-Complete problem [Cook, Levin 1971]

It is not at all obvious that NP-complete problems should
even exist.

Two possible cases:
1 two incomparable problem X ′ and X ′′, and there is no

problem X such that X ′ ≤P X, and X ′′ ≤P X?
2 an infinite sequence of problems X1 ≤P X2 ≤P ...;

The difficulty is to prove that any NP problem X can be
reduced to a NP-complete problem.

21 / 50

S. Cook and L. Levin

Figure: Stephen Cook and Leonid Levin

In 1982, Cook received the Turing award. His citation reads: For

his advancement of our understanding of the complexity of computation

in a significant and profound way. His seminal paper, The Complexity of

Theorem Proving Procedures,..., laid the foundations for the theory of

NP-Completeness. The ensuing exploration of the boundaries and nature

of NP-complete class of problems has been one of the most active and

important research activities in computer science for the last decade. 22 / 50

Let’s show Circuit Satisfiability is NP-complete

Circuit: a labeled, directed acyclic graph to simulate
computation process on physical circuit.

Circuit Satisfiability problem

INPUT: a circuit;
OUTPUT: is there an assignment of input making output to be 1?

Figure: Left: satisfiable. Right: unsatisfiable.

23 / 50

Circuit Satisfiability cont’d

Circuit Satisfiability problem

INPUT: a circuit;
OUTPUT: is there assignment of input that cause the output to
take the value 1?

24 / 50

Circuit Satisfiability is the most natural problem.

For example, Independent Set problem can be reducible to
Circuit Satisfiability.

In other words, a circuit can be designed to simulate certifier
of Independent Set problem, i.e., the circuit can be
satisfied iff the Independent Set instance is a “Yes”
instance.

25 / 50

Circuit Satisfiability problem

Circuit Satisfiability problem can be used to represent a
large family of problems, say Independent Set ≤P Circuit
Satisfiability.

Existing an independent set ⇒ C is satisfiable.

No independent set ⇒ C is unsatisfiable.

26 / 50

Circuit Satisfiability is the most natural problem.

In fact, besides Independent Set problem, ALL NP
problems can be reducible to Circuit Satisfiability.

In other words, specific circuits can be designed to simulate
the certifiers of ALL NP problems.

Circuit Satisfiability is NP-Complete.

27 / 50

Theorem

Circuit Satisfiability is NP-Complete.

Proof.

We will show for any problem X ∈ NP , X ≤P Circuit-Sat.

Remember that X ∈ NP implies a certifier C(s, t) running in T (|s|) = poly(|s|)
time.

And s is a “Yes” instance of X ⇔ there is a certificate t of length p(|s|) such
that C(s, t) = Y es.

Our objective is to design a circuit that generates same output to the certifier
C(s, t).

Key idea: Represent the computation process of certifier C(s, t) as a sequence
of configurations. Here, configuration refers to any particular state of
computer, including program C(s, t), program counter PC, memory, etc. (You
can image configuration as the tape of a universal Turing machine.)

The i-th configuration is transformed to the (i+ 1)-st configuration by a
combinatorial circuit M simulating CPU (in a single clock cycle).

Simply paste T (n) copies of M to generate a single circuit K.

When inputed with initial configuration, K will generate ALL configurations.

The output (a specific bit in working memory) appears on a pin.

28 / 50

Certifier ⇒ circuit: an example

Configuration: any particular state of computer, including program
C(s, t), program counter PC, working memory, etc.

Transformation: simply connecting T (n) copies of physical circuit M to
generate a single circuit.

Note that both #configuration and #working memory are polynomial.
29 / 50

Certifier ⇒ circuit: an example

Equivalence: When inputed with the initial configuration, ALL
configurations will appear step-by-step (as how CPU does in a single
clock cycle). Finally a specific pin outputs Yes/No.

30 / 50

Certifier ⇒ circuit: Step 1

Equivalence: configuration 1 will appear in the second layers of pins when
inputed with initial configuration.

31 / 50

Certifier ⇒ circuit: Step 2

Equivalence: configuration 2 will appear in the third layers of pins when
inputed with initial configuration.

32 / 50

Certifier ⇒ circuit: Step T (|s|)

Equivalence: configuration T (|s|) will appear in the topest layers of pins.
A specific pin reports Yes/No. Thus, circuit K outputs “Yes” ⇔ certifier
C(s, t) reports “Yes”.

33 / 50

Proving further NP-Complete problems

34 / 50

Proving further NP-Complete problems

Once we have a first NP-complete, we can discover many
more via the following property:

Theorem

If Y is an NP-complete, and X is in NP with the property
Y ≤P X, then X is also NP-Complete.

General strategy for proving new problem X NP-Complete:
1 Prove that X is in NP;
2 Choose an NP-Complete problem Y ;
3 Consider an arbitrary instance y of Y , and show how to

construct, in polynomial-time, an instance x of X, such that y
is a “Yes” instance ⇔ x is a “Yes” instance.

35 / 50

Theorem

SAT is NP-complete.

(Part 1: SAT belongs to NP.)

Proof.

Certificate: assignment of variables.

Certifier: simply evaluate each clause and Φ.

e.g., Φ = (x1 ∨ ¬x2 ∨ x3) Certificate: x1 = T x2 = T x3 = T .

36 / 50

Theorem

SAT is NP-Complete.

(Part 2: SAT is NP-hard. In particular, Circuit
Satisfiability ≤P SAT)

Proof.

each wire in C ⇒ a variable;

a gate in C ⇒ a formula involving variables of incident wires;

Φ is the AND of output variable with the conjunction of
clauses of all gates.

The Circuit Satisfiability instance is satisfied iff the
constructed SAT instance is satisfied.

37 / 50

Circuit Satisfiability ≤P SAT

38 / 50

Theorem

3SAT is NP-Complete.

3 (3SAT: each clause has exactly 3 literals.)

Proof.

1 literal: (x1) ⇐⇒
(x1 ∨ p ∨ q) ∧ (x1 ∨ p ∨ ¬q) ∧ (x1 ∨ ¬p ∨ q) ∧ (x1 ∨ ¬p ∨ ¬q)

2 literals: (x1 ∨ x2) ⇐⇒ (x1 ∨ x2 ∨ p) ∧ (x1 ∨ x2 ∨ ¬p)

3 literals: simply copy it.

4 literals:
(x1 ∨ x2 ∨ x3 ∨ x4)
⇐⇒ (x1 ∨ x2 ∨ p) ∧ (p↔ x3 ∨ x4)
⇐⇒ (x1 ∨x2 ∨ p)∧ (¬p∨x3 ∨x4)∧ (p∨¬x3)∧ (p∨¬x4) ...

and so on....

32SAT belongs to P. See slides by D. Moshko.
39 / 50

Thus the following problems are NP-Complete.

40 / 50

A partial taxonomy of hard problems

Given a collection of objects,
1 Packing problems: to choose at least k of them.

Restrictions: conflicts among objects, e.g. Independent
Set

2 Covering problems: to choose at most k of them to meet a
certain goal, e.g., Set Cover, Vertex Cover.

3 Partitioning problems: to divide them into subsets so that
each object appears in exactly one of the subsets, e.g.,
3-Coloring.

4 Sequencing problems: to search over all possible
permutations of objects under restrictions that some objects
cannot follow certain others, e.g., Hamilton Cycle, TSP;

5 Numerical problems: objects are weighted, to select objects
to meet the constraint on the total weights, e.g., Subset
Sum

6 Constraint satisfaction problems. e.g., 3SAT,
Circuit Satisfiability.

41 / 50

The asymmetry of NP and coNP

42 / 50

The asymmetry of NP

NP is fundamentally asymmetry since:

For a “Yes” instance, we can provide a short “certificate” to
support it is “Yes”;

But for a “No” instance, no correspondingly short
“Disqualification” is guaranteed;

Example: SAT vs. UNSAT .

Certificate of a “Yes” instance: an assignment;

Disqualification of a “No” instance: ?

Example: Hamilton Cycle vs. No Hamilton Cycle

Certificate of a “Yes” instance: a permutation of nodes;

Disqualification of a “No” instance: ?

43 / 50

Problem X and its complement X̄

X̄ has different property: s is a “Yes” instance of X̄ iff for
ALL t of length at most p(|s|), we have C(s, t) = No.

co-NP: the collection of X if X̄ is in NP.

Example: UNSAT , No Hamilton Cycle.

44 / 50

Question 2: NP = coNP?

If yes, then the existence of short certificates for “Yes” instances
means that we can find short disqualifications for all “No”
instances.

45 / 50

NP = coNP?

Widespread belief: No.

Just because we have a short certificate for all “Yes”
instances, it is not clear why we should believe that the “No”
instances also have a short certificate.

Proving NP=coNP is a bigger step than P=NP.

Theorem

P=NP ⇒ NP=coNP.

Proof.

Key idea: P is closed under complementation, i.e.,
X ∈ P ⇔ X̄ ∈ P .

X ∈ NP⇒ X ∈ P ⇒ X̄ ∈ P ⇒ X̄ ∈ NP⇒ X ∈ coNP,
and

X ∈ co−NP ⇒ X̄ ∈ NP⇒ X̄ ∈ P ⇒ X ∈ P ⇒ X ∈ NP .

46 / 50

Good characterizations: the class NP ∩ coNP

If X is in both NP and coNP, it has a nice property:

1 if an instance is “Yes” instance, we have a short proof;

2 if the input instance is a “No” instance, we have a short
disqualification, too.

Example: Maximum Flow

Certificate for “Yes” instance: list a flow of value ≥ v directly;

Certificate for “No” instance: list a cut whose capacity ≤ v;

Duality immediately implies that both problems are in NP and
coNP .

47 / 50

Question 3: P = NP ∩ coNP?

If yes, a problem with good characterization always has an efficient
algorithm.

48 / 50

Good characterizations: the class NP ∩ coNP

Mixed opinions:

finding good characterization is usually easier than designing
an efficient algorithm;

good characterization ⇒ conceptual leverage in reasoning
about problems;

good characterization ⇒ efficient algorithm: There are many
cases in which a problem was found to have a nontrivial good
characterization; and then (sometimes many years later) it
was discovered to have a polynomial-time algorithm.

Examples:
— linear programming [Khachiyan 1979]
— primality testing [Agrawal-Kayal-Saxena, 2002]
4

4These slides are excerpted from the presentation by Kevin Wayne.
49 / 50

Four possibilities for the relationships among P, NP, and
coNP.

50 / 50

