CS612 Algorithm Design and Analysis

Lecture 18. CLOSESTSTRING and CLOSESTSUBSTRING problems: random sampling and random rounding $^{\rm 1}$

Presented by Mingfu Shao

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

¹The slides are made based on *On the closest string and substring problems* by M. Li, B. Ma, and L. Wang. ← □ → ← ♂ → ← ≥ → ← ≥ → → ≥

Presented by Mingfu Shao Institute of Computing Te CS612 Algorithm Design and Analysis

Outline I

- Problem statements;
- CLOSESTSTRING problem: random rounding technique;
- CLOSESTSUBSTRING problem: random sampling technique;

- A - E - M

-

Problem Statement I

CLOSEST STRING

Given a set $S = \{s_1, s_2, \cdots, s_n\}$ of strings each length m, find a center string s of length m minimizing d such that for every string $s_i \in S$, $d(s, s_i) \leq d$. Here $d(s, s_i)$ is the Hamming distance between s and s_i .

CLOSEST SUBSTRING

Given a set $S = \{s_1, s_2, \dots, s_n\}$ of strings each length m and an integer L, find a center string s of length L minimizing d such that for every string $s_i \in S$ there is a length L substring t_i of s_i with $d(s, t_i) \leq d$.

Problem Formulation Algorithm for Closest String Problem Algorithm for

Example of CLOSEST STRING

Given 4 strings s_1, s_2, s_3, s_4 ,

Optimal center string s = 011000

$$d = \max_{i=1}^{4} d(s_i, s) = \max\{2, 2, 1, 2\} = 2$$

3 D 🗸 3 D D

Problem Formulation Algorithm for Closest String Problem Algorithm for

Example of CLOSEST SUBSTRING

Given 4 strings s_1, s_2, s_3, s_4 , L = 4,

Optimal center string s = 1100,

$$d = \max_{i=1}^{4} d(t_i, s) = \max\{1, 0, 1, 2\} = 2$$

ㅋㅋ ㅋㅋㅋ

Basic Idea

- Applying "LP+RR" technique on all columns doesn't work due to the large size of the variables.
- In polynomial time, we can enumerate all $\binom{n}{r}$ strings for any fixed r. We can prove that, on positions that r strings all agree, denote as Q, it is a good approximate solution; more speficially, we can also prove that, $|Q| \ge m - r \cdot d_{opt}$.
- On the other positions, we use LP + Random rounding technique to obtain an approximate solution.

医下子 医下口

Algorithm I

Input : $s_1, s_2, \cdots, s_n \in \Sigma^m$, an integer $r \ge 2$ and a small number $\epsilon > 0$.

Output : a center string $s \in \Sigma^m$

Algorithm :

9 for each *r*-element subset $\{s_{i_1}, s_{i_2}, \cdots, s_{i_r}\}$ of the *n* input strings do

• let
$$Q = \{j | s_{i_1}[j] = s_{i_2}[j] = \dots = s_{i_r}[j]\}, P = \{1, 2, \dots, m\} - Q$$

solve the following optimization problem

 $\min d$

s.t. $d(s_i|_P, y) + d(s_i|_Q, s_{i_1}|_Q) \le d, i = 1, 2, \cdots, n$

Random rounding the fractional solution \bar{y} to get a approximation solution y. Use derandomization technique to make this step deterministic rather than random.

3 let $s'|_Q = s_{i_1}|_Q, s'|_P = y$. Calculate the radius of the solution with s' as the center string.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ●

2 for
$$i = 1, 2, \cdots, n$$
 do

Algorithm II

Q calculate the radius of the solution with s_i as the center string.

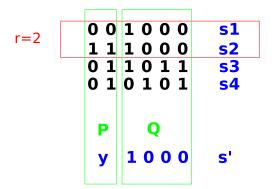
글 🖌 🔺 글 🕨

-

output the best solution of the above two steps.

Example of CLOSEST STRING I

Suppose r = 2. In step 1, we should enumerate all $\binom{4}{2} = 6$ cases. In each cases, we select 2 lines, calculate P and Q.



注入 不注入 …

э.

Example of CLOSEST STRING II

In step 2, we fix $s'|_Q = 1000$, solve the following optimization problem :

 $\min d$

s.t.
$$y_{10} + y_{11} = 1$$
$$y_{20} + y_{21} = 1$$
$$y_{11} + y_{21} + 0 \le d$$
$$y_{10} + y_{20} + 0 \le d$$
$$y_{11} + y_{20} + 2 \le d$$
$$y_{11} + y_{20} + 2 \le d$$

Solve this linear programming, and random rounding the fractional solution to integer solution :

$$y_{10} = y_{21} = 1, y_{11} = y_{20} = 0$$

Example of CLOSEST STRING III

So,

$$s'|_P = 01, s' = 011000$$

$$d = \max_{i=1}^{4} d(s_i, s') = \max\{1, 1, 2, 3\} = 3$$

Try all $\binom{4}{2} = 6$ cases, obtain the minimum, denote as d_0 . Then we finish step 1.

In step 2, we calculate the radius when s_i is the center string.

$$d_{1} = \max_{i=1}^{4} d(s_{1}, s_{i})$$

$$d_{2} = \max_{i=1}^{4} d(s_{2}, s_{i})$$

$$d_{3} = \max_{i=1}^{4} d(s_{3}, s_{i})$$

$$d_{4} = \max_{i=1}^{4} d(s_{4}, s_{i})$$

토 M 토 M - - -

э.

Example of CLOSEST STRING IV

Calculate the minimal radius in both step 1 and step 2.

 $d = \min\{d_0, d_1, d_2, d_3, d_4\}$

医外球 医外口

Analysis I

Theorem

The above algorithm is a PTAS for CLOSEST STRING problem.

Proof.

Obviously, the time complexity of the algorithm is $O\left((nm)^r n^{O(\log |\Sigma| \cdot r^2/\epsilon^2)}\right)$, which is polynomial in terms of n,m. The proof of approximation guarantee is organized as 3 lemmas as follows : Lemma 1 proves $s'|_Q$ is a good approximation to s with approximation rate $1 + \frac{1}{2r-1}$. Lemma 2 proves $|P| < r \cdot d_{opt}$. Based on the above 2 lemmas, Lemma 3 proves step 1.2 obtains a

4 B K 4 B K

approximate solution with rate $(1 + \frac{1}{2r-1} + \epsilon)$.

Analysis II

Lemma 1

If $\max_{i \leq i,j \leq n} d(s_i, s_j) > (1 + \frac{1}{2r-1})d_{opt}$, then there **exists** r indices $1 \leq i_1, i_2, \cdots, i_r \leq n$ such that for any $1 \leq l \leq n$,

$$d(s_l|_Q, s_{i_1}|_Q) - d(s_l|_Q, s|_Q) \le \frac{1}{2r - 1} d_{opt}$$

where Q is the set of positions that $s_{i_1}, s_{i_2}, \cdots, s_{i_r}$ all agree.

• if $\max_{i \le i,j \le n} d(s_i, s_j) \le (1 + \frac{1}{2r-1})d_{opt}$, then any s_i will be a good center string. (Recall the step 2 of the algorithm)

3 k 4 3 k -

Analysis III

Lemma 2

Let
$$P = \{1, 2, \cdots, m\} - Q$$
, then $|P| \leq r \cdot d_{opt}$ and $|Q| \geq m - r \cdot d_{opt}$.

Proof.

Let $q \in P$, then there exists some s_{i_j} such that $s_{i_j}[q] \neq s[q]$. Since $d(s_{i_j}, s) \leq d_{opt}$, each s_{i_j} contributes at most d_{opt} positions for P. Thus $|P| \leq r \cdot d_{opt}$.

• this lemma gives the lower bound of d_{opt} , $d_{opt} \ge \frac{|P|}{r}$, which is essential for the analysis of LP + random rounding!

Analysis IV

Lemma 3

Given a string s' and a position set Q and P, $|P| < r \cdot d_{opt},$ such that for any $i=1,2,\cdots,n,$

$$d(s_i|_Q, s'|_Q) - d(s_i|_Q, s|_Q) \le \rho \cdot d_{opt},$$

then step 1.2 gives a solution with approximate rate $(1 + \rho + \epsilon)$ in polynomial time for any fixed $\epsilon \ge 0$.

Before the proof, we can see that the conditions of this lemma are all satisfied by lemma 2, where $\rho=\frac{1}{2r-1}.$ Proof

Recall the optimization problem in step 1.2

 $\min d$

s.t.
$$d(s_i|_P, y) + d(s_i|_Q, s'|_Q) \le d, i = 1, 2, \cdots, n$$

B b d B b

Analysis V

First, we show that $y = s|_P$ is a solution with cost $d \le (1 + \rho)d_{opt}$. In fact, for $i = 1, 2, \cdots, n$

$$\begin{aligned} & d(s_i|_P, s|_P) + d(s_i|_Q, s'|_Q) \\ & \leq & d(s_i|_P, s|_P) + d(s_i|_Q, s|_Q) + \rho \cdot d_{opt} \\ & \leq & (1+\rho)d_{opt} \end{aligned}$$

Second, rewirte the optimization problem to an ILP problem. In order for this, define 0-1 variables $y_{j,a}$, $1 \le j \le |P|$, $a \in \Sigma$, $y_{j,a} = 1$ means y[j] = a; define $\chi(s_i[j], a) = 0$ if $s_i[j] = a$ and 1 if $s_i[j] \ne a$. Then the above optimization problem can be formulated as follows

s.t.
$$\begin{cases} \min d \\ \sum_{a \in \Sigma} y_{j,a} = 1, 1 \le j \le |P| \\ \sum_{1 \le j \le |P|} \sum_{a \in \Sigma} \chi(s_i[j], a) y_{j,a} + d(s_i|_Q, s'|_Q) \le d, 1 \le i \le n \end{cases}$$

Solve it by LP to get a fractional solution \bar{y} with cost \bar{d} .

Analysis VI

Random rounding \bar{y} to y' by independently set $y'_{j,a} = 1$ and $y'_{j,b} = 0, b \in \Sigma - \{a\}$ with probability $y_{\bar{j},a}$. So $d(s_i|_P,y') = \sum_{i=1}^{|P|} \sum_{a \in \Sigma} \chi(s_i[j],a) y_{j,a}$, which is the sum of |P| independent random variables.

$$E(d(s_i|P)) = \sum_{1 \le j \le |P|} \sum_{a \in \Sigma} \chi(s_i[j], a) y_{j,a}$$

$$\leq \overline{d} - d(s_i|Q, s'|Q)$$

$$\leq (1 + \rho) \cdot d_{opt} - d(s_i|Q, s'|Q)$$

Employ Chernoff Bound

$$\Pr(X > \mu + \epsilon n) \le \exp(-\frac{1}{3}n\epsilon^2)$$

Analysis VII

we have

$$\Pr(d(s_i|_P, y') > (1+\rho)d_{opt} - d(s_i|_Q, s'|_Q) + \epsilon'|P|) \le \exp(-\frac{1}{3}\epsilon'^2|P|)$$

Let $s'|_P = y'$ and consider all n strings, we claim

$$\Pr(d(s_i, s') < (1+\rho)d_{opt} + \epsilon'|P| \text{ for all } i) \ge 1 - n\exp(-\frac{1}{3}\epsilon'^2|P|)$$

Use standard derandomization methods, we can obtain a deterministic s^\prime that satisfies

$$d(s_i, s') < (1+\rho)d_{opt} + \epsilon'|P|, \quad 1 \le i \le n$$

Recall that $|P| < r \cdot d_{opt}$, let $\epsilon' = \frac{\epsilon}{r}$, we have

$$d(s_i, s') < (1 + \rho + \epsilon)d_{opt}, \quad 1 \le i \le n$$

Then we finish the proof.

Basic Idea

- We want to follow the algorithm of CLOSEST STRING algorithm. However, there is an obstacle: we do not know how to construct an optimization problem, for the reason that we do not konw the optimal substring in each string. Thus, the choice of a "good" substring from every string s_i is the only obstacle on the way to the solution.
- There is a "dead cycle":
 - Suppose we know the center substring s^* , the optimal t_i can be easily determined through comparison within a sliding window.
 - **②** On the other hand, suppose we know all the optimal substrings t_i , s^* can also be approximated using the CLOSESTSTRING algo.
- How to break this cycle? Random sampling!
- Speficically, we first randomly sample O(logmn) positions R. By trying all length |R| strings, we can assume we know $s|_R$. The performance of these positions can be used to estimate the performance on all positions, i.e., for each $i \leq i \leq n$, we find the substring t'_i from s_i such that

 $f(t'_i) = d(s|_R, t'_i|_R) \cdot \frac{|P|}{|R|} + d(t_{i_1}|_Q, t'_i|_Q)$ is minimized. We use

Algorithm for CLOSEST SUBSTRING problem |

 $\begin{array}{ll} \text{Input:} & s_1,s_2,\cdots,s_n\in\Sigma^m \text{, an integer } 1\leq L\leq m \text{, an integer } r\geq 2 \\ \text{and a small number } \epsilon>0. \end{array}$

Ouput : center string *s*

Algorithm :

- for each r-element subset $\{t_{i_1}, t_{i_2}, \cdots, t_{i_r}\}$, where t_{i_j} is a substring of length L from s_{i_j} do
 - let $Q = \{j | t_{i_1}[j] = t_{i_2}[j] = \dots = t_{i_r}[j]\}, P = \{1, 2, \dots, m\} Q$
 - **2** randomly select $\frac{4}{\epsilon^2} \log(mn)$ positions from P, denote as R
 - **③** for every string \tilde{x} of length |R| do
 - for $1 \leq i \leq n$, let t'_i be a length L substring of s_i minimizing $f(t'_i) = d(x, t'_i|_R) \cdot \frac{|P|}{|R|} + d(t_{i_1}|_Q, t'_i|_Q).$
 - Solve the optimization problem

 $\begin{array}{l} \min d \\ s.t. \qquad d(t_i'|_P,y) + d(t_i'|_Q,t_{i-1}|_Q) \leq d, 1 \leq i \leq n \end{array}$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ●

Random rounding the fractional solution \bar{y} to get a approximation solution y. Use derandomization technique to make this step deterministic rather than random.

Algorithm for CLOSEST SUBSTRING problem II

③ Let $s'|_Q = t_{i_1}|_Q$ and $s'|_P = y$. Let $c = \max_{i=1}^n d(s', t'_i)$.

문에 비용에 다

2 for every length
$$L$$
 substring s' of s_1 do

• Let $c = \max_{i=1}^{n} \min_{t_i} d(s', t_i)$.

③ output the s' with minimum c in step 1.3.3 and step 2.1.

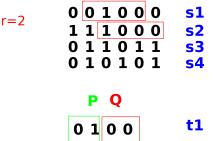
Example of CLOSEST SUBTRING I

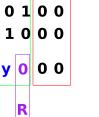
Suppose r=2. In step 1, we should enumerate all $\binom{4}{2}\times 3\times 3=54$ cases. In each cases, we select 2 substring of length 4, calculate P and Q. We fix $s'|_Q=00$. Randomly select $|R|=O(\log(mn))$ positions, say, |R|=1. Then enumerate all length |R| strings, say, $s'|_R=0$.

3 × 4 3 × -

Problem Formulation Algorithm for Closest String Problem Algorithm for

Example of CLOSEST SUBTRING II





t2

s'

э

3 🖌 🖌 3 🕨

Presented by Mingfu Shao Institute of Computing Te CS612 Algorithm Design and Analysis

Example of CLOSEST SUBTRING III

Now, for each s_i , find out the t'_i minimizing $f(u) = d(u|_R, s'|_R) \times 2 + d(u|_Q, s'|_Q)$.



- ₹ € ►

-

Problem Formulation Algorithm for Closest String Problem Algorithm for

Example of CLOSEST SUBTRING IV

Solve the following optimization problem :

$$\min d$$

s.t. $y_{10} + y_{11} = 1$
 $y_{20} + y_{21} = 1$
 $y_{10} + y_{21} + 0 \le d$
 $y_{10} + y_{21} + 0 \le d$
 $y_{10} + y_{21} + 2 \le d$
 $y_{10} + y_{21} + 1 \le d$

Solve this linear programming, and random rounding the fractional solution to integer solution :

$$y_{10} = y_{21} = 0, y_{11} = y_{20} = 1$$

5 N A 5 N

Example of CLOSEST SUBTRING V

So,

$$s' = 1000$$
$$d = \max_{i=1}^{4} d(t_i, s') = \max\{0, 0, 2, 1\} = 2$$

Try all 54 cases, obtain the minimum, denote as $d_0. \label{eq:cases}$ Then we finish step 1.

In step 2, we calculate the radius when t_i is the center string where t_i is a length L substring of s_i . denote the minimum d_1 . Calculate the minimal radius in both step 1 and step 2.

 $d = \min\{d_0, d_1\}$

A 3 b

Analysis I

Theorem

The above algorithm is a PTAS for CLOSEST SUBSTRING problem.

Proof.

The time complexity of the algorithm is $O\left((n^m)^{O(\log |\Sigma|/\delta^4)}\right)$, which is polynomial in terms of n,m.

The proof of approximation guarantee is organized as 3 lemmas as follows :

Lemma 1 proves $s'|_Q$ is a good approximation to s with approximation rate $1 + \frac{1}{2r-1}$. Define $s^*|_P = s|_P$ and $s^*|_Q = t_{i_1}|_Q$, lemma 2 proves $d(s^*, t'_i) \leq d(s^*, t_i) + 2\epsilon |P|$ for all $1 \leq i \leq n$. Based on the above 2 lemmas, Lemma 3 proves the algorithm obtains a approximate solution with rate $(1 + \frac{1}{2r-1} + 3\epsilon r)$.

Analysis II

Lemma 1

There exists $t_{i_1}, t_{i_2}, \cdots, t_{i_r}$ chosen in step 1, such that for any $1 \leq l \leq n$

$$d(t_l|_Q, t_{i_1}|_Q) - d(s_l|_Q, s|_Q) \le \frac{1}{2r - 1} \cdot d_{opt}$$

Proof.

The fact follow from Lemma 1 of $\operatorname{CLOSEST}$ STRING directly.

Lemma 2

Define $s^*|_P = s|_P$ and $s^*|_Q = t_{i_1}|_Q$. Then we have, with high probability

$$d(s^*, t'_i) \le d(s^*, t_i) + 2\epsilon |P|$$

for all $1 \leq i \leq n$.

Analysis III

Proof.

• The randomness comes from the randomly selected |R|. Use standard method, we can derandomize it to make this deterministic.

Lemma 3

step 1.3.3 gives an approximation solution s' with approximation rate $(1+\frac{1}{2r-1}+3\epsilon r).$

Proof. Recall the optimization problem in step 1.2

$\min d$

s.t.
$$d(t'_i|_P, y) + d(t'_i|_Q, s'|_Q) \le d, i = 1, 2, \cdots, n$$

ヨト・イヨト

Analysis IV

 $y = s|_P$ is a feasible solution. Now we calculate its radius when s^* is the center string. Recall that $s^*|_P = s|_P$ and $s^*|_Q = t_{i_1}|_Q$. According to Lemma 2 and Lemma 1

$$\begin{aligned} d(s^*, t'_i) &\leq d(s^*, t_i) + 2\epsilon |P| \\ &\leq d(s|_P, t_i|_P) + d(t_{i_1}|_Q, t_i|_Q) + 2\epsilon |P| \\ &\leq d(s|_P, t_i|_P) + d(s|_Q, t_i|_Q) + 2\epsilon |P| + \frac{1}{2r - 1} d_{opt} \\ &\leq (1 + \frac{1}{2r - 1}) d_{opt} + 2\epsilon |P|) \end{aligned}$$

In a short word, $y = s|_P$ is a solution of the optimization problem with cost at most $(1 + \frac{1}{2r-1})d_{opt} + 2\epsilon|P|)$. Next, as we do in the CLOSEST STRING problem, we rewirte the optimization problem to an ILP and solve it and random rounding the

fractional solution \bar{y} to y. Define $s'|_Q = t_{i_1}|_Q$ and $s'|_P = y$.

Analysis V

$$E(d(s', t'_i)) \le \bar{d} \le (1 + \frac{1}{2r - 1} + 2\epsilon |P|)d_{opt}$$

So, chernoff bound ensures that, with high probability,

$$d(s', t'_i) \leq (1 + \frac{1}{2r - 1})d_{opt} + 2\epsilon |P| + \epsilon |P| \leq (1 + \frac{1}{2r - 1})d_{opt} + 3\epsilon |P| \leq (1 + \frac{1}{2r - 1} + 3\epsilon r)d_{opt}$$

After derandomization, we can obtain an approximation solution s' with rate $(1+\frac{1}{2r-1}+3\epsilon r)d_{opt}.$

э.