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Lecture 3. Problem hardness and polynomial-time reduction
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Outline

Problem intrinsic property: hardness
Reduction: to identify the relationship between different
problems;
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NP-Completeness Cartoon: Bandersnatch problem

One day your boss calls you into his office and confides that
the company is about to enter the highly competitive
”bandersnatch” market.
A good method is needed for determining whether or not any
given set of specifications for a new bandersnatch component
can be met and, if so, for constructing a design that meets
them.
Since you are the company’s chief algorithm official, your
charge is to find an efficient algorithm for doing this.

1

1Excerpted from Computer and Intractability (by Garey and Johnson)
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Trial 1: attempt to solve this problem

Some weeks later, you have not been able to come up with
any algorithm substantially better than searching through all
possible designs. This would involve years of computation
time for just one set of specifications.
You simply return to your boss’s office and report: “I can’t
find an efficient algorithm, I guess I’m just too dumb. ”

But perhaps this is unfair to you: the problem might be
intrinsically hard.
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Trial 2: try to prove the hardness directly

So it would be much better if you could prove that the
bandersnatch problem is inherently intractable, that no
algorithm could possibly solve it quickly.
Then you could stride confidently into the boss’s office and
proclaim: “ I can’t find an efficient algorithm, because no
such algorithm is possible. ”

Unfortunately, proving inherent intractability can be just as
hard as finding efficient algorithms.
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Trial 3: to show the relative hardness with other hard
problems

For such a “grey area” problem, an alternative way is to prove
that the problem is “just as hard as” a large number of other
problems that are widely recognize as being difficult and that
have been confounding the experts for years.
“I can’t find an efficient algorithm, but neither can all these
famous people. ”
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Trial 3: to show the relative hardness with other hard
problems. cont’d

Two advantages:
1 At the very least, this would inform your boss that it would do

no good to fire you and hire another expert on algorithms.
2 More importantly, you can spend your time looking for efficient

algorithms that solve various special cases of the general
problem.
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Problem and its hardness
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Hardness or complexity: an intrinsic property of problem

Problems can be:
Easy (existing polynomial-time algorithm):
StableMatching problem;
NP-hard: Satisfiability problem;
Truly hard (provably non-polynomial, exponential): Given a
Turing machine, does it halt in at most k steps?
Impossible: HALT problem
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Abstracting problem

Problem: consisting of INPUT and OUTPUT parts.
Formally, a problem can be described as a relation P ⊆ I × S,
where I denotes the problem input, and S denotes the set of
problem solutions.
Instance: a particular INPUT.

10 / 103



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example

s-t connectivity problem

INPUT: a graph G =< V,E >, two vertices s, and t;
OUTPUT: a path from s to t; ( or “NO” if there is no such path)

Instance: a particular INPUT, including G, and s, t.

s

u

v

t
1/2 0/21/3

0/1 1/1

11 / 103



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Two types of problems: Optimization problem

Optimization problem: given an instance x ∈ I, to find the
“best” solution y∗ according to some measure.
Example: Shortest-Path problem

INPUT: a graph G =< V,E >, two vertices s, and t;
OUTPUT: the shortest path from s to t, or “NO” if there is no
path from s to t;
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Two types of problems: Decision problem

Decision problem: the relation P ⊆ I × S reduces to a
function f : I 7→ S, where S = {YES, NO}.
Example: Path problem

INPUT: a graph G =< V,E >, two vertices s, and t, and an
integer k;
OUTPUT: a path from s to t with length at most k;
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The relationship between decision problem and
optimization problem

The decision problem is in a sense “easier”.
An optimization problem can be cast to a related decision
problem by imposing a bound of the value to be
optimized.
For example, we can solve the Path problem by solving the
Shortest Path problem, and then comparing the length of
the shortest path with the decision problem parameter k.
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Reduction: uncovering the connection between two
problems

Polynomial-time reduction: a procedure f to transform
any instance α of problem A to some instance β = f(α) of
problem B with the following characteristics:

1 Transformation: The transformation takes polynomial time;
2 Equivalence: The answers are the same, i.e. the answer for α

is YES iff the answer to β = f(α) is also YES.
Denoted as A ≤P B, read as “A is reducible to B ”.
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The significance of polynomial-time reduction

Theorem
If B can be solved in polynomial time, A is also polynomially
solvable.

The algorithm to problem A is described as follows:
1: Given an instance α of problem A, use polynomial-time

reduction to transform it to β = f(α);
2: Run the polynomial-time algorithm for B on the instance

β = f(α);
3: Use the answer to β as the answer to α.

Theorem
Conversely, if A is hard, then B is hard, too.
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A simple reduction: IndependentSet ≤P VertexCover
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Independent Set Problem
Practical problem:
Suppose you have n friends, and some pairs of them don’t get
along. How to invite at least k of them to dinner if you don’t
want any interpersonal tension?

Formalized Definition:
Input: Given a graph G =< V,E >, and an integer k,
Output: is there a set of nodes S ⊆ V, |S| = k, such that no two
nodes in S are joined by an edge?

An example: are there 3 independent nodes in the following
graph?
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An example

The three nodes in blue are independent.
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Independent Set – another interesting instance

The nodes in blue form an independent set. Left: 8 nodes. Right:
9 nodes.
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Vertex Cover Problem

Practical problem:
Given n sites connected with paths, how many guards (or
cameras) should be deployed on sites to surveille all the paths?

Formalized Definition:
Input: Given a graph G =< V,E >, and an integer k,
Output: is there a set of nodes S ⊆ V, |S| = k, such that each
edge has at least one of its endpoints in S?

An example: are there 4 nodes to cover all edges in the
following graph?

21 / 103



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example

Observation: the complement of an independent set (in blue)
forms a vertex cover (in red).
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Reduction: Independent Set ≤P Vertex Cover

Transformation: map an IndependentSet instance
< G, k > to a VertexCover instance < G′, k′ >, where
G′ = G, and k′ = n − k;

Figure: Transformation from an Independent Set instance (G, k = 3)
into a Vertex Cover instance (G′ = G, k′ = 4)
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Reduction: Independent Set ≤P Vertex Cover

Theorem
Equivalence: G has an independent set S (|S| = k) ⇔ G′ has a
vertex cover S′ (|S′| = n − k).

Proof.
Let S be an independent set of G (in blue);
For an arbitrary edge e = (u, v), we have u ̸∈ S or v ̸∈ S;
Thus, u ∈ V − S or v ∈ V − S;
Define S′ = V − S (in red). S′ is a vertex cover of G′ = G, and
|S′| = n − k.

Figure: The complement of an independent set(in blue) form a vertex
cover (in red)
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How to do reduction?

C. Papadimitriou said:
To show the problem NP-complete we start by toying with small
instances of the problem,
until we isolate one with an interesting behavior.
Sometimes the properties of this instance immediately enable a
simple NP-complete proof .... sometimes called “gadget
construction”...
(Excerpted from Computer and Complexity)
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Another simple reduction: Vertex Cover ≤P Set Cover.
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Set Cover problem

Practical problem:
An anti-virus package identifies a virus based on its
characteristic “keywords” set. A keyword might correspond to
several viruses. To reduce the size of anti-virus software, it is
interesting to detect all viruses using a set of “representative”
keywords rather than all keywords.

Formalized Definition:
Input: a set U of n elements, a collection S1,S2, ...,Sm of subsets
of U, and a number k.
Output: does there exist a collection of at most k of these sets
whose union is equal to U?
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Set Cover problem: an interesting instance

In this instance, there is a collection of three of the sets whose
union is equal to all of U: We can choose the tall thin oval on the
left, together with the two polygons.
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Reduction: Vertex Cover ≤P Set Cover
Key observation: a special case of Set Cover, where each
element is covered by exactly two subsets, is in fact Vertex
Cover.

1 Transformation: Given a Vertex Cover instance < G, k >,
create a Set Cover instance: k′ = k, U = E, Sv = { e : e
incident to v};

1

3

2

4

e1
e2e3

e4

e1

e2

e3

e4
2 Equivalence: G has a vertex cover C (|C| = k) (in blue) ⇔ Sc

(c ∈ C) describe a set cover (in blue).
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A reduction via “Gadget”: 3-SAT ≤P Independent Set.
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SAT (Satisfiability) Problem

Practical problems:
expressing constraints on a set of variables (in AI), verifying
whether a circuit has the desired functionality (in VLSI), etc.

Formalized Definition:
Input: Given a CNF ϕ = C1 ∧ C2... ∧ Ck;
Output: Is there an assignment of all xi such that all clauses Cj
are satisfied?

Notations:
Boolean variable: x1, x2, ..., xn, xi = TRUE/FALSE;
Literal (or term): a variable xi, or its negative ¬xi;
Clause: a disjunction of literals: C1 = x1 ∨ ¬x2 ∨ ... ∨ x3;
CNF( Conjunctive normal form): the conjunctions of clauses;
ϕ = C1 ∧ C2... ∧ Ck;

Example:
CNF: (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (x2 ∨ ¬x3)
TRUE assignment: x1 = FALSE, x2 = FALSE, x3 = FALSE;
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SAT (Satisfiability) Problem: Two viewpoints of
TRUE assignment

Example:
CNF: (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (x2 ∨ ¬x3)
True assignment: x1 = FALSE, x2 = FALSE, x3 = FALSE;

Two viewpoints of a TRUE assignment:
1 Variables: giving each variable a TRUE/FALSE to satisfy all

clauses;
2 Clauses: In each clause, we select a literal and set it to be

TRUE to make the clause satisfied. However, there should be
no conflict among the selected literals from different clauses,
e.g., select xi from one clause and select ¬xi from another one.
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Independent Set: designing gadget

Gadget: a small, useful, and cleverly-designed machine or
tool; a piece with specific functionality, which can be used to
simulate another problem, say, to simulate variables and
clauses in SAT problem.
For example, in Independent Set problem, clique is a
gadget with functionality OR. Consider the three nodes in the
following Independent Set instance:

We can choose 1 OR choose 2 OR choose 3 since only one
vertex of a clique can appear in an independent set.
Thus, we can use it to simulate the OR operator in a clause.
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3SAT ≤P Independent Set: Transformation

Transformation:
For a given SAT instance ϕ with k clauses, constructing an
Independent Set instance (G, k′) as follows:

1 G consists of k triangles: each triangle corresponds to a clause
Ci; the nodes are labeled with the literals; connecting xi and
¬xi with an edge;

2 Set k′ = k;
Example:

Intuition: edge represents “conflicts”; we should identify k
nodes (each node from a triangle) without connections (no
conflict);
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3SAT ≤P Independent Set

Equivalence:

Proof.
Suppose ϕ is satisfiable;
There is an assignment such that in each clause, at least one literal
is satisfied;
Choose exactly one satisfied literal from each clause;
The corresponding nodes form an independent set;
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3SAT ≤P Independent Set: Equivalence

Equivalence:

Proof.
Suppose S is an independent set, and |S| = k;
S contains exactly one node from each triangle; (?)
Constructing an assignment: if vi ∈ S, xi = TRUE, and
xi = FALSE otherwise;
Notice that vi and ¬vi would not appear in S simultaneously.
ϕ is satisfied by this assignment.
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Another reduction via “gadget”: SAT ≤P Hamilton Cycle.
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Hamilton Cycle Problem

A game invented by Sir William Hamilton in 1857.

Formalized Definition:
Input: Given a graph G =< V,E >
Output: Is there a cycle visiting every node exactly once?
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Hamilton Cycle: two examples
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DNA sequencing: an application of Hamiltonian
Cycle

Multiple copies of a DNA ⇒ small sequenced fragments called
reads (say 500 bp).
Challenge: how to restore the whole genome from the short
fragments?

(see http://www.learner.org/courses/mathilluminated/interactives/dna/ for an
animation) 40 / 103
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Hamiltonian Cycle and genome assembly

Let’s construct a graph as follows:
node: a short fragment
edge: if two fragments overlap, then an edge is added between
the corresponding nodes;

Observation: Hamiltonian cycle ⇔ the genome
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Hamilton Cycle problem: designing gadget

Consider the following graph:

Suppose that we were required to visit all nodes. It is obvious
that:

To visit all nodes in the line, we can visit from left to right,
OR from right to left.
However, in order to visit node Ci, the connection manner of
Ci defines the possible traveling direction of the line of nodes.
For example, if we want to visit node C1, we have to travel the
line P1 from left to right, or travel P2 from right to left.
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Reduction 3SAT ≤P Hamilton Cycle
Transformation:

For a given SAT instance ϕ, we construct a Hamilton
Cycle instance G as follows:

1 Variable ⇒ a line of nodes for each variable;
2 Clause ⇒ a special node Ci. Ci connects to the line j in

“clockwise” direction if it contains xj and connects in
“counter-clockwise” direction if it contains ¬xj.

3 Two special nodes s and t:
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How does a gadget work?

TRUE assignment ⇒ a cycle. We travel line Pi from left to
right if xi = TRUE, and travel from right to left if xi = FALSE.
For example: x1 = TRUE, x2 = FALSE, x3 = TRUE

44 / 103



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

How does a gadget work?

FALSE assignment ⇒ cannot visit C node. We travel line Pi
from left to right if xi = TRUE, and travel from right to left if
xi = FALSE.
For example: x1 = FALSE, x2 = TRUE, x3 = FALSE. We have
no chance to visit C.
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Reduction 3SAT ≤P Hamilton Cycle

Equivalence:
Proof.

Suppose ϕ can be satisfied by an assignment;

Starting from s; travel line i from left to right if xi = TRUE; otherwise
from right to left;

If Cj is satisfied by literal xi or ¬xi, then travel Cj when traveling line i;

Return to s from t finally;

This way, all nodes will be visited exactly once.

46 / 103



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Reduction 3SAT ≤P Hamilton Cycle: Equivalence
Equivalence:

Proof.
Suppose there is a Hamilton cycle;
Assign xi = TRUE iff line i are visited from left to right;
This assignment satisfies ϕ;
Each clause Cj is satisfied. Why?
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A simple reduction: Hamilton Cycle ≤P TSP (Traveling
Salesman Problem) .
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TSP (Traveling Salesman Problem)

Intuition: A salesman tries to travel n cities with the shortest tour.

The tour path with the shortest length is 1, 2, 3, 4, 5, 1 with red
color.
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TSP (Traveling Salesman Problem)
Optimal tour of 49 cities in the USA (solved by Dantzig,
Fulkerson, and Johnson in 1954).

Origin: Karl Menger (1920), Mahalanobis (1940), Jensen (1942),
Gosh (1948), Marks (1948)
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TSP (Traveling Salesman Problem) research
progress

(Excerpted from
http://www.tsp.gatech.edu/history/milestone.html.)
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TSP cont’d

Practical problem:
path planning: the most efficient motion of a robotic arm that
drill n holes on a VLSI chip;

Formalized Definition:
Input: Given a graph G =< V,E >, distance d : E → R, and a
bound B;
Output: is there a Hamilton cycle with total distance less than B?
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Reduction: Hamilton Cycle ≤P TSP

Transformation: for a Hamilton Cycle instance
G =< V,E >, we construct a TSP instance as follows: G′: a
complete graph with n node, d(u, v) = 0 if (u, v) ∈ E;
otherwise d(u, v) = + inf. Let B = 0;

Equivalence: a tour with total distance ≤ 0 in G′

corresponds to a Hamilton cycle in G.
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Extended reading: Computing Hamiltonian path using DNA
computer
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Molecular Computation of Solutions to Combinatorial
Problems, Leonard M. Adleman [1994]

The tools of molecular biology were used to solve an instance
of the directed Hamiltonian path problem.
A small graph was encoded in molecules of DNA, and the
”operations” of the computation were performed with
standard protocols and enzymes.
This experiment demonstrates the feasibility of carrying out
computations at the molecular level.
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Representing a Hamiltonian instance using DNA
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A path generated during DNA synthesis process
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A simple reduction: SAT ≤P Graph Coloring
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Graph Coloring problem

Practical problem:
Consider assigning one of the k wavelengths to n wireless
devices. If two devices are sufficiently close to each other, we
should assign them with different wavelengths to prevent
interference.

Formalized Definition:
Input: A graph G =< V,E >, an integer k;
Output: Is there a k − coloring of G such that each node has a
color, but the two endpoints of an edge have different colors?
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An example

A proper vertex coloring of the Petersen graph with 3 colors, the
minimum number possible.
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Graph coloring: a brief introduction
There are three types of coloring:

1 Vertex coloring: coloring the vertices of a graph such that no
two adjacent vertices share the same color;

2 Edge coloring: coloring edges so that no two adjacent edges
share the same color

3 Face coloring: (planar graph) coloring faces or region so that
no two faces that share a boundary have the same color.

Figure: Peterson graph Figure: Desargues graph: the

complement of Peterson graph

Figure: USA map
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Transforming Edge Coloring into Vertex
Coloring

Edge coloring ⇒ vertex coloring (line graph ): an edge coloring of
a graph is just a vertex coloring of its line graph.

2

2The 3 slides were excerpted from Wiki::Graph Coloring
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Transforming Face Coloring into Vertex Coloring

Face coloring ⇒ vertex coloring (graph dual ): a face coloring of a
planar graph is just a vertex coloring of its planar dual.
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Planar graph: 4 coloring

The four-color theorem was proven in 1976 by Kenneth Appel
and Wolfgang Haken.
It was the first major theorem to be proved using a computer.
Appel and Haken’s approach started by showing that there is
a particular set of 1,936 maps, each of which cannot be part
of a smallest-sized counterexample to the four color theorem.
Appel and Haken used a special-purpose computer program to
confirm that each of these maps had this property.
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General graph: 2-coloring.

2-coloring is in P.
A graph G can be 2-coloring iff G is a bi-partitie.

65 / 103



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

General graph: k-coloring (k ≥ 3)

Using dynamic programming and a bound on the number of
maximal independent sets, k-colorability can be decided in
time and space O(2.445n).
Using the principle of inclusion–exclusion and Yates’s
algorithm for the fast zeta transform, k-colorability can be
decided in time O(2nn) for any k.
Faster algorithms are known for 3- and 4-colorability, which
can be decided in time O(1.3289n) and O(1.7504n),
respectively.
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Designing gadget: triangle

Triangle: Suppose a node has already been colored in Green,
one of the other nodes should be Red OR Blue;
Hint: can be used to express a Boolean variable since
xi = TRUE OR FALSE. For example: Red: True, Blue: False.
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Designing gadget: fork

Fork: If the three endpoints use all RGB colors, the root
cannot be colored.
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Designing gadget: crown

Crown: C can be colored iff one of the three input is colored
in Red.
Hint: can be used to express a clause since at least one of the
three literals should be TRUE.
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Case 1: the three input of crown = BBB

I1 = B, I2 = B, I3 = B ⇒ C cannot be colored.
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Case 2: the three input of crown = BBR

I1 = B, I2 = B, I3 = R ⇒ C can be colored.
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Case 3: the three input of crown = BRB

I1 = B, I2 = R, I3 = B ⇒ C can be colored.
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Case 4: the three input of crown = BRR

I1 = B, I2 = R, I3 = R ⇒ C can be colored.
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Case 5: the three input of crown = RBB

I1 = R, I2 = B, I3 = B ⇒ C can be colored.
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Case 6: the three input of crown = RBR

I1 = R, I2 = B, I3 = R ⇒ C can be colored.
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Case 7: the three input of crown = RRB

I1 = R, I2 = R, I3 = B ⇒ C can be colored.
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Case 8: the three input of crown = RRR

I1 = R, I2 = R, I3 = R ⇒ C can be colored.
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SAT ≤P 3-Coloring: Transformation

Transformation: a variable ⇒ a triangle;
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SAT ≤P 3-Coloring: Transformation cont’d

Transformation: Clause ⇒ connecting inputs with literals.
Example: C = (x1 ∨ ¬x2 ∨ x3)

Note: The node C can be colored iff one of the three input is
colored in Red, i.e., at least one literal is satisfied.
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True assignment ⇒ 3-Coloring
Clause ⇒ connecting inputs with literals.
Example: C = (x1 ∨ ¬x2 ∨ x3)
True assignment: x1 = T, x2 = T, x3 = F.
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False assignment ⇒ No 3-Coloring
Clause ⇒ connecting inputs with literals.
Example: C = (x1 ∨ ¬x2 ∨ x3)
False assignment: x1 = F, x2 = T, x3 = F.
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Reduction: SAT ≤P 3-Coloring

Proof.
⇒

Consider a true assignment;
Color vi Red if xi = TRUE; otherwise Blue;
This is a 3-Coloring. ( C can be colored unless ALL 3 input
are in Blue. )

⇐

Consider a 3-Coloring; (w.l.o.g, suppose node T is in Red, F is
in Blue, and base is in Green.)
Let xi = TRUE if vi is in Red; otherwise, xi = FALSE;
This is a true assignment. (Each clause Cj has a satisfied
term.)
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Another reduction via gadget: SAT ≤P SubsetSum.
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SubsetSum problem

Formalized Definition:
Input: Given n numbers S = w1,w2, ...,wn, and an objective value
W;
Output: is there a subset S′ ⊆ S such that the sum of S′ is W?

Example: S = {1, 3, 5, 7, 11, 13, 17, 19}, W = 33;
Solution: S′ = {3, 13, 17}
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SubsetSum problem: Gadget

Suppose we are given a set of numbers as follows:

Observation: we should choose either w1 OR w2.
Hint: can be used to express a Boolean variable.
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3SAT ≤P SubsetSum: Transformation
Variable xi ⇒ two numbers vi and v′i. (Intuition: to assure
that exactly one of vi and v′i should be selected. )
Clause Cj ⇒ two numbers sj and s′j, and set the final column
as follows: vi = 1 if Cj contains xi, and v′i = 1 otherwise.
(Intuition: the number denotes how many literals were
satisfied.)
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Transformation: an example with two clauses
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3SAT ≤P SubsetSum: Equivalence

⇒
Consider a true assignment;
If xi = TRUE, then select vi; otherwise select v′i;
If Cj has 1 satisfied term, select s′j and sj;
if Cj has 2 satisfied terms, select s′j;
if Cj has 3 satisfied terms, select sj.
The sum of subset is exactly W.
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Case 1: x1 = T, x2 = T, x3 = T (True assignment)

True assignment x1 = T, x2 = T, x3 = T ⇒ v1 + v2 + v3 + s′1 = W.
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Case 2: x1 = T, x2 = T, x3 = F (True assignment)

True assignment x1 = T, x2 = T, x3 = F ⇒
v1 + v2 + v3 + s1 + s′1 = W.
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Case 3: x1 = T, x2 = F, x3 = T (True assignment)

True assignment x1 = T, x2 = F, x3 = T ⇒ v1 + v2 + v3 + s1 = W.
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Case 4: x1 = T, x2 = F, x3 = F (True assignment)

True assignment x1 = T, x2 = F, x3 = F ⇒ v1 + v2 + v3 + s′1 = W.
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Case 5: x1 = F, x2 = T, x3 = T (True assignment)

True assignment x1 = F, x2 = T, x3 = T ⇒
v1 + v2 + v3 + s1 + s′1 = W.
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Case 6: x1 = F, x2 = F, x3 = T (True assignment)

True assignment x1 = F, x2 = F, x3 = T ⇒ v1 + v2 + v3 + s′1 = W.
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Case 7: x1 = F, x2 = F, x3 = F (True assignment)

True assignment x1 = F, x2 = F, x3 = F ⇒
v1 + v2 + v3 + s1 + s′1 = W.
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Case 8: x1 = F, x2 = T, x3 = F (False assignment)

False assignment x1 = F, x2 = T, x3 = F ⇒ the sum of the lowest
digit is 0, i.e., v′1 + v2 + v′3 = 1110. We cannot get a sum of 1114
even if we choose s1 plus s′1.
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3SAT ≤P SubsetSum: Equivalence cont’d

⇐
Consider a subset S′;
If vi is selected, set xi = T, and xi = F otherwise;
This is a true assignment. (?)
(Hint: the lowest digit of W is 4, while the lowest digit of
s1 + s′1 is 3. This means that at least one “1” was selected in
the final column. )
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IndependentSet ≤P Clique
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Clique problem

Formalized Definition:
Input: Graph G =< V,E >, an integer k; Output: is there a
clique of size k? Here, a clique refers to a subset of vertices that
are all connected.
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IndependentSet ≤P Clique

Transformation: map an IndependentSet instance
< G, k > to a Clique instance < G′, k′ >, where G′ is the
complement of G, and k′ = k.
Equivalence: G has an independent set of size k iff G′ has a
clique of size k.
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Easy problems vs. hard problems
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Easy problem vs. hard problems

Easy problems Hard problems
BipartiteMatching 3D Matching

3SAT 2SAT
ShorestPath LongestPath

LinearPrograming IntegerLinearPrograming
MinimumSpanningTree TSP

MinCut BalancedCut
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So far we have the following relative hardness results.
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