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problems by D. S. Hochbaum, Computational Complexity by C. H.

Papadimitriou, and a report by D. P. Williamson.
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Outline I

Introduction to MaxCut problem;

NP-Hardness of MaxCut problem;

Local search algorithm;

Dumb-randomization algorithm and derandomization;

“LP+RR” algorithm by Arora, et al;

Semi-definite programming method;
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MaxCut problem

INPUT: An undirected graph G =< V,E >.
OUTPUT: A cut of V = A ∪B, A ∩B = φ, such that the
number of edge crossing the cut is maximized.
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Hardness of MaxCut problem. I

Theorem

MaxCut problem is NP-Hard.

Proof:
(Reduction from NAESAT to MaxCut.)
Gaudget: tri-angle. (max cut = 2)

Nodes: G has 2n nodes, including xi and ¬xi for each
variable i;

Edges:
1 Connecting xi and ¬xi with ni edges, where ni is the total

number of occurence of xi and ¬xi.
2 For each clause xi ∨ xj ∨ xk, draw a tri-angle; for a clause

(x1 ∨ x2), draw two parallel lines (x1, x2), (x1, x2).

e.g.:
(x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ⇔
(x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)
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Hardness of MaxCut problem. II

Claim: there is a cut with size k ≥ 5m in G iff the NAESAT
instance is satisfiable.
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Hardness of MaxCut problem. III

⇒:
If G has a cut S of size 5m or more, w.l.o.g, we can assume
xi and ¬xi are in different side, which contributes 3m edges
to the cut. The other 2m edges come from the tri-angles.
Constructing an assignment to set all literals in S to be
TRUE. All clauses are NAESAT under this assignment.
⇐:
Let S be the literals that are true. Then the cut (S, V − S)
has size 3m + 2m = 5m.
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A local search algo

see Lec14.ppt.
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A dumb randomized algorithm

Algorithm

1 A← φ, B ← φ,;

2 for i = 1 to n

3 if random( 1
2 ) = 1

4 A = A ∪ {i};
5 else

6 B = B ∪ {i};

Theorem (Sahni, Gonzalez ’76)

DumbRandom is a 1
2 -approximation algorithm.
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Proof.

We define a random variable xij = 1 iff i and j are not in A
simultanously, and xij = 0 otherwise.

We define W =
∑

i<j wijxij. We have:

E(W ) = E(
∑

i<j

wijxij) (1)

=
∑

i<j

wijE(xij) (2)

= 1
2

∑

i<j

wij (3)

≥ 1
2OPT (4)
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Derandomization I

Changing a randomized algorithm to a deterministic
algorithm: Algorithmic derandomization techniques look at a
particular randomized algorithm, and using the inherent
properties of the problem, analyze the randomized algorithm
better to come up with ways to remove randomness from that
algorithm.

Basic idea: conditional expectance. e.g. Since
E(W ) = 1

2E(W |v1 ∈ A) + 1
2E(W |v1 ∈ B) We have

E(W ) ≤ max{E(W |v1 ∈ A), E(W |v1 ∈ B)}.
Derandomization strategy: put vi+1 into A if

E(W |v1, ..., vi are determined, vi+1 ∈ A) ≥
E(W |v1, ..., vi are determined, vi+1 ∈ B).
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Derandomization II

Repeatedly applying this strategy, we have:

1
2OPT ≤ E(W )

≤ E(W |v1 is determined according to the strategy)

≤ E(W |v1, v2 are determined according to the strategy)

.........

≤ E(W |v1, v2, ..., vn are determined according to the strategy
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Derandomization III

Question: how to calculate
E(W |v1, ..., vi are determined, vi+1 ∈ A)?
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Derandomization IV

E(W |v1, ..., vi are determined, vi+1 ∈ A) =
k + mB + 1

2(m− k −mA −mB − l)
E(W |v1, ..., vi are determined, vi+1 ∈ B) =
k + mA + 1

2(m− k −mA −mB − l)
Thus, the strategy can be rewritten as:

Derandomization strategy: put vi+1 into A if mA ≤ mB .
Algorithm:

1 A← {v1}, B ← φ,;
2 for i = 2 to n
3 put i into A or B to maximize the cut size;
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Chernoff bound

Theorem

Let x1, x2, ..., xn be n independent 0/1 random variabless (not
necessarily from the same distribution). Let
X = x1 + x2 + ... + xn, and µ = E[X]. For 0 ≤ δ ≤ 1,

Pr[X ≥ (1 + δ)µ] ≤ e−
1
3µδ2

and

Pr[X ≤ (1− δ)µ] ≤ e−
1
2µδ2

.
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Hoeffding bound

Theorem

Let x1, x2, ..., xn be n independent random variabless (not
necessarily from the same distribution, and xi = 0 or αi, where
αi ≤ 1 . Let X = x1 + x2 + ... + xn, and µ = E[X]. For
0 ≤ δ ≤ 1,

Pr[X ≥ (1 + δ)µ] ≤ e−
1
3µδ2

and

Pr[X ≤ (1− δ)µ] ≤ e−
1
2µδ2

.
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LP+RR Algorithm for dense graph I

A quadratic programming model:

max
∑n

i=1 xi

∑

(i,j)∈E(1− xj)

s.t. xi ∈ {0, 1}

Definition: let ZN(x, i) denote the number of neighboors in
V − S of i under solution x.

max
∑n

i=1 xiZN(x, i)
s.t. xi ∈ {0, 1}

Let x∗ denote the an optimal solution.

Suppose we have high-quality estimation Zi of ZN(x∗, i), i.e.,
Zi − ǫn ≤ ZN(x∗, i) ≤ Zi + ǫn.

Then we can approximate the quadratic model through the
following LP model:
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LP+RR Algorithm for dense graph II

max
∑n

i=1 yiZi

s.t.
∑

(i,j)∈E(1− yj) ≤ Zi + ǫn
∑

(i,j)∈E(1− yj) ≥ Zi − ǫn

yi ∈ {0, 1}
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Assumption: the graph is dense, i.e., |E| = αn∗ and wij = 1.
Observations:

1 OPT ≥ α
2 n2. (Probability method proof: E(W ) ≥ α

2 n2 ⇒
OPT ≥ α

2 n2.)

2 x∗ is also a feasible solution of the LP model.

3 The objective function of x∗ in the LP model is close to that
in the quadratic model, (denoted as
OPT =

∑

i(ZN(x∗, i)x∗
i ). Therefore, ZLP ≥ (1− 2ǫ

α
)OPT .

n
∑

i=1

Zix
∗
i ≥

∑

i

(ZN(x∗, i)− ǫn)x∗
i (10)

=
∑

i

(ZN(x∗, i)x∗
i − ǫn

∑

i

x∗
i (11)

≥ OPT − ǫn2 (
∑

i

x∗
i ≤ n) (12)

≥ (1− 2ǫ
α

)OPT (13)
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“LP+RR” method by Arora, Karger, and Karpinski, ’95.
Algorithm

1 Get Zi from genie;

2 Solve LP, get y∗;

3 For all node i in V ,

4 if random(y∗i ) = 1

5 x′
i = 1; (Add i to S)

6 else

7 x′
i = 0; (Add i to V − S)
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Analysis I

Claim:
∑

i x′
iZN(x′, i) ≥ (1− 5ǫ

α
)OPT with high probability.

Proof:

Fact 1: With high proability, ZN(x′, i) is close to ZN(y∗, i)

E(ZN(x′, i)) =
∑

(i,j)∈E

E(1− x′
j) (14)

=
∑

(i,j)∈E

(1− y∗j ) (15)

= ZN(y∗, i) (16)
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Analysis II

Thus with high proability, ZN(x′, i) is close to ZN(y∗, i).
Speficically,

Pr[ZN(x′, i) ≤ (1− δ)ZN(y∗, i)] (17)

≤ e−
1
2ZN(y∗,i)δ2

) (18)

≤ ec lnn ( setting δ2 = min{1, 2c lnn
ZN(y∗,i)})(19)

= n−c (20)

Fact 2: With high proability,
∑

i x′
iZi is close to

∑

i Ziy
∗
i .

Since E(
∑

i x′
iZi) =

∑

i y∗i Zi, we apply the Hoeffding bound to
get Pr[

∑

i x
′
i

Zi

Zmax
≤ (1− δ)

∑

i y
∗
i

Zi

Zmax
] ≤ n−c , where

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing,CS612 Algorithm Design and Analysis



Analysis III

δ = min{1, 2c ln n
P

i
y∗

i

Zi

Zmax

}, Zmax = maxi{Zi} to ensure Zi

Zmax
≤ 1.

Thus with high probability, we have:

∑

i

x′
iZi ≥ (1− δ)

∑

i

Ziy
∗
i (21)

= (1−min{1, 2c lnn
P

i
y∗

i

Zi

Zmax

})
∑

i

Ziy
∗
i (22)

≥
∑

i

Ziy
∗
i −

√

2Zmaxc ln n
∑

i

y∗i Zi (23)

≥
∑

i

Ziy
∗
i − n

√
2cn ln n (24)
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Analysis IV

Fact 3:
∑

i

x′
iZN(x′, i) ≥

∑

i

x′
i(1− δ)ZN(y∗, i) (25)

≥
∑

i

x′
i(ZN(y∗, i)−

√

2c ln nZN(y∗, i)) (26)

≥
∑

i

x′
i(Zi − ǫn−

√

2c ln nZN(y∗, i)) (27)

≥
∑

i

x′
iZi − (ǫn +

√
2cn ln n)

∑

i

x′
i (28)

≥
∑

i

y∗i Zi − n
√

2cn ln n− (ǫn +
√

2cn ln n)
∑

i

x′
i(29)

≥
∑

i

y∗i Zi − 2n
√

2cn ln n− ǫn2 (30)

≥ (1− 2ǫ
α

)OPT − 2ǫ
α

OPT − o(1)OPT (31)

≥ (1− 5ǫ
α

)OPT (32)

(33)
Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing,CS612 Algorithm Design and Analysis



How to yield a good approximation Zi? I

Remaining difficulty: how to approximate ZN(x∗, i) by Zi?

“Random sampling + enumeration” again!
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How to yield a good approximation Zi? II

1 Random sampling:
Suppose x∗ are known. Pick random subset S of c log n/ǫ2

vertices. Set Zi = n
|S|

∑

(i,j)∈E,j∈S(1− x∗j). The with high

probability, we have: ZN(x∗, i)− ǫn ≤ Zi ≤ ZN(x∗, i) + ǫn.
2 Enumerating: However, x∗ are unknown. How to calculate Zi?

Enumerating all possible setting of xj for j ∈ S. This will take
poly-time.
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Semi-definite programming I

A SDP can be formulated as:

max
∑

cijxij

s.t.
∑

aijkxij = bk

X = (xij) is symmetric and SDP

Equivalent to vector programming:

max
∑

cij(~vi • ~vj)
s.t.

∑

aijk(~vi • ~vj) = bk

~vi ∈ Rn

Reason: A PSD matrix X can be decomposed as X = V T V for
some V ∈ Rm×n. Note: SDP (and VP) can be solved in poly-time
using the ellipsoid method or the interior-point technique.
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MaxCut using SDP I

A quadratic model of MaxCut:

max 1
2

∑

i<j wij(1− yiyj)

s.t. yi ∈ {+1,−1}

A vector programming relaxation VP:

max
∑ 1

2wij(1− ~vi • ~vj)
s.t. ~vi • ~vi = 1

~vi ∈ Rn

Note: to see VP is a relaxation of the original quadratic model, we
can view yi as a 1-dimensional vector. Thus, any feasible solution
to the quadratical model is also feasible to the VP model.
Implication: ZV P ≥ OPT .
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VectorRounding algorithm I

We can solve the vector programming model in poly-time.

Question: how to convert the solution to VP to a solution to
the quadratic model? Vector rounding!

1 Solve vector programming problem to get vectors ~v∗;
2 Choose a random vector ~r uniformly from the unit n-sphere;
3 S = Φ;
4 for i = 1 to n
5 add i into S iff ~v∗i • ~r ≥ 0;

Theorem

VectorRounding is a 0.878-approximation algorithm.

Proof:

Define random variables xij = 1 if i ∈ S and j /∈ S, or i /∈ S
and j ∈ S;
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VectorRounding algorithm II

and W =
∑

i<j wijxij;

E(W ) =
∑

i<j

wij Pr[i ∈ S and j /∈ S, ori /∈ S and j ∈ S](34)

=
∑

i<j

wij
1
π

arccos( ~v∗i • ~v∗j ) (35)

≥ 0.8781
2

∑

i<j

wij(1− ~v∗i • ~v∗j ) (36)

= 0.878ZV P (37)

≥ 0.878OPT (38)

Fact 1: Let ~r′ be the projection of ~r onto a plane.
~r′

||~r′||
is

uniformaly distributed on a unit circle.
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VectorRounding algorithm III

Fact 2:
Pr[i ∈ S and j /∈ S, ori /∈ S and j ∈ S] = 1

π
arccos( ~v∗i • ~v∗j ).

(Idea: consider the projection of ~r onto the plane spanned by ~v∗i
and ~v∗j . We have ~v∗i • ~r = ~v∗i • (~r1 + ~r2) = ~v∗i • ~r1) )

Fact 3: 1
π

arccos(x) ≥ 0.8781
2 (1− x) for −1 ≤ x ≤ 1.
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VectorRounding algorithm IV
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