CS612 Algorithm Design and Analysis Lecture 19. BI-CLUSTERING problem: random sampling and random rounding 1

Presented by Dongbo Bu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

 1 The slides are made based on Approximation algorithms for Bi-clustering problems by L. Wang, Y. Lin, and X. Liu. 不重 医不重 的 $2Q$

Pr[e](#page-0-0)sented by Dongbo Bu Institute of Co[m](#page-1-0)puting Te CS612 Algorithm Design and Anal[y](#page-2-0)sis

Outline I

- Introduction to BI-CLUSTERING problems;
- CONSENSUSSUBMATRIX problem: random sampling algo;
- BOTTLENECKSUBMATRIX problem: random rounding algo;

不重 下

 Ω

Background: What is DNA array?

DNA microarrays can be used to measure changes in expression levels of genes, to detect single nucleotide polymorphisms (SNPs) , to genotype or resequence mutant genomes.

- Row denotes a gene, and a column denotes a condition;
- Color: represent the expression levels of genes. Red: high, green: low.

つくい

General Bi-clustering Problem

- \bullet Input: a $n \times m$ matrix A.
- \bullet Output: a sub-matrix $A_{P,Q}$ of A such that the rows of $A_{P,Q}$ are similar. That is, all the rows are identical. Why sub-matrix?

A subset of genes are co-regulated and co-expressed under specific conditions. It is interesting to find the subsets of genes and conditions.

[Bi-clustering Problem](#page-2-0) [Our Problem Definition](#page-10-0) Approximation Algorithm for [General Bi-clustering Problem](#page-2-0) Similarity of Rows (1-5) Cheng and Churc

Similarity of Rows (1-5)

- ¹ All rows are identical
	- 1 1 2 3 2 3 3 2
	- 1 1 2 3 2 3 3 2
	- 1 1 2 3 2 3 3 2
- 2. All the elements in a row are identical
	- 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 (the same as 1 if we treat columns as rows)

重き メラメー

 \equiv 990

 Ω

Similarity of Rows (1-5)

• 3. The curves for all rows are similar (additive) $a_{i,j} - a_{i,k} = c(j,k)$ for $i = 1, 2, \ldots, m$. Case 3 is equivalent to case 2 (thus also case 1) if we construct a new matrix $a_{i,j}^* = a_{i,j} - a_{i,p}$ for a fixed p indicate a row.

A REAREA E MAG

Similarity of Rows (1-5)

4. The curves for all rows are similar (multiplicative)

 $a_{1,1}$ $a_{1,2}$ $a_{1,3}$ \dots $a_{1,m}$ $c_1a_{1,1}$ $c_1a_{1,2}$ $c_1a_{1,3}$... $c_1a_{1,m}$ $c_2a_{1,1}$ $c_2a_{1,2}$ $c_2a_{1,3}$... $c_2a_{1,m}$. . . $c_n a_{1,1}$ $c_n a_{1,2}$ $c_n a_{1,3}$ \dots $c_n a_{1,m}$

Transfer to case 2 (thus case 1) by taking log and subtraction. Case 3 and Case 4 are called bi-clusters with coherent values.

Brand Bra

 Ω

Similarity of Rows (1-5)

5. The curves for all rows are similar (multiplicative and additive)

$$
a_{i,j} = c_i a_{k,j} + d_i
$$

Transfer to case 2 (thus case 1) by subtraction of a fixed row (row i), taking log and subtraction of row i again. The basic model: All the rows in the sub-matrix are identical.

Cheng and Church's model

The model introduced a similarity score called the mean squared residue score H to measure the coherence of the rows and columns in the submatrix.

$$
H(P,Q) = \frac{1}{|P||Q|} \sum_{i \in P, j \in Q} (a_{i,j} - a_{i,Q} - a_{P,j} + a_{P,Q})^2
$$

where

$$
a_{i,Q} = \frac{1}{|Q|} \sum_{j \in Q} a_{i,j}, \quad a_{P,j} = \frac{1}{|P|} \sum_{i \in P} a_{i,j}, a_{P,Q} = \frac{1}{|P||Q|} \sum_{i \in P, j \in Q} a_{i,j}.
$$

If there is no error, $H(P, Q)=0$ for case 1, 2 and 3. A lot of heuristics (programs) have been produced.

Brand Brand

G.

J. Liu's statistical model

Consider a microarray dataset with N genes and P conditions (or samples), in which the expression value of the *i*th gene and *jth* condition is denoted as y_{ij} , $i = 1, 2, \cdot \cdot \cdot N$, *j* = 1, 2, $\bullet \bullet \bullet$, P. We assume that

$$
Y_{ij} = \sum_{k=1}^{K} \left(\left(\mu_k + \alpha_{ik} + \beta_{jk} + \epsilon_{ijk} \right) \delta_{ik} \kappa_{jk} \right) + e_{ij} \left(1 - \sum_{k=1}^{K} \delta_{ik} \kappa_{jk} \right),
$$

where K is the total number of clusters (unknown), μ_{b} is the main effect of cluster k, and α_{ik} and β_{ik} are the effects of gene *i* and condition *j*, respectively, in cluster k , ε_{ijk} is the noise term for cluster k , and e_{ij} models the data points that do not belong to any cluster. Here δ_{ik} and κ_{ik} are

k ∃ k k ∃ k li

つのへ

Consensus Sub-matrix Problem

- Input: a $n \times m$ matrix A, integers l and k.
- \bullet Output: a sub-matrix $A_{P,Q}$ of A with l rows and k columns and a consensus row z (of k elements) such that

 $\sum_{r_i\in P}d(r_i|^{Q},z)$ is minimized.

Here $d($, $)$ is the Hamming distance.

Qopt

÷.

Bottleneck Sub-matrix Problem

- Input: a $n \times m$ matrix A, integers l and k.
- Output: a sub-matrix $A_{P,Q}$ of A with l rows and k columns and a consensus row z (of k elements) such that for any r_i in P

法国家法院 医心理

 200

 $d(r_i|^{Q}, z) \leq d$ and d is minimized

Here $d($, $)$ is the Hamming distance.

NP-Hardness Results

• Theorem 1: Both consensus sub-matrix and bottleneck sub-matrix problems are NP-hard.

Proof: We use a reduction from maximum edge bipartite problem.

重き メラメー

 \equiv Ω

医氯化氢 医心室

 Ω

Approximation Algorithm for Consensus Sub-matrix Problem

- Input: a $n \times m$ matrix A, integers l and k.
- Output: a sub-matrix $A_{P,Q}$ of A with l rows and k columns and a consensus row z (of k elements) such that

 $\sum_{r_i\in P}d(r_i|^{Q},z)$ is minimized.

Here $d($, $)$ is the Hamming distance.

Trial: brute-force

A brute-force method:

- \bullet By enumerating all size k subset of columns, and all length k vector, we could know Q_{opt} and z at some moment;
- \bullet Then we can find P_{opt} in poly-time to minimize the consensus score.

不重 下

∍

 Ω

However, the first step will take $\binom{n}{k} \times 2^k$ time.

Our method

- Basic idea: instead of the whole Q_{out} and z_{out} , knowing a small part is enough. In other words, the whole Q_{opt} can be approximated based on the small part.
- Key questions:
	- **4** What is the size of the small part?
	- **2** How to approximate the whole Q_{opt} based on the small part?

不重 下

 Ω

3 How to obtain such a small part?

Algorithm 1 for The Consensus Submatrix Problem Basic Ideas:

- We use a random sampling technique to randomly select $O(logm)$ columns in Q_{opt} , enumerate all possible vectors of length $O(logm)$ for those columns.
- At some moment, we know $O(logm)$ bits of r_{opt} and we can use the partial z_{opt} to select the l rows which are closest to z_{opt} in those $O(logm)$ bits.
- \bullet After that we can construct a consensus vector r as follows: for each column, choose the (majority) letter that appears the most in each of the l letters in the l selected rows.
- \bullet Then for each of the n columns, we can calculate the number of mismatches between the majority letter and the l letters in the l selected rows. By selecting the best k columns, we can get a good solution.

医心室 医心室 医心室

Input: one $m \times n$ matrix A, integers l and k, and $\epsilon > 0$ **Output:** a size l subset P of rows, a size k subset Q of columns and a length k consensus vector z **Step 1:** randomly select a set B of $\lceil (c+1)(\frac{4\log m}{\epsilon^2} + 1) \rceil$ columns from A. (1.1) for every size $\lceil \frac{4\log m}{\epsilon^2} \rceil$ subset R of B do (1.2) for every $z|^R \in \Sigma^{|R|}$ do (a) Select the best l rows $P = \{p_1, ..., p_l\}$ that minimize $d(z|^R, x_i|^R)$. (b) for each column i do Compute $f(j) = \sum_{i=1}^{l} d(s_j, a_{p_i,j})$, where s_j is the majority element of the l rows in P in column j. Select the best k columns $Q = \{q_1, ..., q_k\}$ with minimum value $f(j)$ and let $z(Q) = s_{q_1} s_{q_2} \dots s_{q_k}$. (c) Calculate $H = \sum_{i=1}^{l} d(x_{p_i}|^{Q}, z)$ of this solution. **Step 2:** Output P , Q and z with minimum H .

4 F + F + + F + + F + + O 4 O

Qopt $R₁$ $R₂$ $R³$ 110000011100000000001111000111100 011110011110001111001111001111 100111100011110011110011111001 11100001110001011110001111100111110 011111111100111100111111001111100 111100011110011111001111001111 100111100111110011110011111001 111001111000111100111110011110 011110001111001111001111100111

Step 1: randomly sampling $(1+c)$ logm columns, and enumerating all log(m) columns, we will know log(m) bits of Qopt with high prob. Denote these bits as R.

in it ⊞in k

 Ω

Popt

Step 2: enumerating all possible z|R to know z opt|R. We can esitmate $d(a \t|Q, z|Q)$ from $d(a \t|R, z|R)$. Choose the best I rows.

 Ω

Pr[e](#page-14-0)sented by Dongbo Bu Institute of Co[m](#page-26-0)puting Te CS612 Algorithm Design and Anal[y](#page-27-0)sis

Step 3: Considering the selected rows P. For each column, caculating the majority, and use the majority as z, select the best k columns.

 \leftarrow \Box

4 ଲ ⊧

 $\mathcal{A} \ \overline{\mathcal{B}} \ \rightarrow \ \ \mathcal{A} \ \overline{\mathcal{B}} \ \rightarrow$

 $2Q$

э

 0.11

Question 1,2: what size of "small part" is enough? how to approximate? I

Lemma 2: Randomly sample (with replaccement) of $R \subseteq Q_{opt}$, where $|R| = \lceil \frac{4\log m}{\epsilon^2} \rceil$ and. Let $\rho = \frac{k}{|R|}$. With probability at most m^{-1} , there is a row a_i satisfying

$$
\frac{d(z_{opt}, a_i |^{Q_{opt}}) - \epsilon k}{\rho} > d(z_{opt} |^{R}, a_i |^{R}).
$$

With probability at most $m^{-\frac{1}{3}}$, there is a row a_i satisfying

$$
d(z_{opt}|^R, a_i|^R) > \frac{d(z_{opt}, a_i|^{Q_{opt}}) + \epsilon k}{\rho}.
$$

ka ka a a shekar

 Ω

Intuition: randomly sample a small subset of Q_{opt} is enough!

Proof:

• Define index variables $x_j = 1$ if j was selected into R, and 0 otherwise.

•
$$
E(d(z_{opt}|R, a_i|R)) = \sum_{j=1}^{k} E(x_j) \times d_j = \frac{|R|}{k} d(z_{opt}, a_i|^{Q_{opt}}).
$$

 $\mathbb{B} \rightarrow \mathbb{R} \oplus \mathbb{R}$

 $4.17 \times$

 $2Q$

э

For any row a_i ,

$$
\Pr\left(\frac{d(z_{opt}, a_i |^{Q_{opt}}) - \epsilon k}{\rho} > d(z_{opt} |^{R}, a_i |^{R})\right)
$$

\n
$$
\leq \exp(-\frac{1}{2}|R|\epsilon^2)(\text{by Chernoff bound})
$$

\n
$$
= m^{-2} \quad (\text{set } |R| = \frac{4 \log m}{\epsilon^2})
$$

イロメ イ部メ イ君メ イ君メー

 -28 目

Lemma 3: When $R\subseteq Q_{opt}$ and $z|^R=z_{opt}|^R$, with probability at most $2m^{-\frac{1}{3}}$, the set of rows $P=\{p_1,\ldots,p_l\}$ selected in Step 1 (a) of Algorithm 1 satisfies $\sum_{i=1}^l d(z_{opt},x_{p_i}|^{Q_{opt}}) > H_{opt} + 2\epsilon kl.$ Intuition: R can be used to approximate Q_{out} . Proof:

• With probability at most m^{-1} . With probability at most m^{-1} , $\sum_{i=1} Id(z_{opt},a_i|Q_{opt}) - \epsilon kl \geq \rho \sum_{i=1} ld(z_{opt}|R,a_i|R).$

With probability at most $m^{-\tfrac{1}{3}}$,

$$
H_{opt} = \sum_{i=1} l d(z_{opt}, a_i | Q_{opt})
$$

$$
\leq \rho \sum_{i=1} l d(z_{opt} | R, a_i | R) - \epsilon k l
$$

化重复 化重复比

 Ω

• Thus the lemma follows by the two facts.

Question 3: how to obtain such a "small part"? I

- Difficulty: How to randomly select $O(logm)$ columns in Q_{opt} while Q_{opt} is unknown?
- Our idea: to randomly select a LARGER subset B of $(c + 1)$ logm columns, and enumerate all size logm subsets of B in poly-time $O(m^{c+1})$.
- Lemma 1: With probability at most $m^{-\frac{2}{\epsilon^2 c^2 (c+1)}}$, no subset R of size $\lceil \frac{4 \log m}{\epsilon^2} \rceil$ used in Step 1 of Algorithm 1 satisfies $R \subseteq Q_{opt}.$
- Intuition: With high probability, we can get a set of logm columns randomly selected from Q_{opt} .

AD YEAR EN EL YOU

医头尾医头 医

 Ω

Question 3: how to obtain such a "small part"? II

Proof:

- Define index variables $x_j = 1$ if the j-th trial hits a column in Q_{opt} , and 0 otherwise. Define $X = x_1 + x_2 + ... + x_t$, where $t = (c+1)(\frac{4\log m}{\epsilon^2} + 1).$
- $E(X) = t \times k/n = ct$ (assume $k = \Omega(n) = \frac{n}{c}$.)
- $Pr(X \leq \frac{4log(m)}{\epsilon^2})$ $\frac{g(m)}{\epsilon^2}$) $\leq exp(-\frac{1}{2}tc^2)$.

Analysis I

- Theorem 2: For any $\delta > 0$, with probability at least $1 - m^{-\frac{8c'^2}{\delta^2c^2(c+1)}} - 2m^{-\frac{1}{3}}$, Algorithm 1 will output a solution with consensus score at most $(1+\delta)H_{opt}$ in $O(nm^{O(\frac{1}{\delta^2})})$ time.
- **•** Time-complexity:
	- 1.1 is repeated $O(2^{\frac{4(c+1)\log m}{\epsilon^2}})=O(m^{O(\frac{1}{\epsilon^2})})=O(m^{O(\frac{1}{\delta^2})}).$ 2 Step 1.2 is repeated $O(m^{O(\frac{\log |\Sigma|}{\epsilon^2})}) = O(m^{O(\frac{1}{\delta^2})}).$ **3** Total time: $O(nm^{O(\tfrac{1}{\delta^2})}).$

- 4 重 8 4 重 8 1 重

医氯化氢 医心室

 Ω

Approximation Algorithm for Bottleneck Sub-matrix Problem

- Input: a $n \times m$ matrix A, integers l and k.
- Output: a sub-matrix $A_{P,Q}$ of A with l rows and k columns and a consensus row z (of k elements) such that for any r_i in P

 $d(r_i|^{Q}, z) \leq d$ and d is minimized

Here $d($, $)$ is the Hamming distance.

Basic Ideas

- Assumptions: $d_{opt} = MAX_{p_i \in P_{opt}} d(x_{p_i} | ^{Q_{opt}}, z_{opt}) = O(k)$, $d_{opt} \times c'' = k$ and $|Q_{opt}| = k = O(n)$, $k \times c = n$.
- Basic Ideas:

(1) Use random sampling technique to know $O(logm)$ bits of z_{out} and select l best rows like Algorithm 1.

(2) After knowing the l rows, "LP+RR" technique is employed to select k columns in the matrix.

k ∃ x k ∃ x l

G.

→ 唐 × → 唐 × 。

э.

 200

• Linear programming

Given a set of rows $P = \{p_1, \ldots, p_l\}$, we want to find a set of k columns Q and vector z such that bottleneck score is minimized.

$$
\min d; \n\sum_{i=1}^{n} \sum_{j=1}^{|\Sigma|} y_{i,j} = k, \n\sum_{j=1}^{|\Sigma|} y_{i,j} \le 1, i = 1, 2, ..., n, \n\sum_{i=1}^{n} \sum_{j=1}^{|\Sigma|} \chi(\pi_j, x_{p_s,i}) y_{i,j} \le d, s = 1, 2, ..., l.
$$

 $y_{i,j} = 1$ if and only if column i is in Q and the corresponding bit in z is π_j . Here, for any $a, b \in \Sigma$, $\chi(a, b) = 0$ if $a = b$ and $\chi(a, b) = 1$ if $a \neq b$.

 \rightarrow \equiv \rightarrow

 Ω

• Randomized rounding

To achieve two goals:

(1) Select k' columns, where $k'\geq k-\delta d_{opt}.$

(2) Get integers values for $y_{i,j}$ such that the distance (restricted on

the k^\prime selected columns) between any row in P and the center vector thus obtained is at most $(1 + \gamma)d_{opt}$.

Here $\delta > 0$ and $\gamma > 0$ are two parameters used to control the errors.

何 ▶ (三) (三) → 三

 Ω

Lemma 4: When $\frac{n\gamma^2}{3(cc'')^2} \geq 2\log m$, for any $\gamma, \delta > 0$, with probability at most $exp(-\frac{n\delta^2}{2(cc'')^2}) + m^{-1}$, the rounding result $y'=\{y'_{1,1},\ldots,y'_{1,|\Sigma|},\ldots,y'_{n,1},\ldots,y'_{n,|\Sigma|}\}$ does not satisfy at least one of the following inequalities,

$$
\sum_{i=1}^n (\sum_{j=1}^{|\Sigma|} y'_{i,j}) > k - \delta d_{opt},
$$

and for every row $x_{p_s}(s=1,2,\ldots,l)$,

$$
\sum_{i=1}^n(\sum_{j=1}^{|\Sigma|}\chi(\pi_j,x_{p_s,i})y_{i,j}')<\overline{d}+\gamma d_{opt}.
$$

• Intuition: random rounding can generate a good approximation, i.e., $k'\geq k-\delta d_{opt}$ columns along with an objective value $d \leq d_{\text{out}} + rd_{\text{out}}$

メロトメ 御 トメ 差 トメ 差 トッ

 \equiv 990

Proof

• Denote
$$
Y = \sum_{i=1}^n (\sum_{j=1}^{|\Sigma|} y'_{i,j})
$$
. We have $E(Y) = k$.

$$
\Pr(Y \ge k - \delta d_{opt})
$$
\n
$$
\le \exp(-\frac{1}{2}n(\frac{\delta d_{opt}}{n})^2)
$$
\n
$$
\le \exp(-\frac{1}{2}n(\frac{\delta}{cc''})^2) \quad \text{(assume } d_{opt} = \Omega(k) = \frac{k}{c''} = \frac{n}{cc''})
$$

KOD KAP KID KID DI ARA

Algorithm 2 for The bottleneck Sub-matrix Problem Input: one matrix $A \in \Sigma^{m \times n}$, integer l, k, a row $z \in \Sigma^n$ and small numbers $\epsilon > 0$, $\gamma > 0$ and $\delta > 0$. **Output:** a size l subset P of rows, a size k subset Q of columns and a length k consensus vector z. if $\frac{n\gamma^2}{3(cc'')^2} \le 2\log m$ then try all size k subset Q of the n columns and all z of length k to solve the problem. if $\frac{n\gamma^2}{3(cc'')^2} > 2\log m$ then **Step 1:** randomly select a set B of $\lceil \frac{4(c+1)\log m}{\epsilon^2} \rceil$ columns from A. for every $\lceil \frac{4 \log m}{\epsilon^2} \rceil$ size subset R of B do for every $z|^R \in \Sigma^{|R|}$ do (a) Select the best l rows $P = \{p_1, ..., p_l\}$ that minimize $d(z|^R, x_i|^R)$. (b)Solve the optimization problem by linear programming and randomized rounding to get Q and z .

Step 2: Output P,Q and z with minimum bottleneck score d .

Proofs

- Lemma 5: When $R\subseteq Q_{opt}$ and $z|^R=z_{opt}|^R$, with probability at most $2m^{-\frac{1}{3}}$, the set of rows $P=\{p_1,\ldots,p_l\}$ obtained in Step 1(a) of Algorithm 2 satisfies $d(z_{opt},x_{p_i}|^{Q_{opt}}) > d_{opt} + 2\epsilon k$ for some row $x_{p_i} (1 \leq i \leq l).$
- Theorem 3: With probability at least $1 - m^{-\frac{2}{\epsilon^2 c^2 (c+1)}} - 2 m^{-\frac{1}{3}} - exp(- \frac{n \delta^2}{2 (c c'')^2}) - m^{-1}$, Algorithm 2 runs in time $O(n^{O(1)} m^{O(\frac{1}{\epsilon^2} + \frac{1}{\gamma^2})})$ and obtains a solution with bottleneck score at most $(1+2c''\epsilon+\gamma+\delta)d_{opt}$ for any fixed $\epsilon, \gamma, \delta > 0$.

化重压 化重压 计重

Thanks

• Acknowledgements

This work is fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China [Project No. CityU 1070/02E].

This work is collaborated with Dr. Lusheng Wang and Xiaowen Liu in City University of Hong Kong, Hong Kong, China.

重 κ κ 重 κ π

∍

→ イラン イヨン イヨン

 \equiv 990

Let X_1, X_2, \ldots, X_n be n independent random 0-1 variables, where X_i takes 1 with probability p_i , $0 < p_i < 1$. Let $X = \sum_{i=1}^n X_i$, and $\mu = E[X]$. Then for any $0 < \epsilon \leq 1$,

$$
\begin{array}{lcl}\n\mathbf{Pr}(X > \mu + \epsilon n) < & e^{-\frac{1}{3}n\epsilon^2}, \\
\mathbf{Pr}(X < \mu - \epsilon n) & \leq & e^{-\frac{1}{2}n\epsilon^2}.\n\end{array}
$$

Pr[e](#page-35-0)se[n](#page-36-0)ted by Dongbo Bu **Institute [o](#page-26-0)[f](#page-27-0) Computing Te** CS612 Algorithm Design and Analysis