CS612 Algorithm Design and Analysis Lecture 19. BI-CLUSTERING problem: random sampling and random rounding 1

Presented by Dongbo Bu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

Outline I

- \bullet Introduction to BI-CLUSTERING problems;
- CONSENSUSSUBMATRIX problem: random sampling algo;
- BOTTLENECKSUBMATRIX problem: random rounding algo;

B b

Bi-clustering Problem Our Problem Definition Approximation Algorithm f General Bi-clustering Problem Similarity of Rows (1-5) Cheng and Churc

Background: What is DNA array?

DNA microarrays can be used to measure changes in expression levels of genes, to detect single nucleotide polymorphisms (SNPs) , to genotype or resequence mutant genomes.

- Row denotes a gene, and a column denotes a condition;
- Color: represent the expression levels of genes. Red: high, green: low.

General Bi-clustering Problem

• Input: a $n \times m$ matrix A.

Presented by Dongbo Bu

Output: a sub-matrix A_{P,Q} of A such that the rows of A_{P,Q} are similar. That is, all the rows are identical.
Why sub-matrix?

A subset of *genes* are co-regulated and co-expressed under specific *conditions*. It is interesting to find the subsets of genes and conditions.

Bi-clustering Problem Our Problem Definition Approximation Algorithm f General Bi-clustering Problem Similarity of Rows (1-5) Cheng and Churc

Similarity of Rows (1-5)

- 1. All rows are identical
 - 1 1 2 3 2 3 3 2
 - 1 1 2 3 2 3 3 2
 - $1\ 1\ 2\ 3\ 2\ 3\ 3\ 2$
- 2. All the elements in a row are identical
 - 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 (the same as 1 if we treat columns as rows)

• 3 >

-

Similarity of Rows (1-5)

• 3. The curves for all rows are similar (additive) $a_{i,j} - a_{i,k} = c(j,k)$ for i = 1, 2, ..., m. Case 3 is equivalent to case 2 (thus also case 1) if we construct a new matrix $a_{i,j}^* = a_{i,j} - a_{i,p}$ for a fixed p indicate a row.

Similarity of Rows (1-5)

• 4. The curves for all rows are similar (multiplicative)

Transfer to case 2 (thus case 1) by taking log and subtraction. Case 3 and Case 4 are called bi-clusters with coherent values.

< = > < = > = <<<<

Similarity of Rows (1-5)

• 5. The curves for all rows are similar (multiplicative and additive)

$$a_{i,j} = c_i a_{k,j} + d_i$$

Transfer to case 2 (thus case 1) by subtraction of a fixed row (row i), taking log and subtraction of row i again. The basic model: All the rows in the sub-matrix are identical.

Cheng and Church's model

The model introduced a similarity score called the mean squared residue score H to measure the coherence of the rows and columns in the submatrix.

$$H(P,Q) = \frac{1}{|P||Q|} \sum_{i \in P, j \in Q} (a_{i,j} - a_{i,Q} - a_{P,j} + a_{P,Q})^2$$

where

$$a_{i,Q} = \frac{1}{|Q|} \sum_{j \in Q} a_{i,j}, \quad a_{P,j} = \frac{1}{|P|} \sum_{i \in P} a_{i,j}, a_{P,Q} = \frac{1}{|P||Q|} \sum_{i \in P, j \in Q} a_{i,j}.$$

If there is no error, H(P, Q)=0 for case 1, 2 and 3. A lot of heuristics (programs) have been produced.

A 3 b

J. Liu's statistical model

Consider a microarray dataset with *N* genes and *P* conditions (or samples), in which the expression value of the *i*th gene and *j*th condition is denoted as y_{ij} , $i = 1, 2, \bullet \bullet, N, j = 1, 2, \bullet \bullet, P$. We assume that

$$Y_{ij} = \sum_{k=1}^{K} ((\mu_k + \alpha_{ik} + \beta_{jk} + \epsilon_{ijk}) \delta_{ik} \kappa_{jk}) + e_{ij} (1 - \sum_{k=1}^{K} \delta_{ik} \kappa_{jk}),$$

where *K* is the total number of clusters (unknown), μ_k is the main effect of cluster *k*, and α_{ik} and β_{jk} are the effects of gene *i* and condition *j*, respectively, in cluster *k*, ε_{ijk} is the noise term for cluster *k*, and e_{ij} models the data points that do not belong to any cluster. Here δ_{ik} and κ_{ik} are

Consensus Sub-matrix Problem

- Input: a $n \times m$ matrix A, integers l and k.
- Output: a sub-matrix $A_{P,Q}$ of A with l rows and k columns and a consensus row z (of k elements) such that

 $\sum_{r_i \in P} d(r_i|^Q, z)$ is minimized.

Here d(,) is the Hamming distance.

Qopt

Bottleneck Sub-matrix Problem

- Input: a $n \times m$ matrix A, integers l and k.
- Output: a sub-matrix $A_{P,Q}$ of A with l rows and k columns and a consensus row z (of k elements) such that for any r_i in P

프 🖌 🔺 프 🕨 👘

 $d(r_i|^Q, z) \leq d$ and d is minimized

Here d(,) is the Hamming distance.

NP-Hardness Results

• Theorem 1: Both consensus sub-matrix and bottleneck sub-matrix problems are NP-hard.

Proof: We use a reduction from maximum edge bipartite problem.

- ∢ ⊒ →

э.

글 🖌 🔺 글 🛌 👘

Approximation Algorithm for Consensus Sub-matrix Problem

- Input: a $n \times m$ matrix A, integers l and k.
- Output: a sub-matrix $A_{P,Q}$ of A with l rows and k columns and a consensus row z (of k elements) such that

 $\sum_{r_i \in P} d(r_i|^Q, z)$ is minimized.

Here d(,) is the Hamming distance.

Trial: brute-force

A brute-force method:

- By enumerating all size k subset of columns, and all length k vector, we could know Q_{opt} and z at some moment;
- Then we can find P_{opt} in poly-time to minimize the consensus score.
- However, the first step will take $\binom{n}{k} \times 2^k$ time.

Our method

- Basic idea: instead of the whole Q_{opt} and z_{opt} , knowing a small part is enough. In other words, the whole Q_{opt} can be approximated based on the small part.
- Key questions:
 - What is the size of the small part?
 - 2 How to approximate the whole Q_{opt} based on the small part?
 - How to obtain such a small part?

Algorithm 1 for The Consensus Submatrix Problem Basic Ideas:

- We use a random sampling technique to randomly select O(logm) columns in Q_{opt} , enumerate all possible vectors of length O(logm) for those columns.
- At some moment, we know O(logm) bits of r_{opt} and we can use the partial z_{opt} to select the *l* rows which are closest to z_{opt} in those O(logm) bits.
- After that we can construct a consensus vector r as follows: for each column, choose the (majority) letter that appears the most in each of the l letters in the l selected rows.
- Then for each of the *n* columns, we can calculate the number of mismatches between the majority letter and the *l* letters in the *l* selected rows. By selecting the best *k* columns, we can get a good solution.

-

Input: one $m \times n$ matrix A, integers l and k, and $\epsilon > 0$ Output: a size l subset P of rows, a size k subset Q of columns and a length k consensus vector zStep 1: randomly select a set B of $\lceil (c+1)(\frac{4\log m}{\epsilon^2}+1) \rceil$ columns from A. (1.1) for every size $\lceil \frac{4\log m}{\epsilon^2} \rceil$ subset R of B do (1.2) for every $z \mid^R \in \Sigma^{\lceil R \rceil} \operatorname{do}$ (a) Select the best l rows $P = \{p_1, ..., p_l\}$ that minimize $d(z \mid^R, x_i \mid^R)$. (b) for each column j do Compute $f(j) = \sum_{i=1}^l d(s_j, a_{p_i,j})$, where s_j is the majority element of the l rows in P in column j. Select the best k columns $Q = \{q_1, ..., q_k\}$ with minimum value f(j)and let $z(Q) = s_{q_1} s_{q_2} \dots s_{q_k}$. (c) Calculate $H = \sum_{i=1}^l d(x_{p_i} \mid^Q, z)$ of this solution.

◎ ▶ ▲ ∃ ▶ ▲ ∃ ▶ → 目 → の Q (~

Step 2: Output P, Q and z with minimum H.

Qopt R1 R2 R₃ 110001111001111000111100111100 011110011110001111001111001111 100111100011110011110011111001 111001111100111100111110011110 01111111001111001111100111100 1111000111100111110011111001111 100111100111110011110011111001 111001111000111100111110011110 011110001111001111001111100111

Step 1: randomly sampling (1+c)logm columns, and enumerating all log(m) columns, we will know log(m) bits of Qopt with high prob. Denote these bits as R.

- A - E - N

Popt

Step 2: enumerating all possible z|R to know z_opt|R. We can esitmate d(a_i|Q, z|Q) from d(a_i|R, z|R). Choose the best I rows.

Presented by Dongbo Bu Institute of Computing Te CS612 Algorithm Design and Analysis

	Qopt													
			R1	R2	R3									
			- ₩-	₩.	- ₩	↓	4	↓	4	↓	,	L		
	\rightarrow	1100	011	110	011	11	000	011	110	011	.11(00		
		0111	100	111	100	01	111	L00	111	.100)11:	11		
		1001	.111	000	111	.10	011	111	001	.111	10	01		
Popt	->	1110	011	111	001	11	100	011	111	001	.11:	10		
rope	→	0111	111	110	011	11	001	111	110	011	.11(00		
		1111	.000	111	100)11	111	100	111	.100)11:	11		
	-	1001	111	001	111	10	011	111	001	111	10	01		
		1110	011	110	001	11	100	011	111	.001	11:	10		
		0111	100	011	110	001	111	100	111	110	001	11		
	z =		1	1	1	1		1		1				
	Step 3: Considering the selected rows P.													
			For e	each	colu	ımn	i, ca	icula	ating	g the	e ma	jorit	у,	
			and	use t	he i	maj	orit	y as	z,					
			seled	ct the	e be	st k	со	lum	ns.					

э

Basic Ideas

Question 1.2: what size of "small part" is enough? how to approximate? |

Lemma 2: Randomly sample (with replacement) of $R \subseteq Q_{opt}$, where $|R| = \lceil \frac{4\log m}{\epsilon^2} \rceil$ and. Let $\rho = \frac{k}{|R|}$. With probability at most m^{-1} , there is a row a_i satisfying

$$\frac{d(z_{opt}, a_i|^{Q_{opt}}) - \epsilon k}{\rho} > d(z_{opt}|^R, a_i|^R).$$

With probability at most $m^{-\frac{1}{3}}$, there is a row a_i satisfying

$$d(z_{opt}|^R, a_i|^R) > \frac{d(z_{opt}, a_i|^{Q_{opt}}) + \epsilon k}{\rho}.$$

글 🖌 🖌 글 🛌

Intuition: randomly sample a small subset of Q_{opt} is enough!

Proof:

• Define index variables $x_j = 1$ if j was selected into R, and 0 otherwise.

•
$$E(d(z_{opt}|^R, a_i|^R)) = \sum_{j=1}^k E(x_j) \times d_j = \frac{|R|}{k} d(z_{opt}, a_i|^{Q_{opt}}).$$

< 3 b

-

• For any row a_i ,

$$\begin{split} & \Pr(\frac{d(z_{opt}, a_i|^{Q_{opt}}) - \epsilon k}{\rho} > d(z_{opt}|^R, a_i|^R)) \\ & \leq \quad exp(-\frac{1}{2}|R|\epsilon^2) \text{(by Chernoff bound)} \\ & = \quad m^{-2} \quad (\text{ set } |R| = \frac{4\log m}{\epsilon^2}) \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ >

э

Lemma 3: When $R \subseteq Q_{opt}$ and $z|^R = z_{opt}|^R$, with probability at most $2m^{-\frac{1}{3}}$, the set of rows $P = \{p_1, \ldots, p_l\}$ selected in Step 1 (a) of Algorithm 1 satisfies $\sum_{i=1}^l d(z_{opt}, x_{p_i}|^{Q_{opt}}) > H_{opt} + 2\epsilon kl$. Intuition: R can be used to approximate Q_{opt} . Proof:

• With probability at most m^{-1} , $\sum_{i=1} ld(z_{opt}, a_i | Q_{opt}) - \epsilon kl \ge \rho \sum_{i=1} ld(z_{opt} | R, a_i | R).$

• With probability at most $m^{-\frac{1}{3}}$,

$$H_{opt} = \sum_{i=1}^{i=1} ld(z_{opt}, a_i | Q_{opt})$$

$$\leq \rho \sum_{i=1}^{i=1} ld(z_{opt} | R, a_i | R) - \epsilon kl$$

Thus the lemma follows by the two facts.

Question 3: how to obtain such a "small part"? I

- Difficulty: How to randomly select $O(\log m)$ columns in Q_{opt} while Q_{opt} is unknown?
- Our idea: to randomly select a LARGER subset B of $(c+1)\log m$ columns, and enumerate all size $\log m$ subsets of B in poly-time $O(m^{c+1})$.
- Lemma 1: With probability at most $m^{-\frac{2}{\epsilon^2 c^2(c+1)}}$, no subset R of size $\lceil \frac{4 \log m}{\epsilon^2} \rceil$ used in Step 1 of Algorithm 1 satisfies $R \subseteq Q_{opt}$.
- Intuition: With high probability, we can get a set of $\log m$ columns randomly selected from $Q_{opt}.$

Question 3: how to obtain such a "small part"? II

Proof:

• Define index variables $x_j = 1$ if the *j*-th trial hits a column in Q_{opt} , and 0 otherwise. Define $X = x_1 + x_2 + \ldots + x_t$, where $t = (c+1)(\frac{4\log m}{\epsilon^2} + 1)$.

프 🕨 🔺 프 🕨 👘

- $E(X) = t \times k/n = ct$ (assume $k = \Omega(n) = \frac{n}{c}$.)
- $\Pr(X \le \frac{4\log(m)}{\epsilon^2}) \le exp(-\frac{1}{2}tc^2).$

Basic Ideas

Analysis I

- Theorem 2: For any $\delta > 0$, with probability at least $1 - m^{-\frac{8c'^2}{\delta^2c^2(c+1)}} - 2m^{-\frac{1}{3}}$. Algorithm 1 will output a solution with consensus score at most $(1+\delta)H_{opt}$ in $O(nm^{O(\frac{1}{\delta^2})})$ time.
- Time-complexity:

 $\textbf{ Step 1.2 is repeated } O(m^{O(\frac{\log|\Sigma|}{\epsilon^2})}) = O(m^{O(\frac{1}{\delta^2})}).$ **S** Total time: $O(nm^{O(\frac{1}{\delta^2})})$.

·문어 · · · · · · · ·

Approximation Algorithm for Bottleneck Sub-matrix Problem

- Input: a $n \times m$ matrix A, integers l and k.
- Output: a sub-matrix $A_{P,Q}$ of A with l rows and k columns and a consensus row z (of k elements) such that for any r_i in P

 $d(r_i|^Q, z) \leq d$ and d is minimized

Here d(,) is the Hamming distance.

Basic Ideas

- Assumptions: $d_{opt} = MAX_{p_i \in P_{opt}} d(x_{p_i}|^{Q_{opt}}, z_{opt}) = O(k),$ $d_{opt} \times c'' = k \text{ and } |Q_{opt}| = k = O(n), \ k \times c = n.$
- Basic Ideas:

(1) Use random sampling technique to know $O(\log m)$ bits of z_{opt} and select l best rows like Algorithm 1.

(2) After knowing the l rows, "LP+RR" technique is employed to select k columns in the matrix.

Linear programming

Given a set of rows $P = \{p_1, \ldots, p_l\}$, we want to find a set of k columns Q and vector z such that bottleneck score is minimized.

$$\min d; \\ \sum_{i=1}^{n} \sum_{j=1}^{|\Sigma|} y_{i,j} = k, \\ \sum_{j=1}^{|\Sigma|} y_{i,j} \le 1, i = 1, 2, \dots, n, \\ \sum_{i=1}^{n} \sum_{i=1}^{|\Sigma|} \chi(\pi_j, x_{p_s, i}) y_{i,j} \le d, s = 1, 2, \dots, l.$$

 $y_{i,j} = 1$ if and only if column i is in Q and the corresponding bit in z is π_j . Here, for any $a, b \in \Sigma$, $\chi(a, b) = 0$ if a = b and $\chi(a, b) = 1$ if $a \neq b$.

A B M A B M

э.

Randomized rounding

To achieve two goals:

(1) Select k' columns, where $k' \ge k - \delta d_{opt}$.

(2) Get integers values for $y_{i,j}$ such that the distance (restricted on

the k' selected columns) between any row in P and the center vector thus obtained is at most $(1 + \gamma)d_{opt}$.

Here $\delta > 0$ and $\gamma > 0$ are two parameters used to control the errors.

• Lemma 4: When $\frac{n\gamma^2}{3(cc'')^2} \ge 2\log m$, for any $\gamma, \delta > 0$, with probability at most $exp(-\frac{n\delta^2}{2(cc'')^2}) + m^{-1}$, the rounding result $y' = \{y'_{1,1}, \ldots, y'_{1,|\Sigma|}, \ldots, y'_{n,1}, \ldots, y'_{n,|\Sigma|}\}$ does not satisfy at least one of the following inequalities,

$$\sum_{i=1}^{n} (\sum_{j=1}^{|\Sigma|} y'_{i,j}) > k - \delta d_{opt},$$

and for every row $x_{p_s}(s=1,2,\ldots,l)$,

$$\sum_{i=1}^{n} (\sum_{j=1}^{|\Sigma|} \chi(\pi_j, x_{p_s,i}) y'_{i,j}) < \overline{d} + \gamma d_{opt}.$$

• Intuition: random rounding can generate a good approximation, i.e., $k' \ge k - \delta d_{opt}$ columns along with an objective value $d \le d_{opt} + rd_{opt}$

・ロト ・聞ト ・ヨト ・ヨト

э

Proof

• Denote
$$Y = \sum_{i=1}^{n} (\sum_{j=1}^{|\Sigma|} y'_{i,j})$$
. We have $E(Y) = k$.

$$\begin{split} &\Pr(Y \ge k - \delta d_{opt}) \\ \le & exp(-\frac{1}{2}n(\frac{\delta d_{opt}}{n})^2) \\ \le & exp(-\frac{1}{2}n(\frac{\delta}{cc''})^2) \quad (\text{ assume } d_{opt} = \Omega(k) = \frac{k}{c''} = \frac{n}{cc''}) \end{split}$$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → の Q (~

Algorithm 2 for The bottleneck Sub-matrix Problem Input: one matrix $A \in \Sigma^{m \times n}$, integer l, k, a row $z \in \Sigma^n$ and small numbers $\epsilon > 0$, $\gamma > 0$ and $\delta > 0$. **Output:** a size l subset P of rows, a size k subset Q of columns and a length k consensus vector z. if $\frac{n\gamma^2}{3(cc'')^2} \leq 2\log m$ then try all size k subset Q of the n columns and all z of length k to solve the problem. if $\frac{n\gamma^2}{3(cc'')^2} > 2\log m$ then **Step 1:** randomly select a set B of $\left\lceil \frac{4(c+1)\log m}{c^2} \right\rceil$ columns from A. for every $\left[\frac{4\log m}{2}\right]$ size subset R of B do for every $z|^R \in \Sigma^{|R|}$ do (a) Select the best l rows $P = \{p_1, ..., p_l\}$ that minimize $d(z|^R, x_i|^R)$. (b)Solve the optimization problem by linear programming and randomized rounding to get Q and z.

Step 2: Output P,Q and z with minimum bottleneck score d.

Proofs

- Lemma 5: When $R \subseteq Q_{opt}$ and $z|^R = z_{opt}|^R$, with probability at most $2m^{-\frac{1}{3}}$, the set of rows $P = \{p_1, \ldots, p_l\}$ obtained in Step 1(a) of Algorithm 2 satisfies $d(z_{opt}, x_{p_i}|^{Q_{opt}}) > d_{opt} + 2\epsilon k$ for some row $x_{p_i}(1 \le i \le l)$.
- Theorem 3: With probability at least

$$\begin{split} &1-m^{-\frac{2}{\epsilon^2c^2(c+1)}}-2m^{-\frac{1}{3}}-exp(-\frac{n\delta^2}{2(cc'')^2})-m^{-1}\text{, Algorithm 2 runs}\\ &\text{in time }O(n^{O(1)}m^{O(\frac{1}{\epsilon^2}+\frac{1}{\gamma^2})})\text{ and obtains a solution with bottleneck}\\ &\text{score at most }(1+2c''\epsilon+\gamma+\delta)d_{opt}\text{ for any fixed }\epsilon,\ \gamma,\ \delta>0. \end{split}$$

Thanks

Acknowledgements

This work is fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China [Project No. CityU 1070/02E].

This work is collaborated with Dr. Lusheng Wang and Xiaowen Liu in City University of Hong Kong, Hong Kong, China.

- A - E - M

-

Let X_1, X_2, \ldots, X_n be n independent random 0-1 variables, where X_i takes 1 with probability p_i , $0 < p_i < 1$. Let $X = \sum_{i=1}^n X_i$, and $\mu = E[X]$. Then for any $0 < \epsilon \leq 1$,

$$\begin{aligned} \mathbf{Pr}(X > \mu + \epsilon \, n) &< e^{-\frac{1}{3}n\epsilon^2}, \\ \mathbf{Pr}(X < \mu - \epsilon \, n) &\leq e^{-\frac{1}{2}n\epsilon^2}. \end{aligned}$$