CS612 Algorithm Design and Analysis

Lecture 19. B1-CLUSTERING problem: random sampling and random
rounding !

Presented by Dongbo Bu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

IThe slides are made based on Approximation algorithms for Bi-clustering problems
by L. Wang, Y. Lin, and X. Liu.
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Outline |

@ Introduction to BI-CLUSTERING problems;
@ CONSENSUSSUBMATRIX problem: random sampling algo;
@ BOTTLENECKSUBMATRIX problem: random rounding algo;
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Background: What is DNA array?

DNA microarrays can be used to measure changes in expression levels of
genes, to detect single nucleotide polymorphisms (SNPs) , to genotype or
resequence mutant genomes.
@ Row denotes a gene, and a column denotes a condition;
@ Color: represent the expression levels of genes. Red: high, green:
low.
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General Bi-cluster

General Bi-clustering Problem

@ Input: a n X m matrix A.

@ Output: a sub-matrix Ap g of A such that the rows of Ap g are
similar. That is, all the rows are identical.
Why sub-matrix?
A subset of genes are co-regulated and co-expressed under specific
conditions. It is interesting to find the subsets of genes and
conditions.
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Similarity of Rows (1-5)

@ 1. All rows are identical
11232332
11232332
11232332

@ 2. All the elements in a row are identical
11111111
22222222
595555555
(the same as 1 if we treat columns as rows)
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Similarity of Rows (1-5)

@ 3. The curves for all rows are similar (additive) a; ; — a;r = c(j, k)
for i =1,2,...,m. Case 3 is equivalent to case 2 (thus also case 1)
if we construct a new matrix a; ; = a;; — a; p for a fixed p indicate
a row.

%Y
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Similarity of Rows (1-

@ 4. The curves for all rows are similar (multiplicative)

1,1 1,2 1.3 cee a1,m
cia1,1 Ciai2 €1a1,3 ... Ci1Q1m
C2a1,1 C2a12 C2a1,3 ... C201,m
Cp@1,1 CpQ12 Cnpa1,3 e CnQ1,m

Transfer to case 2 (thus case 1) by taking log and subtraction.
Case 3 and Case 4 are called bi-clusters with coherent values.
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Similarity of Rows (1-5)

@ 5. The curves for all rows are similar (multiplicative and additive)
Qq,5 = CiQf,j + dl
Transfer to case 2 (thus case 1) by subtraction of a fixed row (row

i), taking log and subtraction of row i again.
The basic model: All the rows in the sub-matrix are identical.
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Cheng and Church’s model

The model introduced a similarity score called the mean squared residue
score H to measure the coherence of the rows and columns in the
submatrix.

1
H(P,Q) = > (aij—aiq—ap;+apg)’

IPlal, 2=,
where
1 1
ta= 5 N apy= Y aang= o Y a
a2 R IPlQl 4=,

If there is no error, H(P, Q)=0 for case 1, 2 and 3. A lot of heuristics
(programs) have been produced.
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J. Liu's statistical model

Consider a microarray dataset with N genes and P condi-
tions (or samples), in which the expression value of the i
gene and ji" condition is denoted as y;, i=1,2,0%e N, j
=1,2 e P Weassume that

K K
Vij = 2 (g gy + B o€ W0k o) + (1= 2 0y )
where K is the total number of clusters (unknown), p, is
the main effect of cluster k, and a;;, and p;, are the effects
of gene i and condition j, respectively, in cluster k, &, is
the noise term for cluster k, and ¢; models the data points

that do not belong to any cluster. Here 5, and «;, are
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Consensus Sub-matrix Problem

@ Input: a n X m matrix A, integers [ and k.
@ Output: a sub-matrix Ap g of A with [ rows and k& columns and a
consensus row z (of k elements) such that

dorcp d(r;|%, 2) is minimized.

Here d( , ) is the Hamming distance.

Qopt

v oV VvV v \

Pl > 1100011Aoo@1fthooo11100111100
011110011110001111001111001111
100111100011110011110011111001

Popt P2 > 1110011 1@1001@110001111/do11110
p3 » 011111110bomhAoo1h110d111100
111100011110011111001111001111

p4 - 10011110011hoo11A1001A111001
111001111000111100111110011110
011110001111001111001111100111

— 0
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Bottleneck Sub-matrix Problem

@ Input: a n X m matrix A, integers [ and k.

@ Output: a sub-matrix Ap g of A with [ rows and k& columns and a
consensus row z (of k elements) such that for any r; in P

d(r;|?, 2) < d and d is minimized

Here d( , ) is the Hamming distance.
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NP-Hardness Results

@ Theorem 1: Both consensus sub-matrix and bottleneck sub-matrix
problems are NP-hard.

Proof: We use a reduction from maximum edge bipartite problem.
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Approximation Algorithm for Consensus Sub-matrix

Problem

@ Input: a n x m matrix A, integers [ and k.

@ Output: a sub-matrix Ap g of A with [ rows and k& columns and a
consensus row z (of k elements) such that

Y rep d(r;|?, z) is minimized.

Here d( , ) is the Hamming distance.
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Trial: brute-force

A brute-force method:
@ By enumerating all size k subset of columns, and all length & vector,
we could know @,p: and z at some moment;
@ Then we can find P, in poly-time to minimize the consensus score.

@ However, the first step will take (7)) x 2* time.
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Our method

@ Basic idea: instead of the whole Qopt and z,p:, knowing a small part
is enough. In other words, the whole ),,+ can be approximated
based on the small part.

9 Key questions:

@ What is the size of the small part?
© How to approximate the whole Qo,p: based on the small part?
© How to obtain such a small part?
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Algorithm 1 for The Consensus Submatrix Problem
Basic ldeas:

@ We use a random sampling technique to randomly select O(logm)
columns in Qopt, enumerate all possible vectors of length O(logm)
for those columns.

@ At some moment, we know O(logm) bits of r,,, and we can use the
partial zop to select the | rows which are closest to z,y; in those
O(logm) bits.

@ After that we can construct a consensus vector r as follows: for each
column, choose the (majority) letter that appears the most in each
of the [ letters in the [ selected rows.

@ Then for each of the n columns, we can calculate the number of
mismatches between the majority letter and the [ letters in the [
selected rows. By selecting the best k columns, we can get a good
solution.
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Input: one m X n matrix A, integers [ and k, and € > 0

Output: a size | subset P of rows, a size k subset Q of columns and a length &
consensus vector z

Step 1: randomly select a set B of [(c + 1)(412’# + 1)] columns from A.

(1.1) for every size (41‘:#] subset R of B do

(1.2) for every z|F € 2IEl do

(a) Select the best [ rows P = {p1,...,p;} that minimize d(z|??, z;|?).

(b) for each column j do

Compute f(j) = Zi-:l d(sj,ap,, ;), where s; is the majority element of the I rows in
P in column j. Select the best k columns @ = {qu, ..., g5} with minimum value f(j5)
and let 2(Q) = Sq;Sqo - - - Sqp, -

(c) Calculate H = Zé:l d(zp,;|?, 2) of this solution.

Step 2: Output P, @Q and z with minimum H.

Presented by Dongbo Bu nstitute o Omputlng €  CS612 Algorithm Design and Analysis



Popt

Presented by Dongbo Bu

Approximation Algorithm fi Basic Ideas

Qopt

R1 R2 R3

\ 22 / v v \
11000@11joo@1thooo11100111100
011110011110001111001111001111
100111100011110011110011111001
111001110k 01t 100m11110011110
01111111fjoohAhoo111100111100
111100011110011111001111001111
100111100011Mh1oo111001L111001
111001111000111100111110011110
011110001111001111001111100111

Step 1: randomly sampling (1+c)logm columns,
and enumerating all log(m) columns,
we will know log(m) bits of Qopt with high prob.
Denote these bits as R.
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Qopt

R1 R2 R3
\ 2N 28R/ v v v
> 11000111jooa1thooo11100111100
011110011110001111001111001111
100111100011110011110011111001
> 11100111110011100@1111/do11110
> o011111110oofh100111100111100
111100011110011111001111001111
> 10011110011hoo11A10011111001
111001111000111100111110011110
011110001111001111001111100111

z= 1 1 1

Popt

Step 2: enumerating all possible z|R to
know z_opt|R. We can esitmate
d(a_i|Q, z|Q) from d(a_i|R, z|R).
Choose the best | rows.
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Approximation Algorithm fi Basic Ideas

Qopt
RI R2 R3

oW WY Y v oY v

> 110001111001 thooo11100111100

011110011110001111001111001111
100111100011110011110011111001
11100111110010110011111/do11110

»
> 0111171100k oo1l111000111100

111100011110011111001111001111

> 100111100110hoo111l1001L111001

zZ=

111001111000111100111110011110
011110001111001111001111100111

1 1 11 1 1

Step 3: Considering the selected rows P.
For each column, caculating the majority,
and use the majority as z,
select the best k columns.
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Question 1,2: what size of “small part” is enough? how to

approximate? |

Lemma 2: Randomly sample (with replaccement) of R C Qop¢, where
|R| = (41‘2#] and. Let p = ‘—1’%‘. With probability at most m ™1, there is
a row a; satisfying

d(Zopt, a;|Qort) — ek

; > d(zopt|R,a¢|R).

With probability at most m~73, there is a row a; satisfying

> d(zopt, ai| o) + ck

d(20pt|Rvai|R) P

Intuition: randomly sample a small subset of Q¢ is enough!
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|R|= logm
Rl R2 R3 clogm

VY vy vy
Row ai: [M@EEEE 111001110001
zopt: 110101
d: 000100

[J means qopt.

H(z_opt, ai): 0+0+0+1+0+0 = 1
H(z_opt|R,ai|R): 0 +1 +0 =1
Proof:
@ Define index variables x; = 1 if j was selected into R, and 0
otherwise.
k R
o B(d(zopt|®, i) = Y5y Blay) x dj = Fld(zopr, as| 7).
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@ For any row a;,

d(Zopt, a; |Q°P‘) — ek

Pr( ; > d(zope| ™, i)
< exp(—24|R|€®)(by Chernoff bound)
= m (set|R| = B
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Lemma 3: When R C Qo and 2| = z,,;|%, with probability at most
2m~%, the set of rows P = {p1,...,p1} selected in Step 1 (a) of
Algorithm 1 satisfies 3! d(zopt, Tp, |2o7t) > Hopr + 2€kl.

Intuition: R can be used to approximate Qopt.

Proof:

@ With probability at most m !,
D1 ld(zopt; @il Qopt) — €kl > p 3,y ld(zopt| R, ai| R).

1
@ With probability at most m ™3,

Hopt - Z ld(zopta ai'Qopt)

=1

p Z ld(zopt| R, a;|R) — €kl

i=1

IN

@ Thus the lemma follows by the two facts.
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Question 3: how to obtain such a “small part”? |

o Difficulty: How to randomly select O(logm) columns in Q¢ While
Qopt is unknown?

@ Our idea: to randomly select a LARGER subset B of (¢ + 1)logm
columns, and enumerate all size logm subsets of B in poly-time
O(meth),

_ 2
@ Lemma 1: With probability at most m <*<*(c+1) | no subset R of size

[412#] used in Step 1 of Algorithm 1 satisfies R C Qopt.

@ Intuition: With high probability, we can get a set of logm columns
randomly selected from Qop:.

|R]= logm
Rl R2 R3 clogm

vV v ¥ v v o
Row i: [H@EEEET 111001110001

12. ..k
[J means qopt.
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Question 3: how to obtain such a “small part”? |l

Proof:

@ Define index variables x; = 1 if the j-th trial hits a column in Qp,
and 0 otherwise. Define X = x1 + 22 + ... + z¢, where
t=(c+1)(HB™ +1).

9 BE(X)=txk/n=ct(assume k = Q(n) = Z.)

o Pr(X < 41%2(’”)) < exp(—3tc?).
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Analysis |

@ Theorem 2: For any § > 0, with probability at least
2

1—m @2 — 2m3, Algorithm 1 will output a solution with
1
consensus score at most (1 + &) Hop in O(nm©(37)) time.
@ Time-complexity:
. 4(c+1) logm O(i) O(L)

© Step 1.1 is repeated O(2 2 )=0(m~'e’) =0(m~"'52’).
log |3]
@ Step 1.2 is repeated O(m®( ) = O(m°(?)).

1
@ Total time: O(nm©(37)).
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Approximation Algorithm for Bottleneck Sub-matrix

Problem

@ Input: a n x m matrix A, integers [ and k.

@ Output: a sub-matrix Ap g of A with [ rows and k& columns and a
consensus row z (of k elements) such that for any r; in P

d(r;|?, 2) < d and d is minimized

Here d( , ) is the Hamming distance.

Presented by Dongbo Bu CS612 Algorithm Design and Analysis



Basic Ideas Approximation Algorithm Proofs Thanks

Basic ldeas

o Assumptions: dopr = MAXp,cp,,, d(xp, |97, zop) = O(k),
dopt X " =k and |Qopt] =k =O0(n), k x c=n.

@ Basic Ideas:
(1) Use random sampling technique to know O(logm) bits of zp
and select [ best rows like Algorithm 1.
(2) After knowing the [ rows, “LP+RR" technique is employed to
select k£ columns in the matrix.
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@ Linear programming
Given a set of rows P = {p1,...,p;}, we want to find a set of k columns @ and
vector z such that bottleneck score is minimized.

min d;
n |Z]

SO v =k,

i=1j=1
=]
D oviiSLi=12...n,
j=1

n |Z]

ZZX(Wj7IPs,i)yi,]' S d,S = 1,2,...,[.

i=1j=1

y;,; = 1 if and only if column i is in @ and the corresponding bit in z is ;.
Here, for any a,b € X, x(a,b) =0 if a =b and x(a,b) =1if a #b.
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@ Randomized rounding
To achieve two goals:
(1) Select &’ columns, where k' > k — ddopt.
(2) Get integers values for y; ; such that the distance (restricted on
the k' selected columns) between any row in P and the center
vector thus obtained is at most (1 + )dopt-
Here § > 0 and ~ > 0 are two parameters used to control the errors.

CS612 Algorithm Design and Analysis
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@ Lemma 4: When 3( ) > 210gm for any ~v,0 > 0, with probability

at most exp(— 2(00,,) z) +m~*, the rounding result

v ={vi1,--- ’yl,\El’ R VAR TR ’y;z,\El} does not satisfy at least
one of the following inequalities,

n |Z]

ZZy” >k — 8dopi,

i=1 j=
and for every row z, (s =1,2,...,1),

n X

Z ZX Tr]"xps )y’L]) < d+7dopt

=1 j5=1

@ Intuition: random rounding can generate a good approximation, i.e.,
k' >k — dd,pt columns along with an objective value
d S dopt + rdopt
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@ Denote Y = 37 (X1 47 ). We have E(Y) = k.

=1
o

< eap(—gn(*5)?)
< exp(—in(2)?) (assume doy = Qk) = £ = 1)
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Algorithm 2 for The bottleneck Sub-matrix Problem Input: one matrix
A € Z™X"™ integer I, k, a row z € X" and small numbers ¢ > 0, v > 0 and § > 0.
Output: a size | subset P of rows, a size k subset @) of columns and a length &
consengus vector z.

if ﬁ < 2logm then try all size k subset @ of the n columns and all z of length
k to solve the problem.

. 2

if ﬁ > 2logm then

Step 1: randomly select a set B of [
f‘llz#] size subset R of B do

for every 2| € 2%l do

(a) Select the best I rows P = {p1,...,p;} that minimize d(z|%, z;|?).

(b)Solve the optimization problem by linear programming and randomized rounding to
get Q and z.

Step 2: Output P,Q and z with minimum bottleneck score d.

4(ct1)1
W] columns from A. for every
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Proofs

@ Lemma 5: When R C Q,p: and z|% = 2,,:|%, with probability at
most 2m ™3, the set of rows P = {p1,...,p;} obtained in Step 1(a)
of Algorithm 2 satisfies d(zopt, Tp, |9°7t) > dopt + 2€k for some row
Zp, (1 <4 <1).

@ Theorem 3: With probability at least
1 —m T2 —2m% — exp(—%) —m™1, Algorithm 2 runs

in time O(no(1)m0(§2+$2)) and obtains a solution with bottleneck
score at most (1 4 2¢”€ + v + §)d,p for any fixed €, v, § > 0.
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Thanks
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Let X1, Xo,...,X,, be n independent random 0-1 variables, where X;
takes 1 with probability p;, 0 < p; < 1. Let X =>"" | X, and
pw=E[X]. Then forany 0 < e <1,

Pr(X >p+en) < e
Pr(X <pu—en) < emzne
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