
CS711008Z Algorithm Design and Analysis
Lecture 2. Analysis techniques 1

Dongbo Bu

Institute of Computing Technology

Chinese Academy of Sciences, Beijing, China

1The slides are made based on Ch. 17 of Introduction to Algorithms, and

Ch. 2 of Algorithm Design. Some slides are excerpted from Kevin Wayne’s

slides with permission.
1 / 102

What is efficiency?

Definition 1: An algorithm is efficient if, when implemented,
it runs quickly on real input instances.

Questions:

What is the platform?
Is the algorithm implemented well?
What is a “real” instance?
How well, or badly, does the algorithm scale with the instance
size?
Both Algo1 and Algo2 perform well for a small instance;
however, on a larger instance, one algorithm may be still fast,
while the other one are very slow;

2 / 102

What is efficiency? cont’d

Definition 2: An algorithm is efficient if it achieves
qualitatively better worst-case performance, at an analytical
level, than brute-force search.

Questions:

Good: Algorithms better than brute-force search nearly always
contains a valuable idea to make it work, and tell us the
something about the intrinsic structure.
Bad: “quantatively” requires the actual running time of
algorithm; thus, we should derive the running time carefully.

3 / 102

What is efficiency? cont’d

Definition 3: An algorithm is efficient if it has a polynomial
worst-case running time (known as Cobham-Edmonds thesis)

Justification: It really works in practice.

In practice, the polynomial time algorithm that people develop
almost always have low constant and low exponents;
Breaking the exponential barrier of brute-force usually means
the exposition of problem structure.

Exceptions:

Some polynomial-time algorithms have a high constant or high
exponents, thus unpractical.
Some exponential-time algorithms work well in practice since
the worst-case is rare.

4 / 102

Algorithm analysis

1 Worst-case analysis: the largest possible time on a problem
instance with size n;

2 Average-case analysis: analyse average running time over all
inputs with a known distribution;

3 Amortized analysis: worst case bound on a sequence of
operations;

Note: Running time is usually measured in terms of elementary
operations, say comparison in sort algorithm. Intuitively, an
elementary operation takes 1 unit time, and the running time is
measured using the number of elementary operations.

5 / 102

Average-case analysis

6 / 102

Average-case analysis

Objective: analyze average running time over a distribution of
inputs

Example: QuickSort
1 Worst-case complexity: O(n2)
2 Average-case complexity: O(n log n) if input is uniformly

random

7 / 102

An example

Input: an array A[1..n] of numbers
Output: sorted array
QuickSort algorithm

1: Pick an element, say the first element, from A. This element is
called a pivot;

2: Partition A into two sub-lists, one consisting of elements less
than the pivot, and another one consisting of elements larger
than the pivot;

3: Recursively sort the sub-list of lesser elements and the sub-list
of greater elements.

8 / 102

Best-case

The most balanced case: partitioning A into two sub-lists of
size n

2 .

9 / 102

Best-case

The most balanced case: partitioning A into two sub-lists of
size n

2 .

Time: T (n) = O(n) + 2T (n2) = O(n log2 n)

10 / 102

Worst-case

The most unbalanced case: partitioning A into two sub-lists
with size 1 and n− 1.

11 / 102

Worst-case

The most unbalanced case: partitioning A into two sub-lists
with size 1 and n− 1.

12 / 102

Worst-case

The most unbalanced case: partitioning A into two sub-lists
with size 1 and n− 1.

13 / 102

Worst-case

Time: T (n) = O(n) + T (n− 1) = O(n2)

14 / 102

Average-case

Assumption: the input is a random permutation

Objective: what is the average cost?

15 / 102

Average-case

Note that Pr(1 compared with 7) = 2
7 . Why?

In general, we have Pr(i compared with j) = 2
j−i+1

16 / 102

Consider every pair

E(#Comparison) =
n−1∑

i=1

n∑

j=i+1

2

j − i+ 1
(1)

=
n−1∑

i=1

n−i∑

k=1

2

k + 1
(2)

<
n−1∑

i=1

n∑

k=1

2

k
(3)

≈ 2n lnn (4)

≈ 1.39n log2 n (5)

Note:

Equation (2) comes from introducing an auxiliary variable
k = j − i.

This means that, on average, QuickSort performs only
about 39% worse than in its best case.

17 / 102

Amortized analysis

18 / 102

Amortized analysis

Motivation: given a sequence of operations, the vast
majority of the operations are cheap, but some rare operations
within the sequence might be expensive; thus a standard
worst-case analysis might be overly pessimistic.

Objective: to give a tighter bound for a sequence of
operations.

Basic idea: when the expensive operations are particularly
rare, their costs can be “spread out” (amortized) to all
operations. If the artificial amortized costs are still cheap, we
will have a tighter bound of the whole sequence of operations.

Example: serving coffee in a bar

19 / 102

Amortized analysis versus average-case analysis

Amortized analysis differs from average-case analysis in:

Average-case analysis: average over all input , e.g.,
QuickSort algorithm performs well on “average” over all
possible input even if it performs very badly on certain input.

Amortized analysis: average over operations , e.g.,
TableInsertion algorithm performs well on “average” over
all operations even if some operations use a lot of time.

20 / 102

Stack with MultiPop operation

21 / 102

Problem: A Stack with MultiPop operation

Input: an array A[1..n], an integer K;
A sequence of n operations:

1: for i = 1 to n do
2: if A[i] ≥ A[i− 1] then
3: Push(A[i]);
4: else if A[i] ≤ A[i− 1]−K then
5: MultiPop(S, K);
6: else
7: Pop();
8: end if
9: end for

MultiPop(S, k)

1: while S is not empty and k > 0 do
2: Pop(S);
3: k −−;
4: end while

22 / 102

An example

Objective

For each operation assign an amortized cost Ĉi to bound the
actual total cost.

In other words, we need to show that for any sequence of n
operations, we have T (n) =

∑n
i=1Ci ≤

∑n
i=1 Ĉi. Here, Ci

denotes the actual cost of step i.

23 / 102

Cursory analysis versus tighter analysis

In a sequence of operations, some operations may be cheap,
but some operations may be expensive, say MultiPop().

Cursory analysis: MultiPop() step may take O(n) time;
thus, T (n) =

∑n
i=1 Ci ≤ n2

However, the worst operation does not occur often.

Therefore, the traditional worst-case individual operation
analysis can give overly pessimistic bound.

24 / 102

Tighter analysis 1: aggregate technique

25 / 102

Tighter analysis 1: Aggregate technique

Basic idea: all operations have the same amortized cost
1
n

∑n
i=1 Ĉi

Key observation: #Pop ≤ #Push

Thus, we have:

T (n) =

n∑

i=1

Ci (6)

= #Push+#Pop (7)

≤ 2×#Push (8)

≤ 2n (9)

On average, the MultiPop(K) step takes only O(1) time
rather than O(K) time.

26 / 102

Tighter analysis 2: accounting technique

27 / 102

Tighter analysis 2: Accounting technique

Basic idea: for each operation OP with actual cost COP , an
amortized cost ĈOP is assigned such that for any sequence
of n operations, T (n) =

∑n
i=1Ci ≤

∑n
i=1 Ĉi.

Intuition: If Ĉop > Cop, the overcharge will be stored as
prepaid credit; the credit will be used later for the operations
with Ĉop < Cop. The requirement that

∑n
i=1Ci ≤

∑n
i=1 Ĉi is

essentially credit never goes negative.

Example:

OP Real Cost Cop Amortized Cost Ĉop

Push 1 2
Pop 1 0

MultiPop k 0

Credit: the number of items in the stack.

28 / 102

Tighter analysis 2: Accounting technique

Example:

OP Real Cost Cop Amortized Cost Ĉop

Push 1 2
Pop 1 0

MultiPop k 0

In summary, starting from an empty stack, any sequence of
n1 Push, n2 Pop, and n3 MultiPop operations takes at
most T (n) =

∑n
i=1Ci ≤

∑n
i=1 Ĉi = 2n1. Here

n = n1 + n2 + n3.

Note: when there are more than one type of operations, each
type of operation might be assigned with different amortized
cost.

29 / 102

Accounting method: “banker’s view”

Suppose you are renting a ”coin-operation” machine, and
are charged according to the number of operations.

Two payment strategies:
1 Pay actual cost for each operation:

say pay $1 for Push, $1 for Pop, and $k for MultiPop(k).
2 Open an account, and pay “average” cost for each operation:

say pay $2 for Push, $0 for Pop, and $0 for MultiPop(k).

If “average” cost > actual cost: the extra will be deposited as
credit.
If “average” cost < actual cost: credit will be used to pay the
actual cost.

Constraint:
∑n

i=1 Ci ≤
∑n

i=1 Ĉi for arbitrary n operations,
i.e. you have enough credit in your account.

30 / 102

Accounting method: Intuition cont’d

Credit: the number of items in the stack.

Constraint:
∑n

i=1 Ci ≤
∑n

i=1 Ĉi for arbitrary n operations,
i.e. you have enough credit in your account.

31 / 102

Tighter analysis 3: potential function technique

32 / 102

Tighter analysis 3: Potential technique—“physicisit’s
view”

Basic idea: sometimes it is not easy to set Ĉop for each
operation OP directly.

Using potential function as a bridge, i.e. we assign a value to
state rather than operation, and amortized costs are then
calculated based on potential function.

Potential function: Φ(S) : S → R. Here state Si refers to the
state of the stack after the i-th operation.

Amortized cost setting: Ĉi = Ci +Φ(Si)− Φ(Si−1),

Thus,
∑n

i=1
Ĉi =

∑n

i=1
(Ci +Φ(Si)− Φ(Si−1)) (10)

=
∑n

i=1
Ci +Φ(Sn)− Φ(S0) (11)

Requirement: To guarantee
∑n

i=1Ci ≤
∑n

i=1 Ĉi, it suffices to
assure Φ(Sn) ≥ Φ(S0).

33 / 102

Stack example: Potential changes

Definition: Φ(S) denotes the number of items in stack. In
fact, we simply use “credit” as potential.
Correctness: Φ(Si) ≥ 0 = Φ(S0) for any i;

34 / 102

Potential function technique: amortized cost setting

Definition: Φ(S) denotes the number of items in stack;

Push: Φ(Si)− Φ(Si−1) = 1

Ĉi = Ci +Φ(Si)− Φ(Si−1) (12)

= 2 (13)

Pop: Φ(Si)− Φ(Si−1) = −1

Ĉi = Ci +Φ(Si)− Φ(Si−1) (14)

= 0 (15)

MultiPop: Φ(Si)−Φ(Si−1) = −#Pop

Ĉi = Ci +Φ(Si)− Φ(Si−1) (16)

= 0 (17)

Thus, starting from an empty stack, any sequence of n1

Push, n2 Pop, and n3 MultiPop operations takes at most
T (n) =

∑n
i=1 Ci ≤

∑n
i=1 Ĉi = 2n1. Here n = n1 + n2 + n3.

35 / 102

BinaryCounter problem

36 / 102

BinaryCounter problem: incrementing a binary
counter

A sequence of n operations:

1: for i = 1 to n do
2: Increment(A);
3: end for

Increment(A)

1: i = 0;
2: while i ≤ A.size() AND A[i] == 1 do
3: A[i] = 0;
4: i++;
5: end while
6: if i ≤ A.size() then
7: A[i] = 1;
8: end if

Question: T (n) ≤?

37 / 102

BinaryCounter operations: cursory analysis

Cursory analysis: T (n) ≤ kn since an increment step might
change all k bits.

38 / 102

Tighter analysis 1: aggregate technique

39 / 102

Tighter analysis 1: Aggregate technique

Basic operations: flip(1→0), flip(0→1)

T (n) =

n∑

i=1

Ci

= 1 + 2 + 1 + 3 + 1 + 2 + 1 + 4 + ...

= #flip at A0 + #flip at A1 + +#flip at Ak

= n+
n

2
+

n

4
+ ...

≤ 2n

Amortized cost of each operation: O(n)/n = O(1).

40 / 102

Tighter analysis 2: accounting technique

41 / 102

Tighter analysis 2: Accounting technique

Set amortized cost as follows:

OP Real Cost COP Amortized Cost ĈOP

flip(0→1) 1 2
flip(1→0) 1 0

Key observation: #flip(0 → 1) ≥ #flip(1 → 0)

T (n) =

n∑

i=1

Ci (18)

= #flip(0 → 1) + #flip(1 → 0) (19)

≤ 2#flip(0 → 1) (20)

≤ 2n (21)

42 / 102

Tighter analysis 3: potential function technique

43 / 102

Tighter analysis 3: Potential function technique

Definition: Set potential function as Φ(S) = #1 in counter

44 / 102

Tighter analysis: Potential technique cont’d

Definition: Set potential function as Φ(S) = #1 in counter;

At step i, the number of flips Ci is:

Ci = #flip
(i)
0→1 +#flip

(i)
1→0 = 1 +#flip

(i)
1→0 (why?)

Φ(Si) = Φ(Si−1) + 1−#flip
(i)
1→0

Ĉi = Ci +Φ(Si)− Φ(Si−1)

≤ 2

Thus we have

T (n) =
∑n

i=1
Ci

≤
∑n

i=1
Ĉi

≤ 2n

In other words, starting from 00....0, a sequence of n
Increment operations takes at most 2n time.

45 / 102

DynamicTable problem

46 / 102

A practical problem

Practical problem:

Suppose you are asked to develop a C++ compiler.

vector is one of a C++ class templates to hold a set of
objects. It supports the following operations:

push back: to add a new object onto the tail;
pop back: to pop out the last object;

Recall that vector uses a contiguous memory area to store
objects.

Question: How to design an efficient memory-allocation
strategy for vector?

47 / 102

DynamicTable problem

In many applications, we do not know in advance how many
objects will be stored in a table.

Thus we have to allocate space for a table, only to find out
later that it is not enough.

Dynamic Expansion: When inserting a new item into a full
table, the table must be reallocated with a larger size, and the
objects in the original table must be copied into the new table.

Dynamic Contraction: Similarly, if many objects have
been removed from a table, it is worthwhile to reallocate the
table with a smaller size.

We will show a memory allocation strategy such that the
amortized cost of insertion and deletion is O(1), even if the
actual cost of an operation is large when it triggers an
expansion or contraction.

48 / 102

DynamicTable supporting TableInsertion operation only

49 / 102

Double-size strategy

Table Insert(T, i)

1: if size[T] == 0 then
2: allocate a table with 1 slot;
3: size[T] = 1;
4: end if
5: if num[T] == size[T] then
6: allocate a new table with 2× size[T] slots; //double size
7: size[T] = 2× size[T];
8: copy all items into the new table;
9: free the original table;

10: end if
11: insert the new item i into T ;
12: num[T] + +;

50 / 102

Example: TableInsert(1)

Consider a sequence of operations starting with an empty table:

1: Table T ;
2: for i = 1 to n do
3: Table Insert(T, i);
4: end for

51 / 102

TableInsert(2)

52 / 102

TableInsert(2)

53 / 102

TableInsert(2)

54 / 102

TableInsert(2)

55 / 102

TableInsert(3)

56 / 102

TableInsert(3)

57 / 102

TableInsert(3)

58 / 102

TableInsert(3)

59 / 102

TableInsert(4)

60 / 102

TableInsert(5)

61 / 102

TableInsert(5)

62 / 102

TableInsert(5)

63 / 102

TableInsert(5)

64 / 102

Cursory analysis: O(n2)

Consider a sequence of operations starting with an empty
table:

1: Table T ;
2: for i = 1 to n do
3: Table Insert(T, i);
4: end for

What is the actual cost Ci of the ith operation? 2

Ci =

{
i if i− 1 is an exact power of 2

1 otherwise

Here Ci = i when the table is full, since we need to perform 1
insertion, and copy i− 1 items into the new table.

If n operations are performed, the worst-case cost of an
operation will be O(n).

Thus, the total running time for a total of n operations is
O(n2). Not tight!

2Here the cost is measured in terms of elementary insertions or deletions.
65 / 102

Tighter analysis 1: Aggregate technique

66 / 102

Aggregate method: table expansions are rare

The O(n2) bound is not tight since table expansion doesn’t
occur often in the course of n operations.

Specifically, table expansion occurs at the ith operation,
where i− 1 is an exact power of 2.

Ci =

{
i if i− 1 is an exact power of 2

1 otherwise

67 / 102

Aggregate method: rewriting Ci

The O(n2) bound is not tight since table expansion doesn’t
occur often in the course of n operations.

Specifically, table expansion occurs at the ith operation,
where i− 1 is an exact power of 2.

Ci =

{
i if i− 1 is an exact power of 2

1 otherwise

We decompose Ci as follows:

68 / 102

Total cost of n operations

The total cost of n operations is:

n∑

i=1

Ci = 1 + 2 + 3 + 1 + 5 + 1 + 1 + 1 + 9 + 1 + ...

= n+

⌊lgn⌋∑

j=0

2j

< n+ 2n

= 3n

Thus the amortized cost of an operation is 3.

In other words, the average cost of each TableInsert
operation is O(n)/n = O(1).

69 / 102

Tighter analysis 2: Accounting technique

70 / 102

Tighter analysis 2: accounting technique

For the i-th operation, an amortized cost Ĉi = $3 is charged.

This fee is consumed to perform subsequent operations.

Any amount not immediately consumed is stored in a ”bank”
for use for subsequent operations.

Thus for the i-th insertion, the $3 is used as follows:

$1 pays for the insertion itself;
$2 is stored for later table doubling, including $1 for copying
one of the recent i

2
items, and $1 for copying one of the old i

2

items.

71 / 102

Tighter analysis 2: accounting technique

For the i-th operation, an amortized cost Ĉi = $3 is charged.

This fee is consumed to perform the operation.

Any amount not immediately consumed is stored in a ”bank”
for use for subsequent operations.

Thus for the i-th insertion, the $3 is used as follows:
$1 pays for the insertion itself;
$2 is stored for later table doubling, including $1 for copying
one of the recent i

2
items, and $1 for copying one of the old i

2

items.

72 / 102

Tighter analysis 2: accounting technique

Key observation: the credit never goes negative. In other
words, the sum of amortized cost provides an upper bound of
the sum of actual costs.

T (n) =

n∑

i=1

Ci

≤

n∑

i=1

Ĉi

= 3n

73 / 102

Tighter analysis 3: Potential function technique

74 / 102

Tighter analysis 3: potential function technique

Motivation: sometimes it is not easy to find an appropriate
amortized cost directly. An alternative way is to use a
potential function as a bridge.

Basic idea: the bank account can be viewed as potential
function of the dynamic set. More specifically, we prefer a
potential function Φ : {T} → R with the following properties:

Φ(T) = 0 immediately after an expansion;
Φ(T) = size[T] immediately before an expansion; thus, the
next expansion can be paid for by the potential.

A possibility: Φ(T) = 2× num[T]− size[T]

75 / 102

Φ(T) = 2× num[T]− size[T]: an example

Figure: The effect of a sequence of n TableInsert on sizei (red),
numi (green), and Φi (blue).

76 / 102

Correctness of Φ(T) = 2× num[T]− size[T]

Correctness: Initially Φ0 = 0, and it is easy to verify that
Φi ≥ Φ0 since the table is always at least half full.

The amortized cost Ĉi with respect to Φ is defined as:
Ĉi = Ci +Φ(Ti)−Φ(Ti−1).

Thus
∑n

i=1 Ĉi =
∑n

i=1 Ci +Φn −Φ0 is really an upper bound
of the actual cost

∑n
i=1 Ci.

77 / 102

Calculate Ĉi with respect to Φ

Case 1: the i-th insertion does not trigger an expansion

Then sizei = sizei−1. Here, numi denotes the number of
items after the i-th operations, sizei denotes the table size,
and Ti denotes the potential.

Ĉi = Ci +Φi − Φi−1

= 1 + (2numi − sizei)− (2numi−1 − sizei−1)

= 1 + 2

= 3

78 / 102

Calculate Ĉi with respect to Φ

Case 2: the i-th insertion triggers an expansion
Then sizei = 2× sizei−1.

Ĉi = Ci +Φi − Φi−1

= numi + (2numi − sizei)− (2numi−1 − sizei−1)

= numi + 2− (numi − 1)

= 3

79 / 102

Conclusion

Starting with an empty table, a sequence of n TableInsert
operations cost O(n) time in the worst case.

80 / 102

DynamicTable supporting TableInsert and TableDelete

81 / 102

TableDelete operation

To implement TableDelete operation, it is simple to
remove the specified item from the table, followed by a
Contraction operation when the load factor (denoted as

α(T) = num[T]
size[T]) is small, so that the wasted space is not

exorbitant.

Specifically, when the number of the items in the table drops
too low, we allocate a new, smaller space, copy the items from
the old table to the new one, and finally free the original table.

We would like the following two properties:
1 The load factor is bounded below by a constant;
2 The amortized cost of a table operation is bounded above by a

constant.

82 / 102

Trial 1: load factor α(T) never drops below 1/2

83 / 102

Trial 1: load factor α(T) never drops below 1/2

A natural strategy is:

To double the table size when inserting an item into a full
table;
To halve the table size when deletion causes α(T) < 1

2
.

The strategy guarantees that load factor α(T) never drops
below 1/2.

However, the amortized cost of an operation might be quite
large.

84 / 102

An example of large amortized cost

Consider a sequence of n = 16 operations:
The first 8 operations: I, I, I,....

The second 8 operations: I, D, D, I, I, D, D, I, I,...

Note:
After the 8-th I, we have num16 = size16 = 16.
The 9-th I leads to a table expansion;
The following two D lead to a table contraction;
The following two I lead to a table expansion, and so on.

85 / 102

An example of large amortized cost

The expansion/contraction takes O(n) time, and there are n
of them.

Thus the total cost of n operations are O(n2), and the
amortized cost of an operation is O(n).

86 / 102

Trial 2: load factor α(T) never drops below 1/4

87 / 102

Trial 1: load factor α(T) never drops below 1/2

Another strategy is:

To double the table size when inserting an item into a full
table;
To halve the table size when deletion causes α(T) < 1

4
.

The strategy guarantees that load factor α(T) never drops
below 1/4.

88 / 102

Amortized analysis

We start by defining a potential function Φ(T) that is 0
immediately after an expansion or contraction, and builds as
α(T) increases to 1 or decreases to 1

4 .

Φ(T) =

{
2× num[T]− size[T] if α(T) ≥ 1

2
1
2size[T]− num[T] if α(T) ≤ 1

2

Correctness: the potential is 0 for an empty table, and Φ(T)
never goes negative. Thus, the total amortized cost of a
sequence of n operations with respect to Φ is an upper bound
of the actual cost.

89 / 102

Amortized cost of TableInsert operation

90 / 102

Amortized cost of TableInsert

Case 1: αi−1 ≥
1
2 and no expansion

The amortized cost is:

Ĉi = Ci +Φi − Φi−1

= 1 + (2numi − sizei)− (2numi−1 − sizei−1)

= 1 + (2(numi−1 + 1)− sizei)− (2numi−1 − sizei)

= 3

91 / 102

Amortized cost of TableInsert

Case 2: αi−1 ≥
1
2 and an expansion was triggered

The amortized cost is:

Ĉi = Ci +Φi − Φi−1

= numi + (2numi − sizei)− (2numi−1 − sizei−1)

= numi−1 + 1 + (2(numi−1 + 1)− 2sizei−1)− (2numi−1 − siz

= 3 + numi−1 − sizei−1

= 3

92 / 102

Amortized cost of TableInsert

Case 3: αi−1 <
1
2 and αi <

1
2

The amortized cost is:

Ĉi = Ci +Φi − Φi−1

= 1 + (
1

2
sizei − numi)− (

1

2
sizei−1 − numi−1)

= 1 + (
1

2
sizei − numi)− (

1

2
sizei − (numi − 1))

= 0

93 / 102

Amortized cost of TableInsert I

Case 4: αi−1 <
1
2 but αi ≥

1
2

The amortized cost is:

Ĉi = Ci +Φi − Φi−1

= 1 + (2numi − sizei)− (
1

2
sizei−1 − numi−1)

= 1 + (2(numi−1 + 1)− sizei−1)− (
1

2
sizei−1 − numi−1)

= 3numi−1 −
3

2
sizei−1 + 3

= 3αi−1numi−1 −
3

2
sizei−1 + 3

<
3

2
sizei−1 −

3

2
sizei−1 + 3

= 3

94 / 102

Amortized cost of TableInsert II

95 / 102

Amortized cost of TableDelete operation

96 / 102

Amortized cost of TableDelete

Case 1: αi−1 <
1
2 and no contraction

The amortized cost is:

Ĉi = Ci +Φi − Φi−1

= 1 + (
1

2
sizei − numi)− (

1

2
sizei−1 − numi−1)

= 1 + (
1

2
sizei−1 − (numi−1 − 1)) − (

1

2
sizei−1 − numi−1)

= 2

97 / 102

Amortized cost of TableDelete

Case 2: αi−1 <
1
2 and a contraction was triggered

The amortized cost is:

Ĉi = Ci +Φi − Φi−1

= numi + 1 + (
1

2
sizei − numi)− (

1

2
sizei−1 − numi−1)

= numi−1 + (
1

4
sizei−1 − (numi−1 − 1))− (

1

2
sizei−1 − numi

= 1 + numi−1 −
1

4
sizei−1

= 1

98 / 102

Amortized cost of TableInsert

Case 3: αi−1 ≥
1
2 and αi ≥

1
2

The amortized cost is:

Ĉi = Ci +Φi − Φi−1

= 1 + (2numi − sizei)− (2numi−1 − sizei−1)

= 1 + (2(numi−1 + 1)− sizei−1)− (2numi−1 − sizei−1)

= 3

99 / 102

Amortized cost of TableInsert

Case 4: αi−1 ≥
1
2 and αi <

1
2

The amortized cost is:

Ĉi = Ci +Φi − Φi−1

= 1 + (
1

2
sizei − numi)− (2numi−1 − sizei−1)

= 1 + (
1

2
sizei−1 − (numi−1 − 1)) − (2numi−1 − sizei−1)

= 2 +
3

2
sizei−1 − 3numi−1

≤ 2

100 / 102

Conclusion

In summary, since the amortized cost of each operation is bounded
above by a constant, the actual cost of any sequence of n
TableInsert and TableDelete operations on a dynamic table
is O(n) if starting with an empty table.

101 / 102

More examples

We will talk about the following examples later:

Binomial heap and Fibonacci heap

Splay-tree

Union-Find

102 / 102

