CS711008Z Algorithm Design and Analysis Lecture 2. Analysis techniques ¹

Dongbo Bu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

 1 The slides are made based on Ch. 17 of Introduction to Algorithms, and Ch. 2 of Algorithm Design. Some slides are excerpted from Kevin Wayne's slides with permission. **K ロ ⊁ K 倒 ≯ K 差 ≯ K 差 ≯ … 差**

What is efficiency?

- **Definition 1:** An algorithm is efficient if, when implemented, it runs quickly on real input instances.
- **Questions:**
	- What is the platform?
	- Is the algorithm implemented well?
	- . What is a "real" instance?
	- How well, or badly, does the algorithm scale with the instance size?
	- Both $Alqo1$ and $Alqo2$ perform well for a small instance; however, on a larger instance, one algorithm may be still fast, while the other one are very slow;

• Definition 2: An algorithm is efficient if it achieves qualitatively better worst-case performance, at an analytical level, than brute-force search.

• Questions:

- Good: Algorithms better than brute-force search nearly always contains a valuable idea to make it work, and tell us the something about the intrinsic structure.
- Bad: "quantatively" requires the actual running time of algorithm; thus, we should derive the running time carefully.

3 / 102

K ロ X x 伊 X x 포 X x 포 X → D 포 → D Q Q Q

What is efficiency? cont'd

- **Definition 3:** An algorithm is efficient if it has a polynomial worst-case running time (known as Cobham-Edmonds thesis)
- **Justification:** It really works in practice.
	- In practice, the polynomial time algorithm that people develop almost always have low constant and low exponents;
	- Breaking the exponential barrier of brute-force usually means the exposition of problem structure.

• Exceptions:

- Some polynomial-time algorithms have a high constant or high exponents, thus unpractical.
- Some exponential-time algorithms work well in practice since the worst-case is rare.
- **1** Worst-case analysis: the largest possible time on a problem instance with size n :
- **2 Average-case analysis:** analyse average running time over all inputs with a known distribution;
- **3** Amortized analysis: worst case bound on a sequence of operations;

Note: Running time is usually measured in terms of elementary operations, say **comparison** in sort algorithm. Intuitively, an elementary operation takes 1 unit time, and the running time is measured using the number of elementary operations.

Average-case analysis

6 / 102

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 ①

- Objective: analyze average running time over a distribution of inputs
- **Example: QUICKSORT**
	- **1** Worst-case complexity: $O(n^2)$
	- 2 Average-case complexity: $O(n \log n)$ if input is uniformly random

7 / 102

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ - 결 - K 이익(여

Input: an array $A[1..n]$ of numbers

Output: sorted array

- QuickSort algorithm
	- 1: Pick an element, say the first element, from A . This element is called a pivot;
	- 2: Partition A into two sub-lists, one consisting of elements less than the pivot, and another one consisting of elements larger than the pivot;
	- 3: Recursively sort the sub-list of lesser elements and the sub-list of greater elements.

 \bullet The most balanced case: partitioning A into two sub-lists of size $\frac{n}{2}$.

 \bullet The most balanced case: partitioning A into two sub-lists of size $\frac{n}{2}$.

Time: $T(n) = O(n) + 2T(\frac{n}{2})$ $\frac{n}{2}$) = $O(n \log_2 n)$ \bullet The most unbalanced case: partitioning A into two sub-lists with size 1 and $n-1$.

11 / 102

 298

造

イロメ イ部メ イ君メ イ君メート

 \bullet The most unbalanced case: partitioning A into two sub-lists with size 1 and $n-1$.

12 / 102

 299

K ロ > K dp > K 경 > K 경 > X 경

 \bullet The most unbalanced case: partitioning A into two sub-lists with size 1 and $n-1$.

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ K) Q Q Q 13 / 102

Time:
$$
T(n) = O(n) + T(n-1) = O(n^2)
$$

メロトメ 御 トメ ミトメ ミトー 唐山 2990 14 / 102

Assumption: the input is a random permutation

• Objective: what is the average cost?

Average-case

- Note that $Pr(1 \text{ compared with } 7) = \frac{2}{7}$. Why?
- In general, we have $\Pr($ i compared with [j](#page-15-0) $) = \frac{2}{j-i+1}$ $) = \frac{2}{j-i+1}$ $) = \frac{2}{j-i+1}$ $) = \frac{2}{j-i+1}$

Consider every pair

$$
E(\#Comparison) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}
$$
(1)

$$
= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}
$$
(2)

$$
< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k}
$$
(3)

$$
\approx 2n \ln n
$$
(4)

$$
\approx 1.39n \log_2 n
$$
(5)

Note:

- Equation (2) comes from introducing an auxiliary variable $k = i - i$.
- • This means that, on average, QUICKSORT performs only about 39% worse than in its best case.

Amortized analysis

18 / 102

イロト (個) (量) (量) (量) 量 のQQ

- Motivation: given a **sequence** of operations, the vast majority of the operations are cheap, but some rare operations within the sequence might be expensive; thus a standard worst-case analysis might be overly pessimistic.
- Objective: to give a tighter bound for a **sequence** of operations.
- Basic idea: when the expensive operations are particularly rare, their costs can be "spread out" (amortized) to all operations. If the artificial amortized costs are still cheap, we will have a tighter bound of the whole sequence of operations.
- Example: serving coffee in a bar

Amortized analysis differs from average-case analysis in:

- Average-case analysis: **average over all input**, e.g., QuickSort algorithm performs well on "average" over all possible input even if it performs very badly on certain input.
- Amortized analysis: average over operations, e.g., TABLEINSERTION algorithm performs well on "average" over all operations even if some operations use a lot of time.

Stack with MULTIPOP operation

Problem: A Stack with $MULTIPOP$ operation

Input: an array $A[1..n]$, an integer K; A sequence of n operations:

```
1: for i = 1 to n do
```
2: if
$$
A[i] \ge A[i-1]
$$
 then

$$
3: \qquad \text{PUSH}(A[i]);
$$

4: else if
$$
A[i] \leq A[i-1] - K
$$
 then

5:
$$
MULTIPop(S, K);
$$

6: else

$$
7: \qquad \text{Pop}();
$$

8: end if

9: end for

 $MULTIPOP(S, K)$

- 1: while S is not empty and $k > 0$ do
- 2: $Pop(S);$
- 3: $k -$;
- 4: end while

Objective

For each operation assign an **amortized cost** C_i to bound the actual total cost.

In other words, we need to show that for **any sequence of** n $\textbf{operations},$ we have $T(n) = \sum_{i=1}^n C_i \leq \sum_{i=1}^n \widehat{C_i}.$ Here, C_i denotes the **actual cost** of step i . **K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶**

- In a sequence of operations, some operations may be cheap, but some operations may be expensive, say $MULTIPOP()$.
- Cursory analysis: $MULTIPOP()$ step may take $O(n)$ time; thus, $T(n) = \sum_{i=1}^{n} C_i \leq n^2$
- However, the worst operation does not occur often.
- **•** Therefore, the traditional worst-case **individual operation** analysis can give overly pessimistic bound.

Tighter analysis 1: aggregate technique

25 / 102

K ロ ▶ K @ ▶ K 할 > K 할 > (할) 19 Q Q

Tighter analysis 1: Aggregate technique

- Basic idea: all operations have the same AMORTIZED COST $\frac{1}{n} \sum_{i=1}^n \widehat{C_i}$
- Key observation: $\#Pop \leq \#Push$
- Thus, we have:

$$
T(n) = \sum_{i=1}^{n} C_i \tag{6}
$$

$$
= \#Push + \# Pop \tag{7}
$$

$$
\leq 2 \times \#Push \tag{8}
$$

$$
\leq 2n \tag{9}
$$

• On average, the $MultiPop(K)$ step takes only $O(1)$ time rather than $O(K)$ time.

Tighter analysis 2: accounting technique

27 / 102

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 ①

Tighter analysis 2: Accounting technique

- \bullet Basic idea: for each operation OP with actual cost C_{OP} , an amortized cost C_{OP} is assigned such that for **any sequence** of *n* operations, $T(n) = \sum_{i=1}^{n} C_i \le \sum_{i=1}^{n} \widehat{C_i}$.
- **Intuition:** If $\widehat{C_{op}} > C_{op}$, the overcharge will be stored as prepaid credit; the credit will be used later for the operations with $\widehat{C_{op}} < C_{op}.$ The requirement that $\sum_{i=1}^n C_i \leq \sum_{i=1}^n \widehat{C_i}$ is essentially **credit never goes negative.**
- Example:

• Credit: the number of items in the stack.

Tighter analysis 2: Accounting technique

Example:

- In summary, starting from an empty stack, **any** sequence of n_1 Push, n_2 Pop, and n_3 Multiplop operations takes at most $T(n) = \sum_{i=1}^n C_i \leq \sum_{i=1}^n \widehat{C_i} = 2n_1$. Here $n = n_1 + n_2 + n_3.$
- Note: when there are more than one type of operations, each type of operation might be assigned with different amortized cost.

Accounting method: "banker's view"

- Suppose you are renting a "coin-operation" machine, and are charged according to the number of operations.
- Two payment strategies:
	- **1** Pay actual cost for each operation: say pay \$1 for PUSH, \$1 for POP, and k for MULTIPOP (K) .
	- 2 Open an account, and pay "average" cost for each operation: say pay \$2 for PUSH, \$0 for POP, and \$0 for $MULTIPOP(K)$.
		- \bullet If "average" cost $>$ actual cost: the extra will be deposited as credit.
		- If "average" cost \lt actual cost: credit will be used to pay the actual cost.
- Constraint: $\sum_{i=1}^n C_i \leq \sum_{i=1}^n \widehat{C_i}$ for arbitrary n operations,
	- i.e. you have enough **credit** in your account.

Accounting method: Intuition cont'd

- **Credit: the number of items in the stack.**
- Constraint: $\sum_{i=1}^n C_i \leq \sum_{i=1}^n \widehat{C_i}$ for arbitrary n operations, i.e. you have enough **credit** in your account.

Tighter analysis 3: potential function technique

32 / 102

K ロ > K @ > K 할 > K 할 > 1 할 : K 9 Q Q*

Tighter analysis 3: Potential technique—"physicisit's view"

- \bullet Basic idea: sometimes it is not easy to set $\widehat{C_{\alpha p}}$ for each operation OP directly.
- Using potential function as a bridge, i.e. we assign a value to state rather than operation, and amortized costs are then calculated based on potential function.
- Potential function: $\Phi(S) : S \to R$. Here state S_i refers to the STATE of the stack after the i -th operation.
- Amortized cost setting: $\widehat{C_i} = C_i + \Phi(S_i) \Phi(S_{i-1}).$

=

• Thus,

$$
\sum_{i=1}^{n} \widehat{C}_i = \sum_{i=1}^{n} (C_i + \Phi(S_i) - \Phi(S_{i-1})) \tag{10}
$$

$$
\sum_{i=1}^{n} C_i + \Phi(S_n) - \Phi(S_0)
$$
 (11)

Requirement: To guarantee $\sum_{i=1}^n C_i \leq \sum_{i=1}^n \widehat{C_i}$, it suffices to assure $\Phi(S_n) \geq \Phi(S_0)$.

Stack example: Potential changes

- Definition: $\Phi(S)$ denotes the number of items in stack. In fact, we simply use "credit" as potential.
- Correctness: $\Phi(S_i) \geq 0 = \Phi(S_0)$ for any *i*;

Potential function technique: amortized cost setting

Definition: $\Phi(S)$ denotes the number of items in stack;

• Push: $\Phi(S_i) - \Phi(S_{i-1}) = 1$ $\widehat{C}_i = C_i + \Phi(S_i) - \Phi(S_{i-1})$ (12) $= 2$ (13)

• Pop:
$$
\Phi(S_i) - \Phi(S_{i-1}) = -1
$$

\n
$$
\widehat{C_i} = C_i + \Phi(S_i) - \Phi(S_{i-1})
$$
\n
$$
= 0
$$
\n(14)

- MULTIPOP: $\Phi(S_i) \Phi(S_{i-1}) = -\#Pop$ $\widehat{C}_i = C_i + \Phi(S_i) - \Phi(S_{i-1})$ (16) $= 0$ (17)
- • Thus, starting from an empty stack, any sequence of n_1 PUSH, n_2 POP, and n_3 MULTIPOP operations takes at most $T(n) = \sum_{i=1}^{n} C_i \le \sum_{i=1}^{n} \widehat{C_i} = 2n_1.$ $T(n) = \sum_{i=1}^{n} C_i \le \sum_{i=1}^{n} \widehat{C_i} = 2n_1.$ $T(n) = \sum_{i=1}^{n} C_i \le \sum_{i=1}^{n} \widehat{C_i} = 2n_1.$ $T(n) = \sum_{i=1}^{n} C_i \le \sum_{i=1}^{n} \widehat{C_i} = 2n_1.$ $T(n) = \sum_{i=1}^{n} C_i \le \sum_{i=1}^{n} \widehat{C_i} = 2n_1.$ $T(n) = \sum_{i=1}^{n} C_i \le \sum_{i=1}^{n} \widehat{C_i} = 2n_1.$ $T(n) = \sum_{i=1}^{n} C_i \le \sum_{i=1}^{n} \widehat{C_i} = 2n_1.$ $T(n) = \sum_{i=1}^{n} C_i \le \sum_{i=1}^{n} \widehat{C_i} = 2n_1.$ H[ere](#page-33-0) $n = n_1 + n_2 + n_3.$ $n = n_1 + n_2 + n_3.$

BINARYCOUNTER problem

BINARYCOUNTER problem: incrementing a binary counter

- A sequence of n operations:
	- 1: for $i = 1$ to n do
	- 2: $INCREMENT(A);$
	- 3: end for

 $INCREMENT(A)$

- 1: $i = 0$:
- 2: while $i \leq A.size()$ AND $A[i] == 1$ do
- 3: $A[i] = 0$;
- 4: $i + +$;
- 5: end while
- 6: if $i \leq A.size()$ then
- 7: $A[i] = 1$;
- 8: end if

Question: $T(n)$ <?

• Cursory analysis: $T(n) \leq kn$ since an increment step might change all k bits.

Tighter analysis 1: aggregate technique

39 / 102

K ロ ▶ K @ ▶ K 할 > K 할 > 시 할 → K 9 Q @

Tighter analysis 1: Aggregate technique

• Basic operations: $flip(1\rightarrow0)$, $flip(0\rightarrow1)$

$$
T(n) = \sum_{i=1}^{n} C_i
$$

= 1 + 2 + 1 + 3 + 1 + 2 + 1 + 4 + ...
= # flip_at_A0 + # flip_at_A1 + ... + # flip_at_Ak
= n + $\frac{n}{2}$ + $\frac{n}{4}$ + ...
 $\leq 2n$

40 / 102

K ロ X K @ X K 할 X K 할 X - 할 X YO Q @

• Amortized cost of each operation: $O(n)/n = O(1)$.

Tighter analysis 2: accounting technique

41 / 102

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 ①

Set amortized cost as follows:

Key observation: $\# flip(0 \rightarrow 1) \geq \# flip(1 \rightarrow 0)$

$$
T(n) = \sum_{i=1}^{n} C_i
$$
 (18)
= $\# flip(0 \to 1) + \# flip(1 \to 0)$ (19)
 $\leq 2 \# flip(0 \to 1)$ (20)
 $\leq 2n$ (21)

Tighter analysis 3: potential function technique

43 / 102

K ロ > K @ > K 할 > K 할 > 1 할 : K 9 Q Q*

Tighter analysis 3: Potential function technique

Definition: Set potential function as $\Phi(S) = \#1$ in counter

Counter	A[7]	A[6]				A[5] A[4] A[3] A[2] A[1]		A[0]	Cost	Total
Value										Cost
	O	0	$\bf{0}$	0	o	O	Ω	0		
	o	o	o	o	o	O	o			
		0	0	0		n				
	o	0	0	0	o	O				
	n	o	o	O	O		O	O		
		0	0	Ω			n			8
		0	0	Ω	n			n		10
		0	o	Ω						11
		O								15

Tighter analysis: Potential technique cont'd

- Definition: Set potential function as $\Phi(S) = \#1$ in counter;
- At step i , the number of flips C_i is:

$$
C_i = #flip_{0\to 1}^{(i)} + #flip_{1\to 0}^{(i)} = 1 + #flip_{1\to 0}^{(i)}
$$
 (why?)
\n
$$
\Phi(S_i) = \Phi(S_{i-1}) + 1 - #flip_{1\to 0}^{(i)}
$$

\n
$$
\widehat{C_i} = C_i + \Phi(S_i) - \Phi(S_{i-1})
$$

\n
$$
\leq 2
$$

• Thus we have

$$
T(n) = \sum_{i=1}^{n} C_i
$$

$$
\leq \sum_{i=1}^{n} \widehat{C_i}
$$

$$
\leq 2n
$$

• In other words, starting from $00...0$, a sequence of n INCREMENT operatio[n](#page-43-0)s takes at [m](#page-43-0)ost $2n$ [ti](#page-45-0)m[e.](#page-44-0) DynamicTable problem

Practical problem:

- Suppose you are asked to develop a C++ compiler.
- vector is one of a C++ class templates to hold a set of objects. It supports the following operations:
	- push back: to add a new object onto the tail;
	- pop back: to pop out the last object;
- Recall that vector uses a **contiguous memory area** to store objects.
- **•** Question: How to design an efficient **memory-allocation** strategy for vector?

DynamicTable problem

- In many applications, we do not know in advance how many objects will be stored in a table.
- Thus we have to allocate space for a table, only to find out later that it is not enough.
- Dynamic Expansion: When inserting a new item into a full table, the table must be reallocated with a larger size, and the objects in the original table must be copied into the new table.
- DYNAMIC CONTRACTION: Similarly, if many objects have been removed from a table, it is worthwhile to reallocate the table with a smaller size.
- We will show a **memory allocation strategy** such that the amortized cost of insertion and deletion is $O(1)$, even if the actual cost of an operation is large when it triggers an expansion or contraction.

DYNAMICTABLE supporting TABLEINSERTION operation only

49 / 102

 298

K ロ > K @ > K 할 > K 할 > (할 >

$TABLE \text{INSERT}(T, i)$

- 1: if $size[T] == 0$ then
- 2: allocate a table with 1 slot;
- 3: $size[T] = 1;$

4: end if

$$
\quad \ \ \, \text{5: if } num[T] == size[T] \ \ \text{then}
$$

6: allocate a new table with $2 \times size[T]$ slots; //**double size**

7:
$$
size[T] = 2 \times size[T];
$$

- 8: copy all items into the new table;
- 9: free the original table;

10: end if

11: insert the new item i into T ;

```
12: num[T] + +;
```


```
num[T]: #used slots
                                    <sub></sub> ライミト (ミト) ミックダウ
size[T]: total number of slots
                                                     50 / 102
```
Consider a sequence of operations starting with an empty table:

- 1: Table T ;
- 2: for $i = 1$ to n do
- 3: TABLE_INSERT $(T, i);$
- 4: end for

1. $Insert(1)$ $2.$ Insert (2)

 $C1: 1$

overflow

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 90 Q @ 52 / 102

$TABLEINSERT(2)$

 $2.$ Insert (2)

 $C1: 1$

(ロ)→(個)→(理)→(理)→ \equiv 990 53 / 102

$TABLEINSERT(2)$

(ロ) (個) (星) (星) \equiv 990 54 / 102

$TABLEINSER_T(3)$

- 1. Insert (1)
- $2.$ Insert (2)
- $3.$ Insert (3)

 $C1: 1$ $C2: 2$

overflow

TABLEINSERT(3)

- 1. Insert (1)
- $2.$ Insert (2)
- $3.$ Insert (3)

TABLEINSERT(3)

- $2.$ Insert (2)
- $3.$ Insert (3)

 $C1: 1$ $C2:2$

イロメ イ部メ イヨメ イヨメー

58 / 102

 \equiv 990

TABLEINSERT(3)

- 1. Insert (1)
- $2.$ Insert (2)
- $3.$ Insert (3)

 $C1:1$ $C2: 2$ $C3:3$

イロメ イ部メ イヨメ イヨメー

59 / 102

 \equiv 990

$TABLEINSENT(4)$

- 1. $Insert(1)$
- $2.$ Insert (2)
- $3.$ Insert (3)
- 4. Insert(4)

 $C1: 1$ $C2: 2$ $C3: 3$ $C4:1$

メロメ メ都 メメ きょくきょ

60 / 102

 $E = \Omega Q$

$TABLEINSERT(5)$

- $2.$ Insert (2)
- $3.$ Insert (3)
- 4. Insert(4)
- 5. Insert (5)

 $C1:1$ $C2: 2$ $C3: 3$ $C4:1$

overflow

$TABLEINSER_T(5)$

- 1. Insert (1)
- $2.$ Insert (2)
- $3.$ Insert (3)
- 4. Insert(4)
- $5.$ Insert (5)

$$
\begin{array}{c|c}\n1 \\
2 \\
3 \\
4\n\end{array}
$$

$$
\begin{array}{c}\n1 \\
1 \\
1 \\
1\n\end{array}
$$

 $C1: 1$ $C2: 2$ $C3: 3$ $C4:1$

メロメ メ都 メメ きょくきょ $E = \Omega Q$ 62 / 102

$TABLEINSERT(5)$

- 1. Insert (1)
- $2.$ Insert (2)
- $3.$ Insert (3)
- 4. Insert (4)
- $5.$ Insert (5)

 $C1:1$ $C2:2$ $C3: 3$ $C4:1$

イロト イ部 トイヨ トイヨト

63 / 102

 298

画

$TABLEINSERT(5)$

- 1. $Insert(1)$
- $2.$ Insert (2)
- $3.$ Insert (3)
- $4. Insert(4)$
- 5. Insert (5)

 $C1:1$ $C2: 2$ $C3: 3$ $C4: 1$ $C5:5$

メロメ メ都 メメ きょくきょ $E = \Omega Q$ 64 / 102

- Consider a sequence of operations starting with an empty table:
	- 1: Table T ;
	- 2: for $i = 1$ to n do
	- 3: TABLE_INSERT (T, i) ;
	- 4: end for
- What is the actual cost C_i of the *i*th operation? ² $C_i =$ $\int i$ if $i - 1$ is an exact power of 2 1 otherwise
- \bullet Here $C_i = i$ when the table is full, since we need to perform 1 insertion, and copy $i - 1$ items into the new table.
- \bullet If n operations are performed, the worst-case cost of an operation will be $O(n)$.
- \bullet Thus, the total running time for a total of n operations is $O(n^2)$. Not tight!

²Here the cost is measured in terms of elementar[y i](#page-63-0)n[se](#page-65-0)[rt](#page-63-0)[ion](#page-64-0)[s](#page-65-0) [or](#page-0-0) [de](#page-101-0)[leti](#page-0-0)[on](#page-101-0)[s.](#page-0-0) ϵ occ

Tighter analysis 1: Aggregate technique

66 / 102

 2990

K ロ > K @ > K 할 > K 할 > (할 >

Aggregate method: table expansions are rare

- The $O(n^2)$ bound is not tight since table expansion doesn't occur often in the course of n operations.
- \bullet Specifically, **table expansion** occurs at the *i*th operation, where $i - 1$ is an exact power of 2.

$$
C_i = \begin{cases} i & \text{if } i-1 \text{ is an exact power of 2} \\ 1 & \text{otherwise} \end{cases}
$$

Aggregate method: rewriting C_i

- The $O(n^2)$ bound is not tight since $\bm{\mathrm{table}}$ expansion doesn't occur often in the course of n operations.
- \bullet Specifically, **table expansion** occurs at the *i*th operation, where $i - 1$ is an exact power of 2. $C_i =$ $\int i$ if $i - 1$ is an exact power of 2 1 otherwise
- We decompose C_i as follows:

 \bullet The total cost of n operations is:

$$
\sum_{i=1}^{n} C_i = 1 + 2 + 3 + 1 + 5 + 1 + 1 + 1 + 9 + 1 + \dots
$$

= $n + \sum_{j=0}^{\lfloor \lg n \rfloor} 2^j$
 $\leq n + 2n$
= 3n

- Thus the amortized cost of an operation is 3.
- \bullet In other words, the average cost of each TABLEINSERT operation is $O(n)/n = O(1)$.

Tighter analysis 2: Accounting technique

70 / 102

 298

K ロ > K @ > K 할 > K 할 > (할 >

Tighter analysis 2: accounting technique

- For the *i*-th operation, an **amortized cost** $\widehat{C}_i = 3 is charged.
- This fee is consumed to perform subsequent operations.
- Any amount not immediately consumed is stored in a "bank" for use for subsequent operations.
- \bullet Thus for the *i*-th insertion, the \$3 is used as follows:
	- \$1 pays for the insertion **itself**;
	- \bullet \$2 is stored for **later table doubling**, including \$1 for copying one of the recent $\frac{i}{2}$ items, and $\$1$ for copying one of the old $\frac{i}{2}$ items.

71 / 102

K ロ ト K 個 ト K 差 ト K 差 ト … 差

Tighter analysis 2: accounting technique

- For the *i*-th operation, an **amortized cost** $\widehat{C}_i = \$3$ is charged.
- This fee is consumed to perform the operation.
- Any amount not immediately consumed is stored in a "bank" for use for subsequent operations.
- \bullet Thus for the *i*-th insertion, the \$3 is used as follows:
	- \$1 pays for the insertion *itself*:
	- \bullet \$2 is stored for **later table doubling**, including \$1 for copying one of the recent $\frac{i}{2}$ items, and $\$1$ for copying one of the old $\frac{i}{2}$ items.

イロメ イ部メ イヨメ イヨメー 72 / 102
Tighter analysis 2: accounting technique

Key observation: the credit never goes negative. In other words, the sum of amortized cost provides an upper bound of the sum of actual costs.

$$
T(n) = \sum_{i=1}^{n} C_i
$$

$$
\leq \sum_{i=1}^{n} \widehat{C_i}
$$

$$
= 3n
$$

Tighter analysis 3: Potential function technique

Tighter analysis 3: potential function technique

- Motivation: sometimes it is not easy to find an appropriate amortized cost **directly**. An alternative way is to use a potential function as a bridge.
- Basic idea: the **bank account** can be viewed as potential function of the dynamic set. More specifically, we prefer a potential function $\Phi: \{T\} \to R$ with the following properties:
	- $\Phi(T) = 0$ immediately after an expansion;
	- $\Phi(T) = size[T]$ immediately **before** an expansion; thus, the next expansion can be paid for by the potential.
- A possibility: $\Phi(T) = 2 \times num[T] size[T]$

$$
\emptyset = 2num[T] - size[T] = 4
$$

 $\Phi(T) = 2 \times num[T] - size[T]$: an example

Figure: The effect of a sequence of n TABLEINSERT on $size_i$ (red), num_i (green), and Φ_i (blue).

- Correctness: Initially $\Phi_0 = 0$, and it is easy to verify that $\Phi_i \geq \Phi_0$ since the table is always at least half full.
- The amortized cost \widehat{C}_i with respect to Φ is defined as: $C_i = C_i + \Phi(T_i) - \Phi(T_{i-1}).$
- Thus $\sum_{i=1}^n \widehat{C_i} = \sum_{i=1}^n C_i + \Phi_n \Phi_0$ is really an upper bound of the actual cost $\sum_{i=1}^{n} C_i$.

Calculate \widehat{C}_i with respect to Φ

- \bullet Case 1: the *i*-th insertion does not trigger an expansion
- Then $size_i = size_{i-1}$. Here, num_i denotes the number of items after the *i*-th operations, $size_i$ denotes the table size, and T_i denotes the potential.

$$
\begin{aligned}\n\widehat{C_i} &= C_i + \Phi_i - \Phi_{i-1} \\
&= 1 + (2num_i - size_i) - (2num_{i-1} - size_{i-1}) \\
&= 1 + 2 \\
&= 3\n\end{aligned}
$$

 $Insert(1)$ $1.$ $2. Insert(2)$ $\overline{\mathbf{c}}$ $3.$ Insert (3) 3 4. Insert(4)

$$
\begin{array}{cc}\n\text{C1:} & 1 \\
\text{C2:} & 2 \\
\text{C3:} & 3 \\
\text{C4:} & 1\n\end{array}
$$

Calculate \widehat{C}_i with respect to Φ

- \bullet Case 2: the *i*-th insertion triggers an expansion
- Then $size_i = 2 \times size_{i-1}$.

$$
\begin{array}{rcl}\n\widehat{C_i} & = & C_i + \Phi_i - \Phi_{i-1} \\
& = & num_i + (2num_i - size_i) - (2num_{i-1} - size_{i-1}) \\
& = & num_i + 2 - (num_i - 1) \\
& = & 3\n\end{array}
$$

1

 \overline{a}

 $\overline{3}$

 $\overline{4}$

5

- $Insert(1)$ $\mathbf{1}$.
- $2. Insert(2)$
- $3.$ Insert (3)
- 4. Insert (4)
- 5. Insert (5)

 \Rightarrow $\alpha \curvearrowright$ 79 / 102

Starting with an empty table, a sequence of n TABLEINSERT operations cost $O(n)$ time in the worst case.

DYNAMICTABLE supporting TABLEINSERT and TABLEDELETE

81 / 102

 2990

K ロ > K @ > K 할 > K 할 > (할 >

- To implement TABLEDELETE operation, it is simple to remove the specified item from the table, followed by a CONTRACTION operation when the **load factor** (denoted as $\alpha(T) = \frac{num[T]}{size[T]}$) is small, so that the wasted space is not exorbitant.
- Specifically, when the number of the items in the table drops too low, we allocate a new, smaller space, copy the items from the old table to the new one, and finally free the original table.
- We would like the following two properties:
	- **1** The load factor is bounded below by a constant;
	- 2 The amortized cost of a table operation is bounded above by a constant.

Trial 1: load factor $\alpha(T)$ never drops below $1/2$

83 / 102

K ロ → K 伊 → K 君 → K 君 → 「君 → の Q Q →

Trial 1: load factor $\alpha(T)$ never drops below $1/2$

- A natural strategy is:
	- To double the table size when inserting an item into a full table;
	- To halve the table size when deletion causes $\alpha(T) < \frac{1}{2}.$
- The strategy guarantees that load factor $\alpha(T)$ never drops below $1/2$.
- However, the amortized cost of an operation might be quite large.

An example of large amortized cost

- Consider a sequence of $n = 16$ operations:
	- \bullet The first 8 operations: I, I, I,....
	- \bullet The second 8 operations: I, D, D, I, I, D, D, I, I,...
- Note:
	- After the 8-th I, we have $num_{16} = size_{16} = 16$.
	- The 9-th I leads to a table expansion;
	- The following two D lead to a table contraction;
	- The following two I lead to a table expansion, and so on.

After 8 Insertions

Insert(9) causes an expansion

Delete(9) and Delete(8) causes a contraction

④ 重 ※ ④ 重 ※ ○ 重。 85 / 102

An example of large amortized cost

After 8 Insertions

Insert(9) causes an expansion

Delete(9) and Delete(8) causes a contraction

- The expansion/contraction takes $O(n)$ time, and there are n of them.
- Thus the total cost of n operations are $O(n^2)$, and the amortized cost of an operation is $O(n)$.

Trial 2: load factor $\alpha(T)$ never drops below $1/4$

87 / 102

K ロ → K 伊 → K 君 → K 君 → 「君 → の Q Q →

- Another strategy is:
	- To double the table size when inserting an item into a full table;
	- To halve the table size when deletion causes $\alpha(T) < \frac{1}{4}.$
- The strategy guarantees that load factor $\alpha(T)$ never drops below $1/4$.

• We start by defining a potential function $\Phi(T)$ that is 0 immediately after an expansion or contraction, and builds as $\alpha(T)$ increases to 1 or decreases to $\frac{1}{4}$.

$$
\Phi(T) = \begin{cases} 2 \times num[T] - size[T] & \text{if } \alpha(T) \ge \frac{1}{2} \\ \frac{1}{2} size[T] - num[T] & \text{if } \alpha(T) \le \frac{1}{2} \end{cases}
$$

• Correctness: the potential is 0 for an empty table, and $\Phi(T)$ never goes negative. Thus, the total amortized cost of a sequence of n operations with respect to Φ is an upper bound of the actual cost.

Amortized cost of TABLEINSERT operation

90 / 102

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 ①

- Case 1: $\alpha_{i-1} \geq \frac{1}{2}$ $\frac{1}{2}$ and no expansion
- The amortized cost is:

$$
\begin{aligned}\n\widehat{C_i} &= C_i + \Phi_i - \Phi_{i-1} \\
&= 1 + (2num_i - size_i) - (2num_{i-1} - size_{i-1}) \\
&= 1 + (2(num_{i-1} + 1) - size_i) - (2num_{i-1} - size_i) \\
&= 3\n\end{aligned}
$$

1. Insert (1) $2. Insert(2)$ $\overline{2}$ $3.$ Insert (3) $\overline{3}$ 4. Insert(4)

$$
\begin{array}{cc}\n\text{C1:} & 1 \\
\text{C2:} & 2 \\
\text{C3:} & 3 \\
\text{C4:} & 1\n\end{array}
$$

K ロンス 御 > ス ヨ > ス ヨ > ニ ヨ Ω 91 / 102

Case 2: $\alpha_{i-1} \geq \frac{1}{2}$ $\frac{1}{2}$ and an expansion was triggered • The amortized cost is:

$$
\begin{aligned}\n\widehat{C}_i &= C_i + \Phi_i - \Phi_{i-1} \\
&= num_i + (2num_i - size_i) - (2num_{i-1} - size_{i-1}) \\
&= num_{i-1} + 1 + (2(num_{i-1} + 1) - 2size_{i-1}) - (2num_{i-1} - i) \\
&= 3 + num_{i-1} - size_{i-1} \\
&= 3\n\end{aligned}
$$

1. Insert (1) $2. Insert(2)$ $3.$ Insert (3) 4. Insert (4)

$$
5. Insert(5)
$$

 $C1: 1$

 $C2: 2$

 $C3: 3$

 $C4:1$

 $C5:5$

$$
\rightarrow 4 \equiv \rightarrow \equiv \rightarrow \rightarrow \text{Q} \text{Q}
$$

92 / 102

- Case 3: $\alpha_{i-1} < \frac{1}{2}$ $\frac{1}{2}$ and $\alpha_i < \frac{1}{2}$ 2
- The amortized cost is:

$$
\begin{aligned}\n\widehat{C_i} &= C_i + \Phi_i - \Phi_{i-1} \\
&= 1 + \left(\frac{1}{2} \text{size}_i - \text{num}_i\right) - \left(\frac{1}{2} \text{size}_{i-1} - \text{num}_{i-1}\right) \\
&= 1 + \left(\frac{1}{2} \text{size}_i - \text{num}_i\right) - \left(\frac{1}{2} \text{size}_i - (\text{num}_i - 1)\right) \\
&= 0\n\end{aligned}
$$

 $num = 6$, size = 16, phi = 2

 $num = 7$, size=16, phi = 1

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 ① 93 / 102

- Case 4: $\alpha_{i-1} < \frac{1}{2}$ $\frac{1}{2}$ but $\alpha_i \geq \frac{1}{2}$ 2
- The amortized cost is:

$$
\begin{aligned}\n\widehat{C}_i &= C_i + \Phi_i - \Phi_{i-1} \\
&= 1 + (2num_i - size_i) - \left(\frac{1}{2}size_{i-1} - num_{i-1}\right) \\
&= 1 + (2(num_{i-1} + 1) - size_{i-1}) - \left(\frac{1}{2}size_{i-1} - num_{i-1}\right) \\
&= 3num_{i-1} - \frac{3}{2}size_{i-1} + 3 \\
&= 3\alpha_{i-1}num_{i-1} - \frac{3}{2}size_{i-1} + 3 \\
&< \frac{3}{2}size_{i-1} - \frac{3}{2}size_{i-1} + 3 \\
&= 3\n\end{aligned}
$$

94 / 102

K ロ ▶ K @ ▶ K 콜 ▶ K 콜 ▶ │ 콜 │ ◆ 9 Q ⊙

 $num = 8$, size = 16, phi = 0

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 90 Q @ 95 / 102

Amortized cost of TABLEDELETE operation

96 / 102

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 ①

Amortized cost of TABLEDELETE

- Case 1: $\alpha_{i-1} < \frac{1}{2}$ $\frac{1}{2}$ and no contraction
- **O** The amortized cost is:

$$
\begin{aligned}\n\widehat{C}_i &= C_i + \Phi_i - \Phi_{i-1} \\
&= 1 + \left(\frac{1}{2} \text{size}_i - \text{num}_i\right) - \left(\frac{1}{2} \text{size}_{i-1} - \text{num}_{i-1}\right) \\
&= 1 + \left(\frac{1}{2} \text{size}_{i-1} - (\text{num}_{i-1} - 1)\right) - \left(\frac{1}{2} \text{size}_{i-1} - \text{num}_{i-1}\right) \\
&= 2\n\end{aligned}
$$

 $num = 7$, size = 16, phi = 1

 \vert 3 $5|6|$ $\overline{7}$ $\overline{4}$

 $num = 6$, size = 16, phi = 2

Amortized cost of TABLEDELETE

Case 2: $\alpha_{i-1} < \frac{1}{2}$ $\frac{1}{2}$ and a contraction was triggered • The amortized cost is:

$$
\begin{aligned}\n\widehat{C_i} &= C_i + \Phi_i - \Phi_{i-1} \\
&= num_i + 1 + \left(\frac{1}{2}size_i - num_i\right) - \left(\frac{1}{2}size_{i-1} - num_{i-1}\right) \\
&= num_{i-1} + \left(\frac{1}{4}size_{i-1} - (num_{i-1} - 1)\right) - \left(\frac{1}{2}size_{i-1} - num_{i-1}\right) \\
&= 1 + num_{i-1} - \frac{1}{4}size_{i-1} \\
&= 1\n\end{aligned}
$$

 $num = 5$, size = 16, phi = 3 $2|3|4|$ 5

 $num = 4$, size = 8, phi = 0

▶ 4 로 ▶ 그로 사이의 이 98 / 102

• Case 3:
$$
\alpha_{i-1} \ge \frac{1}{2}
$$
 and $\alpha_i \ge \frac{1}{2}$

• The amortized cost is:

$$
\begin{aligned}\n\widehat{C}_i &= C_i + \Phi_i - \Phi_{i-1} \\
&= 1 + (2num_i - size_i) - (2num_{i-1} - size_{i-1}) \\
&= 1 + (2(num_{i-1} + 1) - size_{i-1}) - (2num_{i-1} - size_{i-1}) \\
&= 3\n\end{aligned}
$$

 $num = 9$, size = 16, phi = 2

• Case 4:
$$
\alpha_{i-1} \geq \frac{1}{2}
$$
 and $\alpha_i < \frac{1}{2}$

The amortized cost is:

$$
\begin{aligned}\n\widehat{C_i} &= C_i + \Phi_i - \Phi_{i-1} \\
&= 1 + \left(\frac{1}{2} \text{size}_i - \text{num}_i\right) - (2\text{num}_{i-1} - \text{size}_{i-1}) \\
&= 1 + \left(\frac{1}{2} \text{size}_{i-1} - (\text{num}_{i-1} - 1)\right) - (2\text{num}_{i-1} - \text{size}_{i-1}) \\
&= 2 + \frac{3}{2} \text{size}_{i-1} - 3\text{num}_{i-1} \\
&\leq 2\n\end{aligned}
$$

 $num = 8$, size = 16, phi = 0 $5¹$ 6 $\overline{2}$ $\overline{3}$ $\overline{4}$ $\overline{7}$ 8

 $num = 7$, size = 16, phi = 1

In summary, since the amortized cost of each operation is bounded above by a constant, the actual cost of any sequence of n TableInsert and TableDelete operations on a dynamic table is $O(n)$ if starting with an empty table.

We will talk about the following examples later:

- **•** Binomial heap and Fibonacci heap
- Splay-tree
- **•** Union-Find