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Outline I

Introduction to Bi-Clustering problems;

ConsensusSubmatrix problem: random sampling algo;

BottleneckSubmatrix problem: random rounding algo;
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Background: What is DNA array?

DNA microarrays can be used to measure changes in expression levels of
genes, to detect single nucleotide polymorphisms (SNPs) , to genotype or
resequence mutant genomes.

Row denotes a gene, and a column denotes a condition;
Color: represent the expression levels of genes. Red: high, green:
low.
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General Bi-clustering Problem

Input: a n × m matrix A.
Output: a sub-matrix AP,Q of A such that the rows of AP,Q are
similar. That is, all the rows are identical.
Why sub-matrix?
A subset of genes are co-regulated and co-expressed under specific
conditions. It is interesting to find the subsets of genes and
conditions.
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Similarity of Rows (1-5)

1. All rows are identical
1 1 2 3 2 3 3 2
1 1 2 3 2 3 3 2
1 1 2 3 2 3 3 2

2. All the elements in a row are identical
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
5 5 5 5 5 5 5 5
(the same as 1 if we treat columns as rows)
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Similarity of Rows (1-5)

3. The curves for all rows are similar (additive) ai,j − ai,k = c(j, k)
for i = 1, 2, . . . , m. Case 3 is equivalent to case 2 (thus also case 1)
if we construct a new matrix a∗

i,j = ai,j − ai,p for a fixed p indicate
a row.
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Similarity of Rows (1-5)

4. The curves for all rows are similar (multiplicative)
a1,1 a1,2 a1,3 . . . a1,m

c1a1,1 c1a1,2 c1a1,3 . . . c1a1,m

c2a1,1 c2a1,2 c2a1,3 . . . c2a1,m

. . .
cna1,1 cna1,2 cna1,3 . . . cna1,m

Transfer to case 2 (thus case 1) by taking log and subtraction.
Case 3 and Case 4 are called bi-clusters with coherent values.
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Similarity of Rows (1-5)

5. The curves for all rows are similar (multiplicative and additive)

ai,j = ciak,j + di

Transfer to case 2 (thus case 1) by subtraction of a fixed row (row
i), taking log and subtraction of row i again.
The basic model: All the rows in the sub-matrix are identical.
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Cheng and Church’s model

The model introduced a similarity score called the mean squared residue
score H to measure the coherence of the rows and columns in the
submatrix.

H(P, Q) =
1

|P ||Q|

∑

i∈P,j∈Q

(ai,j − ai,Q − aP,j + aP,Q)2

where

ai,Q =
1

|Q|

∑

j∈Q

ai,j , aP,j =
1

|P |

∑

i∈P

ai,j , aP,Q =
1

|P ||Q|

∑

i∈P,j∈Q

ai,j .

If there is no error, H(P, Q)=0 for case 1, 2 and 3. A lot of heuristics
(programs) have been produced.
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J. Liu’s statistical model
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Consensus Sub-matrix Problem

Input: a n × m matrix A, integers l and k.
Output: a sub-matrix AP,Q of A with l rows and k columns and a
consensus row z (of k elements) such that

∑

ri∈P d(ri|
Q, z) is minimized.

Here d( , ) is the Hamming distance.
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Bottleneck Sub-matrix Problem

Input: a n × m matrix A, integers l and k.

Output: a sub-matrix AP,Q of A with l rows and k columns and a
consensus row z (of k elements) such that for any ri in P

d(ri|
Q, z) ≤ d and d is minimized

Here d( , ) is the Hamming distance.
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NP-Hardness Results

Theorem 1: Both consensus sub-matrix and bottleneck sub-matrix
problems are NP-hard.

Proof: We use a reduction from maximum edge bipartite problem.
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Approximation Algorithm for Consensus Sub-matrix
Problem

Input: a n × m matrix A, integers l and k.

Output: a sub-matrix AP,Q of A with l rows and k columns and a
consensus row z (of k elements) such that

∑

ri∈P d(ri|
Q, z) is minimized.

Here d( , ) is the Hamming distance.
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Trial: brute-force

A brute-force method:

By enumerating all size k subset of columns, and all length k vector,
we could know Qopt and z at some moment;

Then we can find Popt in poly-time to minimize the consensus score.

However, the first step will take
(

n
k

)

× 2k time.
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Our method

Basic idea: instead of the whole Qopt and zopt, knowing a small part
is enough. In other words, the whole Qopt can be approximated
based on the small part.

Key questions:
1 What is the size of the small part?
2 How to approximate the whole Qopt based on the small part?
3 How to obtain such a small part?
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Algorithm 1 for The Consensus Submatrix Problem
Basic Ideas:

We use a random sampling technique to randomly select O(logm)
columns in Qopt, enumerate all possible vectors of length O(logm)
for those columns.

At some moment, we know O(logm) bits of ropt and we can use the
partial zopt to select the l rows which are closest to zopt in those
O(logm) bits.

After that we can construct a consensus vector r as follows: for each
column, choose the (majority) letter that appears the most in each
of the l letters in the l selected rows.

Then for each of the n columns, we can calculate the number of
mismatches between the majority letter and the l letters in the l
selected rows. By selecting the best k columns, we can get a good
solution.
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Input: one m × n matrix A, integers l and k, and ǫ > 0
Output: a size l subset P of rows, a size k subset Q of columns and a length k

consensus vector z

Step 1: randomly select a set B of ⌈(c + 1)( 4 log m

ǫ2
+ 1)⌉ columns from A.

(1.1) for every size ⌈ 4 log m

ǫ2
⌉ subset R of B do

(1.2) for every z|R ∈ Σ|R| do
(a) Select the best l rows P = {p1, ..., pl} that minimize d(z|R, xi|R).
(b) for each column j do

Compute f(j) =
Pl

i=1 d(sj , api,j), where sj is the majority element of the l rows in
P in column j. Select the best k columns Q = {q1, ..., qk} with minimum value f(j)
and let z(Q) = sq1sq2 . . . sqk

.

(c) Calculate H =
Pl

i=1 d(xpi |
Q, z) of this solution.

Step 2: Output P , Q and z with minimum H.
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Question 1,2: what size of “small part” is enough? how to
approximate? I

Lemma 2: Randomly sample (with replaccement) of R ⊆ Qopt, where

|R| = ⌈ 4 log m
ǫ2

⌉ and. Let ρ = k
|R| . With probability at most m−1, there is

a row ai satisfying

d(zopt, ai|
Qopt) − ǫk

ρ
> d(zopt|

R, ai|
R).

With probability at most m− 1
3 , there is a row ai satisfying

d(zopt|
R, ai|

R) >
d(zopt, ai|

Qopt) + ǫk

ρ
.

Intuition: randomly sample a small subset of Qopt is enough!
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Proof:
Define index variables xj = 1 if j was selected into R, and 0
otherwise.

E(d(zopt|
R, ai|

R)) =
∑k

j=1 E(xj) × dj = |R|
k

d(zopt, ai|
Qopt).
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For any row ai,

Pr(
d(zopt, ai|

Qopt) − ǫk

ρ
> d(zopt|

R, ai|
R))

≤ exp(− 1
2 |R|ǫ2)(by Chernoff bound)

= m−2 ( set |R| =
4 log m

ǫ2
)
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Lemma 3: When R ⊆ Qopt and z|R = zopt|
R, with probability at most

2m− 1
3 , the set of rows P = {p1, . . . , pl} selected in Step 1 (a) of

Algorithm 1 satisfies
∑l

i=1 d(zopt, xpi
|Qopt) > Hopt + 2ǫkl.

Intuition: R can be used to approximate Qopt.
Proof:

With probability at most m−1,
∑

i=1 ld(zopt, ai|Qopt) − ǫkl ≥ ρ
∑

i=1 ld(zopt|R, ai|R).

With probability at most m−
1
3 ,

Hopt =
∑

i=1

ld(zopt, ai|Qopt)

≤ ρ
∑

i=1

ld(zopt|R, ai|R) − ǫkl

Thus the lemma follows by the two facts.
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Question 3: how to obtain such a “small part”? I

Difficulty: How to randomly select O(logm) columns in Qopt while
Qopt is unknown?

Our idea: to randomly select a LARGER subset B of (c + 1)logm
columns, and enumerate all size logm subsets of B in poly-time
O(mc+1).

Lemma 1: With probability at most m
− 2

ǫ2c2(c+1) , no subset R of size
⌈ 4 log m

ǫ2
⌉ used in Step 1 of Algorithm 1 satisfies R ⊆ Qopt.

Intuition: With high probability, we can get a set of logm columns
randomly selected from Qopt.
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Question 3: how to obtain such a “small part”? II

Proof:

Define index variables xj = 1 if the j-th trial hits a column in Qopt,
and 0 otherwise. Define X = x1 + x2 + ... + xt, where
t = (c + 1)(4 log m

ǫ2
+ 1).

E(X) = t × k/n = ct (assume k = Ω(n) = n
c
.)

Pr(X ≤ 4log(m)
ǫ2

) ≤ exp(− 1
2 tc2).
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Analysis I

Theorem 2: For any δ > 0, with probability at least

1 − m
− 8c′2

δ2c2(c+1) − 2m− 1
3 , Algorithm 1 will output a solution with

consensus score at most (1 + δ)Hopt in O(nmO( 1
δ2 )) time.

Time-complexity:

1 Step 1.1 is repeated O(2
4(c+1) log m

ǫ2 ) = O(mO(
1
ǫ2

)) = O(mO(
1
δ2 )).

2 Step 1.2 is repeated O(mO(
log |Σ|

ǫ2
)) = O(mO(

1
δ2 )).

3 Total time: O(nm
O(

1
δ2 )).
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Approximation Algorithm for Bottleneck Sub-matrix
Problem

Input: a n × m matrix A, integers l and k.

Output: a sub-matrix AP,Q of A with l rows and k columns and a
consensus row z (of k elements) such that for any ri in P

d(ri|
Q, z) ≤ d and d is minimized

Here d( , ) is the Hamming distance.
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Basic Ideas

Assumptions: dopt = MAXpi∈Popt
d(xpi

|Qopt , zopt) = O(k),
dopt × c′′ = k and |Qopt| = k = O(n), k × c = n.

Basic Ideas:
(1) Use random sampling technique to know O(logm) bits of zopt

and select l best rows like Algorithm 1.
(2) After knowing the l rows, “LP+RR” technique is employed to
select k columns in the matrix.
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Linear programming
Given a set of rows P = {p1, . . . , pl}, we want to find a set of k columns Q and
vector z such that bottleneck score is minimized.

mind;

n
X

i=1

|Σ|
X

j=1

yi,j = k,

|Σ|
X

j=1

yi,j ≤ 1, i = 1, 2, . . . , n,

n
X

i=1

|Σ|
X

j=1

χ(πj , xps,i)yi,j ≤ d, s = 1, 2, . . . , l.

yi,j = 1 if and only if column i is in Q and the corresponding bit in z is πj .
Here, for any a, b ∈ Σ, χ(a, b) = 0 if a = b and χ(a, b) = 1 if a 6= b.
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Randomized rounding
To achieve two goals:
(1) Select k′ columns, where k′ ≥ k − δdopt.
(2) Get integers values for yi,j such that the distance (restricted on
the k′ selected columns) between any row in P and the center
vector thus obtained is at most (1 + γ)dopt.
Here δ > 0 and γ > 0 are two parameters used to control the errors.
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Lemma 4: When nγ2

3(cc′′)2 ≥ 2 log m, for any γ, δ > 0, with probability

at most exp(− nδ2

2(cc′′)2 ) + m−1, the rounding result

y′ = {y′
1,1, . . . , y

′
1,|Σ|, . . . , y

′
n,1, . . . , y

′
n,|Σ|} does not satisfy at least

one of the following inequalities,

n
∑

i=1

(

|Σ|
∑

j=1

y′
i,j) > k − δdopt,

and for every row xps
(s = 1, 2, . . . , l),

n
∑

i=1

(

|Σ|
∑

j=1

χ(πj , xps,i)y
′
i,j) < d + γdopt.

Intuition: random rounding can generate a good approximation, i.e.,
k′ ≥ k − δdopt columns along with an objective value
d ≤ dopt + rdopt
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Proof

Denote Y =
∑n

i=1(
∑|Σ|

j=1 y′
i,j). We have E(Y ) = k.

Pr(Y ≥ k − δdopt)

≤ exp(− 1
2n(

δdopt

n
)2)

≤ exp(− 1
2n( δ

cc′′
)2) ( assume dopt = Ω(k) = k

c′′
= n

cc′′
)
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Algorithm 2 for The bottleneck Sub-matrix Problem Input: one matrix
A ∈ Σm×n, integer l, k, a row z ∈ Σn and small numbers ǫ > 0, γ > 0 and δ > 0.
Output: a size l subset P of rows, a size k subset Q of columns and a length k

consensus vector z.
if nγ2

3(cc′′)2
≤ 2 log m then try all size k subset Q of the n columns and all z of length

k to solve the problem.

if nγ2

3(cc′′)2
> 2 log m then

Step 1: randomly select a set B of ⌈
4(c+1) log m

ǫ2
⌉ columns from A. for every

⌈ 4 log m

ǫ2
⌉ size subset R of B do

for every z|R ∈ Σ|R| do
(a) Select the best l rows P = {p1, ..., pl} that minimize d(z|R, xi|R).
(b)Solve the optimization problem by linear programming and randomized rounding to
get Q and z.

Step 2: Output P ,Q and z with minimum bottleneck score d.
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Proofs

Lemma 5: When R ⊆ Qopt and z|R = zopt|
R, with probability at

most 2m− 1
3 , the set of rows P = {p1, . . . , pl} obtained in Step 1(a)

of Algorithm 2 satisfies d(zopt, xpi
|Qopt) > dopt + 2ǫk for some row

xpi
(1 ≤ i ≤ l).

Theorem 3: With probability at least

1 − m
− 2

ǫ2c2(c+1) − 2m− 1
3 − exp(− nδ2

2(cc′′)2 ) − m−1, Algorithm 2 runs

in time O(nO(1)m
O( 1

ǫ2
+ 1

γ2 )
) and obtains a solution with bottleneck

score at most (1 + 2c′′ǫ + γ + δ)dopt for any fixed ǫ, γ, δ > 0.
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Thanks

Acknowledgements
This work is fully supported by a grant from the Research Grants
Council of the Hong Kong Special Administrative Region, China
[Project No. CityU 1070/02E].
This work is collaborated with Dr. Lusheng Wang and Xiaowen Liu
in City University of Hong Kong, Hong Kong, China.

Presented by Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing,CS612 Algorithm Design and Analysis



Bi-clustering Problem Our Problem Definition Approximation Algorithm for Consensus Sub-matrix Problem Approximation Algorithm for Bottleneck Sub-matrixBasic Ideas Approximation Algorithm Proofs Thanks

Let X1, X2, . . . , Xn be n independent random 0-1 variables, where Xi

takes 1 with probability pi, 0 < pi < 1. Let X =
∑n

i=1 Xi, and
µ = E[X ]. Then for any 0 < ǫ ≤ 1,

Pr(X > µ + ǫ n) < e−
1
3nǫ2 ,

Pr(X < µ − ǫ n) ≤ e−
1
2nǫ2 .
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