CS612 Algorithm Design and Analysis Lecture 20. $MAXCUT$ problem: random sampling, derandomization, and semi-definite programming 1

Dongbo Bu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

 1 The slides are made based on Approximation Algorithms for NP-Hard problems by D. S. Hochbaum, Computational Complexity by C. H. Papadimitriou, and a report by D. P. Williamson. \Box

 $2Q$

- Introduction to MAXCUT problem;
- \bullet NP-Hardness of MAXCUT problem;
- Local search algorithm;
- Dumb-randomization algorithm and derandomization;
- "LP+RR" algorithm by Arora, et al;
- Semi-definite programming method;

つへへ

MAXCUT problem

INPUT: An undirected graph $G = \langle V, E \rangle$. **OUTPUT:** A cut of $V = A \cup B$, $A \cap B = \phi$, such that the number of edge crossing the cut is maximized.

 $2Q$

Hardness of MAXCUT problem. I

Theorem

MAXCUT problem is NP-Hard.

Proof:

(Reduction from NAESAT to MAXCUT.)

Gaudget: tri-angle. (max cut $= 2$)

- Nodes: G has $2n$ nodes, including x_i and $\neg x_i$ for each variable i :
- **•** Edges:
	- **1** Connecting x_i and $\neg x_i$ with n_i edges, where n_i is the total number of occurence of x_i and $\neg x_i$.
	- **2** For each clause $x_i ∨ x_j ∨ x_k$, draw a tri-angle; for a clause $(x_1 \vee x_2)$, draw two parallel lines (x_1, x_2) , (x_1, x_2) .

e.g.:
\n
$$
(x_1 \vee x_2) \wedge (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee \neg x_2 \vee x_3) \Leftrightarrow
$$
\n
$$
(x_1 \vee x_2 \vee x_2) \wedge (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee \neg x_2 \vee x_3)
$$

Hardness of MAXCUT problem. II

Claim: there is a cut with size $k \geq 5m$ in G iff the NAESAT instance is satisfiable.

 $2Q$

⇒:

If G has a cut S of size $5m$ or more, w.l.o.g, we can assume x_i and $\neg x_i$ are in different side, which contributes $3m$ edges to the cut. The other $2m$ edges come from the tri-angles. Constructing an assignment to set all literals in S to be TRUE. All clauses are NAESAT under this assignment. ⇐:

Let S be the literals that are true. Then the cut $(S, V - S)$ has size $3m + 2m = 5m$.

へのへ

see Lec14.ppt.

Dongbo Bu Institute of Computing Tech CS612 Algorithm Design and Analysis

 \leftarrow \Box

A

∢ ≣ ⊁

重

 290

A dumb randomized algorithm

Algorithm

$$
\bullet \ \ A \leftarrow \phi, \ B \leftarrow \phi, \vdots
$$

2 for $i = 1$ to n

3 if random
$$
\left(\frac{1}{2}\right) = 1
$$

$$
\mathbf{A} = A \cup \{i\};
$$

⁵ else

6
$$
B=B\cup\{i\};
$$

Theorem (Sahni, Gonzalez '76)

DumbRandom is a $\frac{1}{2}$ -approximation algorithm.

 $2Q$

Proof.

- We define a random variable $x_{ij} = 1$ iff i and j are not in A simultanously, and $x_{ij} = 0$ otherwise.
- We define $W=\sum_{i< j} w_{ij}x_{ij}.$ We have:

$$
E(W) = E(\sum_{i < j} w_{ij} x_{ij}) \tag{1}
$$
\n
$$
= \sum_{i < j} w_{ij} E(x_{ij}) \tag{2}
$$

$$
= \frac{1}{2}\sum_{i
$$

$$
\geq \frac{1}{2}OPT \tag{4}
$$

П

つへへ

Changing a randomized algorithm to a deterministic algorithm: Algorithmic derandomization techniques look at a particular randomized algorithm, and using the inherent properties of the problem, analyze the randomized algorithm better to come up with ways to remove randomness from that algorithm.

つくい

- Basic idea: conditional expectance. e.g. Since $E(W) = \frac{1}{2}E(W|v_1 \in A) + \frac{1}{2}E(W|v_1 \in B)$ We have $E(W) \le \max\{E(W|v_1 \in A), E(W|v_1 \in B)\}.$
- Derandomization strategy: put v_{i+1} into A if $E(W|v_1, ..., v_i$ are determined, $v_{i+1} \in A) \geq$ $E(W|v_1, ..., v_i)$ are determined, $v_{i+1} \in B$).

Derandomization II

• Repeatedly applying this strategy, we have:

.........

 $\frac{1}{2}OPT \leq E(W)$

- $\leq E(W|v_1)$ is determined according to the strategy)
- $\leq E(W|v_1, v_2)$ are determined according to the strategy)
- $\leq E(W|v_1, v_2, ..., v_n)$ are determined according to the stra

Derandomization III

• Question: how to calculate $E(W|v_1, ..., v_i)$ are determined, $v_{i+1} \in A$?

 \leftarrow \Box

A. \leftarrow \equiv \sim K 로 베 $2Q$

Derandomization IV

 $E(W|v_1, ..., v_i)$ are determined, $v_{i+1} \in A$) = $k + m_B + \frac{1}{2}$ $\frac{1}{2}(m-k-m_A-m_B-l)$ $E(W|v_1, ..., v_i)$ are determined, $v_{i+1} \in B$) = $k + m_A + \frac{1}{2}$ $\frac{1}{2}(m-k-m_A-m_B-l)$ Thus, the strategy can be rewritten as:

• Derandomization strategy: put v_{i+1} into A if $m_A \le m_B$. Algorithm:

へのへ

$$
\bullet \ \ A \leftarrow \{v_1\}, \ B \leftarrow \phi, \forall
$$

- 2 for $i = 2$ to n
- \bullet put *i* into A or B to maximize the cut size;

Theorem

Let $x_1, x_2, ..., x_n$ be n independent $0/1$ random variabless (not necessarily from the same distribution). Let $X = x_1 + x_2 + ... + x_n$, and $\mu = E[X]$. For $0 \le \delta \le 1$. $Pr[X \ge (1 + \delta)\mu] \le e^{-\frac{1}{3}}$ $\frac{1}{3}\mu\delta^2$ and $Pr[X \le (1 - \delta)\mu] \le e^{-\frac{1}{2}}$ $rac{1}{2}\mu\delta^2$.

へのへ

Theorem

Let $x_1, x_2, ..., x_n$ be n independent random variabless (not necessarily from the same distribution, and $x_i=0$ or α_i , where $\alpha_i \leq 1$. Let $X = x_1 + x_2 + ... + x_n$, and $\mu = E[X]$. For $0 \leq \delta \leq 1$. $Pr[X \ge (1 + \delta)\mu] \le e^{-\frac{1}{3}}$ $\frac{1}{3}\mu\delta^2$ and $Pr[X \le (1 - \delta)\mu] \le e^{-\frac{1}{2}}$ $rac{1}{2}\mu\delta^2$.

つくい

$LP+RR$ Algorithm for dense graph 1

• A quadratic programming model:

$$
\max_{s.t.} \sum_{i=1}^{n} x_i \sum_{(i,j) \in E} (1 - x_j)
$$

$$
x_i \in \{0, 1\}
$$

• Definition: let $ZN(x, i)$ denote the number of neighboors in $V - S$ of i under solution x.

$$
\max_{s.t.} \sum_{i=1}^{n} x_i Z N(x, i)
$$

s.t. $x_i \in \{0, 1\}$

- Let x^* denote the an optimal solution.
- Suppose we have high-quality estimation Z_i of $ZN(x^*,i)$, i.e., $Z_i - \epsilon n \leq ZN(x^*, i) \leq Z_i + \epsilon n.$

へのへ

• Then we can approximate the quadratic model through the following LP model:

LP+RR Algorithm for dense graph II

$$
\max \sum_{i=1}^{n} y_i Z_i
$$
\n
$$
s.t. \sum_{(i,j)\in E} (1 - y_j) \le Z_i + \epsilon n
$$
\n
$$
\sum_{(i,j)\in E} (1 - y_j) \ge Z_i - \epsilon n
$$
\n
$$
y_i \in \{0, 1\}
$$

④重き

A.

一 一番 トー 重 $2Q$

Assumption: the graph is dense, i.e., $|E| = \alpha n^*$ and $w_{ij} = 1$. Observations:

- **1** OPT $\geq \frac{\alpha}{2}n^2$. (Probability method proof: $E(W) \geq \frac{\alpha}{2}n^2 \Rightarrow$ $OPT \geq \frac{\bar{\alpha}}{2} n^2.$
- $2x^*$ is also a feasible solution of the LP model.
- \bullet The objective function of x^* in the LP model is close to that in the quadratic model, (denoted as $OPT = \sum_i (ZN(x^*,i)x_i^*)$. Therefore, $Z_{LP} \geq (1 - \frac{2\epsilon}{\alpha})$ $\frac{2\epsilon}{\alpha}$)OPT.

$$
\sum_{i=1}^{n} Z_i x_i^* \geq \sum_i (ZN(x^*, i) - \epsilon n) x_i^* \tag{10}
$$

$$
= \sum_{i} (ZN(x^*, i)x_i^* - \epsilon n \sum_{i} x_i^* \tag{11}
$$

$$
\geq \quad OPT - \epsilon n^2 \quad (\sum_i x_i^* \leq n) \tag{12}
$$

$$
\geq \quad (1 - \frac{2\epsilon}{\alpha})OPT \tag{13}
$$

つくい

"L $P+RR$ " method by Arora, Karger, and Karpinski, '95. Algorithm

• Get
$$
Z_i
$$
 from genie;

- **2** Solve LP, get y^* ;
- **3** For all node i in V ,
- 4 if random $(y^*_i)=1$
- 5 $x'_i = 1$; (Add i to S)
- ⁶ else

 \bullet

$$
x'_i=0; \, (\text{\rm Add}\,\, i \,\,{\rm to}\,\, V-S)
$$

 $2Q$

TELE

Claim: $\sum_i x'_i ZN(x', i) \geq (1 - \frac{5\epsilon}{\alpha}) OPT$ with high probability. Proof:

Fact 1: With high proability, $ZN(x', i)$ is close to $ZN(y^*, i)$

$$
E(ZN(x',i)) = \sum_{(i,j)\in E} E(1-x'_j)
$$
 (14)

$$
= \sum_{(i,j)\in E} (1 - y_j^*) \tag{15}
$$

$$
= ZN(y^*, i) \tag{16}
$$

母 ▶ イヨ ▶ イヨ ▶ │

 $2Q$

后

Thus with high proability, $ZN(x',i)$ is close to $ZN(y^*,i)$. Speficically,

$$
\Pr[ZN(x',i) \le (1-\delta)ZN(y^*,i)] \tag{17}
$$

$$
\leq e^{-\frac{1}{2}ZN(y^*,i)\delta^2}) \tag{18}
$$

@ ▶ (호) (호) ...

 $2Q$

$$
\leq e^{c \ln n} \quad \text{(setting } \delta^2 = \min\{1, \frac{2c \ln n}{ZN(y^*, i)}\}\text{(19)}\\ = n^{-c} \tag{20}
$$

Fact 2: With high proability, $\sum_i x_i' Z_i$ is close to $\sum_i Z_i y_i^*$. Since $E(\sum_i x_i' Z_i) = \sum_i y_i^* Z_i$, we apply the Hoeffding bound to get $\Pr[\sum_i x_i' \frac{Z_i}{Z_{mc}}]$ $\frac{Z_i}{Z_{max}} \leq (1-\delta) \sum_i y_i^* \frac{Z_i}{Z_{m} \delta}$ $\frac{Z_i}{Z_{m}ax}]\leq n^{-c}$, where

$$
\delta = \min\{1, \frac{2c \ln n}{\sum_i y_i^* \frac{Z_i}{Z_{max}}}\}, Z_{max} = \max_i\{Z_i\} \text{ to ensure } \frac{Z_i}{Z_{max}} \le 1.
$$
 Thus with high probability, we have:

$$
\sum_{i} x'_{i} Z_{i} \geq (1 - \delta) \sum_{i} Z_{i} y_{i}^{*} \qquad (21)
$$
\n
$$
= (1 - \min\{1, \frac{2c \ln n}{\sum_{i} y_{i}^{*} \frac{Z_{i}}{Z_{max}}}\}) \sum_{i} Z_{i} y_{i}^{*} \qquad (22)
$$
\n
$$
\geq \sum_{i} Z_{i} y_{i}^{*} - \sqrt{2 Z_{max} c \ln n \sum_{i} y_{i}^{*} Z_{i}} \qquad (23)
$$
\n
$$
\geq \sum_{i} Z_{i} y_{i}^{*} - n \sqrt{2 c n \ln n} \qquad (24)
$$

 \leftarrow \Box

K @ → K 重

 \mathbf{p} K 등 > È

 299

Analysis IV

Fact 3:

$$
\sum_{i} x'_{i} ZN(x',i) \geq \sum_{i} x'_{i} (1-\delta) ZN(y^*,i)
$$
\n(25)

$$
\geq \sum_{i} x'_{i}(ZN(y^*,i) - \sqrt{2c\ln nZN(y^*,i)}) \tag{26}
$$

$$
\geq \sum_{i} x'_{i}(Z_{i} - \epsilon n - \sqrt{2c \ln n Z N(y^{*}, i)}) \tag{27}
$$

$$
\geq \sum_{i} x'_{i} Z_{i} - (\epsilon n + \sqrt{2c n \ln n}) \sum_{i} x'_{i} \tag{28}
$$

$$
\geq \sum_{i} y_i^* Z_i - n\sqrt{2cn \ln n} - (en + \sqrt{2cn \ln n}) \sum_{i} 2\mathbf{\Omega} \mathbf{\hat{y}}
$$

$$
\geq \sum_{i} y_i^* Z_i - 2n\sqrt{2cn \ln n} - \epsilon n^2 \tag{30}
$$

$$
\geq (1 - \frac{2\epsilon}{\alpha})OPT - \frac{2\epsilon}{\alpha}OPT - o(1)OPT \tag{31}
$$

$$
\geq (1 - \frac{5\epsilon}{\alpha})OPT \tag{32}
$$

 \leftarrow \Box

How to yield a good approximation Z_i ? I

Remaining difficulty: how to approximate $ZN(x^*,i)$ by Z_i ?

 Ω

"Random sampling $+$ enumeration" ag[ain](#page-22-0)[!](#page-24-0) \bullet

Random sampling: Suppose x^* are known. Pick random subset S of $c\log n/\epsilon^2$ vertices. Set $Z_i = \frac{n}{|S|} \sum_{(i,j) \in E, j \in S} (1-x*_j)$. The with high probability, we have: $ZN(x^*, i) - \epsilon n \le Z_i \le ZN(x^*, i) + \epsilon n$. $\bf 2$ Enumerating: However, x^* are unknown. How to calculate $Z_i?$

Enumerating all possible setting of x_j for $j \in S$. This will take poly-time.

∽≏ດ

A SDP can be formulated as:

$$
\begin{array}{ll}\n\text{max} & \sum c_{ij} x_{ij} \\
s.t. & \sum a_{ijk} x_{ij} = b_k \\
X = (x_{ij}) \text{ is symmetric and SDP}\n\end{array}
$$

Equivalent to vector programming:

$$
\begin{array}{ll}\n\max & \sum c_{ij}(\vec{v_i} \bullet \vec{v_j}) \\
s.t. & \sum a_{ijk}(\vec{v_i} \bullet \vec{v_j}) \\
& \vec{v_i} \in R^n\n\end{array} = b_k
$$

Reason: A PSD matrix X can be decomposed as $X = V^T V$ for some $V \in R^{m \times n}$. Note: SDP (and VP) can be solved in poly-time using the ellipsoid method or the interior-point technique.

n a *c*

A quadratic model of $MAXCUT$:

$$
\max_{s.t.} \frac{1}{2} \sum_{i < j} w_{ij} (1 - y_i y_j) \\ s.t. \qquad y_i \in \{+1, -1\}
$$

A vector programming relaxation VP:

$$
\begin{array}{ll}\n\max & \sum \frac{1}{2} w_{ij} (1 - \vec{v_i} \bullet \vec{v_j}) \\
s.t. & \vec{v_i} \bullet \vec{v_i} = 1 \\
& \vec{v_i} \in R^n\n\end{array}
$$

Note: to see VP is a relaxation of the original quadratic model, we can view y_i as a 1-dimensional vector. Thus, any feasible solution to the quadratical model is also feasible to the VP model. Implication: $Z_{VP} > OPT$.

∽≏ດ

VectorRounding algorithm I

- We can solve the vector programming model in poly-time.
- Question: how to convert the solution to VP to a solution to the quadratic model? Vector rounding!
	- **1** Solve vector programming problem to get vectors \vec{v} ^{*};
	- 2 Choose a random vector \vec{r} uniformly from the unit *n*-sphere;

$$
S=\Phi;
$$

$$
4 \quad \text{for } i = 1 \text{ to } n
$$

3 add *i* into *S* iff
$$
v_i^* \bullet \vec{r} \geq 0
$$
;

Theorem

VectorRounding is a 0.878-approximation algorithm.

Proof:

 \bullet Define random variables $x_{ij} = 1$ if $i \in S$ and $j \notin S$, or $i \notin S$ and $j \in S$;

∽≏ດ

VectorRounding algorithm II

$$
\begin{aligned}\n\bullet \text{ and } W &= \sum_{i < j} w_{ij} x_{ij}; \\
E(W) &= \sum_{i < j} w_{ij} \Pr[i \in S \text{ and } j \notin S, \text{ or } i \notin S \text{ and } j \in \mathbf{S}]\n\\
&= \sum_{i < j} w_{ij} \frac{1}{\pi} \arccos(\vec{v_i^*} \bullet \vec{v_j^*})\n\\
&\geq 0.878 \frac{1}{2} \sum_{i < j} w_{ij} (1 - \vec{v_i^*} \bullet \vec{v_j^*})\n\\
&= 0.878 Z_{VP}\n\\
&\geq 0.878 OPT\n\end{aligned}\n\tag{36}
$$

へのへ

Fact 1: Let $\vec{r'}$ be the projection of \vec{r} onto a plane. $\frac{\vec{r'}}{\sqrt{r}}$ $\frac{r'}{||\vec{r'}||}$ is uniformaly distributed on a unit circle.

VectorRounding algorithm III

Fact 2: $\Pr[i \in S \text{ and } j \notin S, \text{ or } i \notin S \text{ and } j \in S] = \frac{1}{\pi} \arccos(\vec{v_i^*} \bullet \vec{v_j^*}).$ (Idea: consider the projection of \vec{r} onto the plane spanned by $\vec{v_i^*}$ and $\vec{v_j^*}$. We have $\vec{v_i^*} \bullet \vec{r} = \vec{v_i^*} \bullet (\vec{r_1} + \vec{r_2}) = \vec{v_i^*} \bullet \vec{r_1})$) Fact 3: $\frac{1}{\pi} \arccos(x) \ge 0.878 \frac{1}{2}(1-x)$ for $-1 \le x \le 1$.

∽≏ດ

VectorRounding algorithm IV

∢ ≣ ⊁

 \leftarrow

重

 299