CS612 Algorithm Design and Analysis Lecture 17. String matching ¹

Dongbo Bu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

¹The slides are made based on Randomized Algorithm by R. Motwani and P. Raghavan, http://www-igm.univ-mlv.fr/ lecroq/string/, and a lecture by T. Chan. = Dongbo Bu Institute of Computing Technolog CS612 Algorithm Design and Analysis

Outline I

- Introduction
- DFA and KMP methods
- A Monte Carlo method
- Rabin-Karp randomized algrorithm;

B b

INPUT:

Given strings $t = t_1t_2...t_n$, $(t_i \in \{0, 1\}, i = 1, 2, ..., n)$ and $p = p_1p_2...p_m$, $(p_j \in \{0, 1\}, j = 1, 2, ..., m)$, $m \le n$; OUTPUT: Is p a substring of t?

t is called "text" and p is called "pattern".

DFA-based methods

- Brute-force method: checking every possible occurence of p in t. Time-complexity: O(nm) (when searching for a^{m-1}b in aⁿ for instance.)
- DFA-based method:
 - **()** building a DFA for all string containing p;
 - I running this DFA on t;
 - **③** Time-complexity: O(f(m) + n). Here, f(m) denotes the time to build a DFA. It is possible that f(m) = O(m).

e.g.:
$$p = 101$$

KMP and BM algorithms

Sarp-Morris-Parrat method:

• Similar to DFA but with a "compressed" representation of DFA.

i	0	1	2	3	4	5	6	7	8
x[i]	G	С	A	G	A	G	A	G	
kmpNext[i]	$^{-1}$	0	0	$^{-1}$	1	$^{-1}$	1	$^{-1}$	1

Boyer-Moore method:

- The Boyer-Moore algorithm is considered as the most efficient string-matching algorithm in usual applications.
- The algorithm scans the characters of the pattern from right to left beginning with the rightmost one. In case of a mismatch (or a complete match of the whole pattern) it uses two precomputed functions to shift the window to the right. These two shift functions are called the good-suffix shift (also called matching shift and the bad-character shift (also called the occurrence shift).

B b d B b

An interesting sub-problem |

Problem:

- Alice has a string u, and Bob has a string $v,\,u,v\in\{0,1\}^*,$ |u|=|v|=n.
- They want to see whether u = v.

Possible ways:

- transmit n bits;
- **2** transmit a "fingerprint" with $O(d \log n)$ bits;

3 🖌 🖌 3 🕨

A randomized finger-print:

- Let $x = \{0, 1, ..., P 1\}$, where P is a large prime number;
- Define a finger-print $F_x : \{0, 1\}^* \rightarrow \{0, 1, 2, ..., P-1\}$ as follows: $F_x(a_{n-1}a_{n-2}...a_0) = \sum_i a_i x^i \mod P.$

Monte-Carlo algo:

- x = random(0, P 1), where P is a large prime number;
- 2 Alice transfers $F_x(u)$ to Bob;
- **③** Bob calculate $F_x(v)$ first, and reports "Yes" if $F_x(u) = F_x(v)$; Otherwise reports "No" (definitely "No").

医下颌 医下颌

Error analysis:

• Case 1: (u = v). Correct.

2 Case 2: $(u \neq v)$ Error: Bob reports "Yes", i.e., $F_x(u) = F_x(v)$ when $u \neq v$.

$$\begin{aligned} &\Pr(F_x(u) = F_x(v) | u \neq v) \\ &= &\Pr(\sum_{i=0}^{n-1} u_i x^i = \sum_{i=0}^{n-1} v_i x^i \mod P) \\ &= &\Pr(\sum_{i=0}^{n-1} (u_i - v_i) x^i = 0) \\ &\leq & \frac{n-1}{P} \quad \text{by Fact 1.} \end{aligned}$$

↓ ∃ ↓ ↓ ∃ ↓ ∩ Q (~

• $\Pr(F_x(u) = F_x(v)) \le \frac{1}{n^d}$ when setting $P = n^{d+1}$. Fact 1: A polynomial of degree $\le n - 1$ has at most n - 1 roots mod P.

Rabin-Karp randomized algorithm for string matching.

- Rabin-Karp Algo (s,t):
 x = random(0, P 1);
 A = F_x(s₀s₁...s_m), B = F_x(t₀t₁...t_m);
 for i = 0 to n m
 //compare s_{i+1}s_{i+2}...s_{i+m} with t₁t₂...t_m;
 - $\begin{array}{l} \bullet \qquad A = (A a_{i+1}x^m)x + a_{i+m+1} \mod P; \\ \bullet \qquad \text{if (} A == B \text{) return "possibly match";} \\ \bullet \qquad \text{return "No";} \end{array}$
- Time-complexity: O(n).
- Error probability:
 - Let E_i denote the event: algo errs at the *i*-th iteration. We have:
 Pr(E_i) ≤ m-1/P
 Pr(E_i) = Pr(∪_{i=0}^{n-m}E_i) ≤ ∑_i Pr(E_i) ≤ m/P ≤ n²/P
 Pr(Error) = 1/n^d by setting P = n^{d+1}.

通 ト イ ヨ ト 一

A Las Vegas version

Algo:

Run Karp-Rabin;

```
if it returns "No", returns "No";
```

else

```
• Verify s = t;
```

```
if so, return "Yes"; else goto Step 1;
```

Analysis:

- If Karp-Rabin is correct: O(n) time is enough;
- ${\ensuremath{\, \bullet }}$ otherwise, the execution of brute-force algo costs O(mn) time.

Expected running time: $E(T) = O(n)(1 - \frac{1}{n^d}) + O(mn)\frac{1}{n^d} = O(n)$. (setting d = 1)