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Outline

Introduction

Greedy algorithm: Furthest-Future principle;

Label on-line algorithm framework;

The performance of LRU principle;

A randomized on-line algorithm (Fiat et al ’91);

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis



Paging problem I

INPUT:

Given a sequence of requests r1, r2, ..., rn, and a cache of size k;
OUTPUT:

schedule the eviction decisions to reduce cache-missing as much as
possible.
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An example I

An eviction sequence: see a fig.
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A dynamic-programming method I

Subproblem: finding the optimal evictions for requests ri...rn when
cache contents are c1, c2, ..., ck, ci ∈ Σ, |Σ| = m.

Let OPT (i, c1, c2, .., ck) be the optimal solution value to the
subproblem. We have the following recursion:

OPT (i, c1, c2, ..., ck) = min

{

OPT (i + 1, c′1, c
′
2, ..., c

′
k) + 1

OPT (i + 1, c1, c2, ..., ck)
and

OPT (n, c1, c2, ..., ck) = 0.
Here, c′1, c

′
2, ..., c

′
k differs from c1, c2, ..., ck at only one page.

Time-complexity: DP table size: O(nCk
m). Filling each entry takes

k(m − k) + 1 time.
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A greedy solution: Furthest-Future principle (L. Belady,
’66) I

FF rule: evicts the farthest-future element;
Furthest-Future eviction sequence SFF : see a fig.

Theorem

SFF incurs no more missing than any other schedule S∗ and hence is

optimal.

Proof:

Exchange argument again!.

Basic idea: From an optimal schedule S∗, we generate a series of
schedule S1, S2, ..., Sn, such that:

1 The first i evictions of Si are the same to that of SF F . Thus,

Sn = SF F .
2 Si+1 incurs no more missing than Si.
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A greedy solution: Furthest-Future principle (L. Belady,
’66) II

Difficulty: how to construct Si+1 based on Si?
1 Consider the j + 1-th request d. Si and SF F have the same cache

content till now.
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A greedy solution: Furthest-Future principle (L. Belady,
’66) III

2 Suppose Si evicts f but SF F evicts e 6= f . We design Si+1 as

follows:
3 Si+1 evicts e at the j + 1-th step. Now, Si+1 and Si has different

cache content.
4 Si+1 simulates the actions of Si from j + 2 step until the following

two events occurs:
5 Case 1: request g 6= e, f , and Si evict e.

We let Si+1 evict f . The cache are same now. Thus, we can copy

the remaining of Si to Si+1.
6 Case 2: request f and Si evicts e′.

We let Si+1 evict e′, too. And fill e if needed.

Key: the Furthest-Future principle ensures that before an request of
e, there should be a request of f (Case 1).
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Case 1:
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Case 2:
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From FF to LRU

LRU: least recently used.

Intuition: “longest in the past rather than the farthest in the future”
since we have no idea of the future requests.

Reason: locality of reference, i.e., a program will generally keep
accessing the things it has just been accessing.
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Theoretical analysis of LRU principle (Sleator and Tarjan )
I

Key idea: divide the requests into “phases”. Each phase consists of a set
of evictions.
A Label-based algorithm framework:

1 initially make all pages in cache as “old”;

2 when a request of page P arrives,

3 mark P “recent”;

4 if P is not in cache

5 if all cache pages are “recent”,

6 remark all pages “old”, and begin a new phase;

7 choose an old page q to evict;

Old: the pages have already been loaded before this phase.
Recent: the pages are loaded in this phase.
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Theoretical analysis of LRU principle (Sleator and Tarjan )
II
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Theoretical analysis of LRU principle (Sleator and Tarjan )
III

Analysis:
Suppose there are r phases.

Fact 1: Every phase contains k distinct requests. (Reason: when a
page changes from “Old” to “Recent”, it will stay in cache till the
phase ends.)

Fact 2: At each phase, there are at most k evictions. Thus, there
are at most rk evictions. (Intuition: evicting a page cause a page
remarking from “Old” to “Recent”.)

Fact 3: An optimal solution incurrs at least r − 1 missing. (Reason:
the first request of a phase i cause a remarking of a page from
“Old” to “Recent”. )

Therefore, the ratio of any Label-based algorithm is k.

Worst-case: repeating a cycle of requests 1, 2, ..., k + 1 when cache size is
k.
Note: LRU is a Label-based method.
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A randomize algo I

Algo: choose a “random” old page to evict.

Theorem

Let denote the minimal eviction number as F ∗. The expected number of

evictions of RandomEvition algorithm is at most 2 lnkF ∗.

Proof:
Consider phase i.

Let A be the cache content at beginning. Sort A according to the
request order in this phase, say A = {a1, a2, ...ak}

Let bi be the requests that are not in A.

When aj is requested, and aj is marked “Old”; (Reason: the case
that aj is “Recent” is omited since it causes no cache fault.)

#OldPages = k − (j − 1); (Reason: a1, a2, ..., aj−1 are marked
as “Recent”.)
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A randomize algo II

#OldPagesInCache = k − (j − 1) − |bi|; (Reason: a request in
bi evicts an “Old” page out of cache.)

Pages in cache are in random. Thus, we have:

Pr(aj is in cache ) ≥ k−(j−1)−|bi|
k−(j−1) ;

Pr(aj is NOT in cache ) ≤ 1 − k−(j−1)−|bi|
k−(j−1) (cache missing);

E(#missing) ≤ bi +

k
∑

j=1

|bi|

k − (j − 1)
(1)

= |bi| log(k − (j − 1)) (2)

= O(log(k)) (3)

In phase i and i + 1, there are k + bi distinct pages requested. Thus we
can bound the number of faults as follows:

#missing ≥ bi
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A randomize algo III

#total − missing ≥ 1
2

∑

i |bi|

ratio: ≤ 2 log(k).
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