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Lecture 20. MAXCUT problem: random sampling,
derandomization, and semi-definite programming *

Dongbo Bu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

!The slides are made based on Approximation Algorithms for NP-Hard
problems by D. S. Hochbaum, Computational Complexity by C. H.
Papadimitriou, and a report by D. P. Williamson.
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Outline |

Introduction to MAXCUT problem;

NP-Hardness of MAXCUT problem;

Local search algorithm;

Dumb-randomization algorithm and derandomization;
“LP4+RR" algorithm by Arora, et al;

Semi-definite programming method;
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MAXCUT problem
INPUT: An undirected graph G =<V, E >.

OUTPUT: Acutof V.=AUB, AN B = ¢, such that the

number of edge crossing the cut is maximized.
C2=6

Cl=4

*
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Hardness of MAXCuUT problem. |

Theorem
MaxCut problem is NP-Hard. ’

Proof:
(Reduction from NAESAT to MaxCuT.)
Gaudget: tri-angle. (max cut = 2)
@ Nodes: G has 2n nodes, including x; and —z; for each
variable ¢;
o Edges:

© Connecting z; and —z; with n; edges, where n; is the total
number of occurence of x; and —x;.
© For each clause z; V x; V z, draw a tri-angle; for a clause
(z1 V x2), draw two parallel lines (x1,x2), (z1,22).
e.g.:
(1 V) A (1 VeV oxs) A (—xp V oz V) <
(33‘1 V a2 V .1‘2) A (33‘1 V —x9 V —|.1‘3) A (—|33‘1 V —x9 V 33‘3)
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Hardness of MAXCuT problem. |l

x1 jo x1

2 O - O 1x2

x3 O O 13

Claim: there is a cut with size kK > 5m in G iff the NAESAT
instance is satisfiable.
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Hardness of MAaxCuT problem. Il

 —:
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If G has a cut S of size 5m or more, w.l.o.g, we can assume
x; and —x; are in different side, which contributes 3m edges
to the cut. The other 2m edges come from the tri-angles.
Constructing an assignment to set all literals in S to be
TRUE. All clauses are NAESAT under this assignment.

~:

Let S be the literals that are true. Then the cut (S,V —5)
has size 3m + 2m = 5m.
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A local search algo

see Lecl4.ppt.
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A dumb randomized algorithm

Algorithm

Q A—0¢ B¢,

Q fori=1ton

© ifrandom(1)=1
Q A=AU{i};
Q@ else

(% ] B = BU{i};

Theorem (Sahni, Gonzalez '76)

DumbRandom is a %—approximation algorithm.
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Proof.
@ We define a random variable z;; = 1 iff 7 and j are not in A
simultanously, and z;; = 0 otherwise.

o We define W =Y. __wj;x;;. We have:

1<j

EW) = E(Z Wi Tij) (1)

1<j
= > wiE(xy) (2)
i<j
= 3> wy 3)
1<J
> loprr (4)
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Derandomization |

@ Changing a randomized algorithm to a deterministic
algorithm: Algorithmic derandomization techniques look at a
particular randomized algorithm, and using the inherent
properties of the problem, analyze the randomized algorithm
better to come up with ways to remove randomness from that
algorithm.

@ Basic idea: conditional expectance. e.g. Since
E(W)=1E(W|v € A) + $E(W|v; € B) We have
E(W) <max{E(W|v; € A), E(W|v; € B)}.

@ Derandomization strategy: put v;y; into A if
E(W|vy,...,v; are determined, v, € A) >
E(W|vy,...,v; are determined,v;11 € B).
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Derandomization |l

@ Repeatedly applying this strategy, we have:

SOPT < E(W)
< E(W /vy is determined according to the strategy)
< E(W|vy, vy are determined according to the strategy)
< E(W|vy,vs,...,v, are determined according to the stra

S={1}

2 inf/&n V-S

® E(W|1inS,2inV-S) =
3ins 3inV-S E(W[1inS,2inS)=
Thus follow the left sub-tree.

[ )
tins 4invs
5ins k"i” v-s
[ ]
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Derandomization |ll

@ Question: how to calculate
E(W|vy,...,v; are determined, v;11 € A)?

o)
Vi+1

o © o
Vi+2  Vi+3 .. Vn

I: the total number of edges insides
A and B.
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Derandomization [V

E(W vy, ...,v; are determined, v;11 € A) =
k+mB+%(m—k—mA—mB—l)
E(W|vy,...,v; are determined, v;41 € B) =
k+ma+i(m—k—ma—mp—1)
Thus, the strategy can be rewritten as:

@ Derandomization strategy: put v;11 into A if mgq < mp.
Algorithm:
Q A—{u} B¢,
Q fori=2ton
© putiinto A or B to maximize the cut size;
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Chernoff bound

Theorem

Let x1,x9, ...,z be n independent 0/1 random variabless (not
necessarily from the same distribution). Let
X=z1+2x9+..+z, and p=E[X]. For0<§ <1,

1

Pr[X > (1+ )] < e~ 31 and
1

Pr[X < (1— )y < e 24
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Hoeffding bound

Theorem

Let x1,x9,...,x, be n independent random variabless (not
necessarily from the same distribution, and x; = 0 or «;, where
a; <1.Llet X =x1+x2+ ...+ 2y, and p = E[X]. For
0<6<1,

Pr[X > (1+0)u] <e

PriX <(1-d)pu] <e

2
m% and

N[—= W=

1162
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LP+RR Algorithm for dense graph |

@ A quadratic programming model:

max Z?:l g Z(i,j)eE(l — xj)
s.t. z; € {0,1}

o Definition: let ZN(x,7) denote the number of neighboors in
V — S of i under solution z.

max Y i 2, ZN(z,1)
sit. z; €{0,1}

@ Let x* denote the an optimal solution.

@ Suppose we have high-quality estimation Z; of ZN (z*,1), i.e.,
Zi—en < ZN(z*,i) < Z; + en.

@ Then we can approximate the quadratic model through the
following LP model:
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LP+RR Algorithm for dense graph Il

Dongbo Bu

max Z:‘:lylZZ
st 2 perl

E(i,j)EE(l
Yi € {Ou 1}

—y;) < Zi+en
—Y;) > Z; —en
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Assumption: the graph is dense, i.e., |E| = an* and w;; = 1.
Observations:
@ OPT > ¢n?. (Probability method proof: E(W) > %n? =
OPT > $n?))
Q z* is also a feasible solution of the LP model.
© The objective function of x* in the LP model is close to that

in the quadratic model, (denoted as
OPT = ,(ZN(z*,i)x}). Therefore, Zrp > (1 — 2)OPT.

izﬂj > Z(ZN(a;*,i)—en)m; (10)
i = i(ZN(x*,i)x;—ean; (11)
> OZPT—enQ O = gln) (12)
> (1-%)OPT i (13)
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“LP4+RR" method by Arora, Karger, and Karpinski, '95.
Algorithm
Q@ Get Z; from genie;
Q Solve LP, get y*;
@ For all node7inV,
if random(y;) =1
xt =1; (Add i to S)
else

o
o
o
Q x,=0; (Add i to V — 5)
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Analysis |

Claim: Y, 2/ ZN(2',i) > (1 — 2)OPT with high probability.
Proof:
Fact 1: With high proability, ZN(z’,14) is close to ZN(y*,1)

E(ZN(2',i) = Y E(l-1)) (14)
(i,7)€EFE

= > -y (15)
(i,7)EF

= ZN(y*,i) (16)
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Analysis Il

Thus with high proability, ZN(2,4) is close to ZN(y*,1).

Speficically,
PHZN(,i) < (1-6)ZN(y"i) (17)
< 6—%ZN(y*,i)52) (18)
< efmm (setting 62 = min{1, Z%\C,IZ”Z 1119)
= n ¢ (20)

Fact 2: With high proability, >, z}Z; is close to >, Z;y}.
Since E(>, . Z;) = >,y Z;, we apply the Hoeffding bound to
get Pr| ngziw < (1-9) Zzyl*zjlar] <n~¢, where
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Analysis Il

§ = min{1, 2Cl¢} Zmaw = - < 1.

Thus with high probability, we have:

Yaiz = (1-0)3 Zu; (21)

= (1 —min{1, ZQCIH" ZZZyZ (22)

*
v Zma,a:

> Z Zy; — \/QZmarcln n Z Y Z; (23)
i i
> Z Zyy; —nV2enlnn (24)
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Analysis IV

Fact 3:
S @ ZN@ i) = ) (1 —8)ZN(y*,i) (25)
Z > img(ZN(y*,i) — /2cInnZN(y*,i)) (26)
> Z ai(Z; — en — \/2cInnZN (y*, 1)) (27)
> Z 2iZ; — (en +V2enlnn) (28)
> iy:‘ZZ —nV2enInn — (m—?—%)i@@)
> Z yiZ; — 2nV2enInn — en® Z(30)
> (1Z — ZOPT — 20PT — o(1)OPT (31)
> (1-2)oprT (32)
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How to yield a good approximation Z;7 |

Since we donot know x*,
enumerate all possible setting.

Suppose we know x*, e

randomly sample log(m) 0 0 1
positions 0 0 0

X* X X
O Tilol] P EiTolr] i [iToli]

sum all LP+RR |:> sum xj*, sum xj*,
and scale; and scale;

ZN(X*,i) Zi Zi
Difficulty: can we approximate ZN(x*,i) w.h.p., Zi approximates
to break the cycle?

ZN(x*,i) well.

@ Remaining difficulty: how to approximate ZN(z*,i) by Z;?
@ “Random sampling + enumeration” again!
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How to yield a good approximation Z;7 |l

© Random sampling:
Suppose x* are known. Pick random subset S of clogn/e?
vertices. Set Z; = Il > (e, jes(1 — ;). The with high
probability, we have: ZN(z*,i) —en < Z; < ZN(x*,i) + en.
@ Enumerating: However, z* are unknown. How to calculate Z;?

Enumerating all possible setting of x; for j € S. This will take
poly-time.
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Semi-definite programming |

A SDP can be formulated as:

max Zcijmij
s.t. Zai]’kl‘ij = bk
X = (xj;) is symmetric and SDP

Equivalent to vector programming:

max ., c;j(vj ®vj)
s.t. Z al-jk(ﬁ; . U}) = b
v; € R™

Reason: A PSD matrix X can be decomposed as X = VTV for
some V € R™*". Note: SDP (and VP) can be solved in poly-time
using the ellipsoid method or the interior-point technique.
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MaxCuT using SDP |

A quadratic model of MAXCUT:

max 5>, wig(1 = yiy;)
s.t. yi € {+1,—-1}

A vector programming relaxation VP:

max Y sw;;(1— v; @ )
s.t. v;ev; =1
v; € R"?
Note: to see VP is a relaxation of the original quadratic model, we
can view y; as a 1-dimensional vector. Thus, any feasible solution

to the quadratical model is also feasible to the VP model.
Implication: Zyp > OPT.
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VectorRounding algorithm |

@ We can solve the vector programming model in poly-time.
@ Question: how to convert the solution to VP to a solution to
the quadratic model? Vector rounding!
© Solve vector programming problem to get vectors v¥;
@ Choose a random vector 7 uniformly from the unit n-sphere;
Q 5S=9
@ fori=1ton
@ add i into S iff vF e 7> 0;

Theorem
VectorRounding is a 0.878-approximation algorithm.

Proof:

@ Define random variables z;; =1ifi € Sand j ¢ S, ori ¢ S
and j € S,
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VectorRounding algorithm [l

@ and W = Zi<j Wi Lgj,

E(W) = Zwij Prlie Sand j ¢S, ori ¢ S and j €(34)

1<j
= Z wi; L arccos(v?‘ o v_j) (35)
i<j
> 08781 > wi;(1—vf e} (36)
1<j
= 0.878Zyp (37)
> 0.8780PT (38)

Fact 1: Let 7/ be the projection of 7 onto a plane. HC:H is
T

uniformaly distributed on a unit circle.
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VectorRounding algorithm Il

Vi

riArl| rl

Fact 2:
Prlice Sand j¢ S, ori ¢ Sand j€ S] = —arccos(v ov])

(Idea: consider the prOJectlon of 7 onto the plane spanned by v;
and 17* We have vjor—v o (11 +13) :v_;.'koﬁ) )
Fact 3 L arccos(z) > 0.8785(1 — z) for -1 <z < 1.
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VectorRounding algorithm [V

(13.14159 * acos(x) } /(05 * (1-x))
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