
CS612 Algorithm Design and Analysis
Lecture 16. Paging problem 1

Dongbo Bu

Institute of Computing Technology

Chinese Academy of Sciences, Beijing, China

1The slides are made based on Algorithm Design, Randomized algorithm by R.

Motwani and P. Raghavan, and a lecture by T. Chan.

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

Outline

Introduction

Greedy algorithm: Furthest-Future principle;

Label on-line algorithm framework;

The performance of LRU principle;

A randomized on-line algorithm (Fiat et al ’91);

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

Paging problem I

INPUT:

Given a sequence of requests r1, r2, ..., rn, and a cache of size k;
OUTPUT:

schedule the eviction decisions to reduce cache-missing as much as
possible.

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

An example I

An eviction sequence: see a fig.

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

A dynamic-programming method I

Subproblem: finding the optimal evictions for requests ri...rn when
cache contents are c1, c2, ..., ck, ci ∈ Σ, |Σ| = m.

Let OPT (i, c1, c2, .., ck) be the optimal solution value to the
subproblem. We have the following recursion:

OPT (i, c1, c2, ..., ck) = min

{

OPT (i + 1, c′1, c
′
2, ..., c

′
k) + 1

OPT (i + 1, c1, c2, ..., ck)
and

OPT (n, c1, c2, ..., ck) = 0.
Here, c′1, c

′
2, ..., c

′
k differs from c1, c2, ..., ck at only one page.

Time-complexity: DP table size: O(nCk
m). Filling each entry takes

k(m − k) + 1 time.

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

A greedy solution: Furthest-Future principle (L. Belady,
’66) I

FF rule: evicts the farthest-future element;
Furthest-Future eviction sequence SFF : see a fig.

Theorem

SFF incurs no more missing than any other schedule S∗ and hence is

optimal.

Proof:

Exchange argument again!.

Basic idea: From an optimal schedule S∗, we generate a series of
schedule S1, S2, ..., Sn, such that:

1 The first i evictions of Si are the same to that of SF F . Thus,

Sn = SF F .
2 Si+1 incurs no more missing than Si.

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

A greedy solution: Furthest-Future principle (L. Belady,
’66) II

Difficulty: how to construct Si+1 based on Si?
1 Consider the j + 1-th request d. Si and SF F have the same cache

content till now.

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

A greedy solution: Furthest-Future principle (L. Belady,
’66) III

2 Suppose Si evicts f but SF F evicts e 6= f . We design Si+1 as

follows:
3 Si+1 evicts e at the j + 1-th step. Now, Si+1 and Si has different

cache content.
4 Si+1 simulates the actions of Si from j + 2 step until the following

two events occurs:
5 Case 1: request g 6= e, f , and Si evict e.

We let Si+1 evict f . The cache are same now. Thus, we can copy

the remaining of Si to Si+1.
6 Case 2: request f and Si evicts e′.

We let Si+1 evict e′, too. And fill e if needed.

Key: the Furthest-Future principle ensures that before an request of
e, there should be a request of f (Case 1).

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

Case 1:

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

Case 2:

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

From FF to LRU

LRU: least recently used.

Intuition: “longest in the past rather than the farthest in the future”
since we have no idea of the future requests.

Reason: locality of reference, i.e., a program will generally keep
accessing the things it has just been accessing.

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

Theoretical analysis of LRU principle (Sleator and Tarjan)
I

Key idea: divide the requests into “phases”. Each phase consists of a set
of evictions.
A Label-based algorithm framework:

1 initially make all pages in cache as “old”;

2 when a request of page P arrives,

3 mark P “recent”;

4 if P is not in cache

5 if all cache pages are “recent”,

6 remark all pages “old”, and begin a new phase;

7 choose an old page q to evict;

Old: the pages have already been loaded before this phase.
Recent: the pages are loaded in this phase.

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

Theoretical analysis of LRU principle (Sleator and Tarjan)
II

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

Theoretical analysis of LRU principle (Sleator and Tarjan)
III

Analysis:
Suppose there are r phases.

Fact 1: Every phase contains k distinct requests. (Reason: when a
page changes from “Old” to “Recent”, it will stay in cache till the
phase ends.)

Fact 2: At each phase, there are at most k evictions. Thus, there
are at most rk evictions. (Intuition: evicting a page cause a page
remarking from “Old” to “Recent”.)

Fact 3: An optimal solution incurrs at least r − 1 missing. (Reason:
the first request of a phase i cause a remarking of a page from
“Old” to “Recent”.)

Therefore, the ratio of any Label-based algorithm is k.

Worst-case: repeating a cycle of requests 1, 2, ..., k + 1 when cache size is
k.
Note: LRU is a Label-based method.

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

A randomize algo I

Algo: choose a “random” old page to evict.

Theorem

Let denote the minimal eviction number as F ∗. The expected number of

evictions of RandomEvition algorithm is at most 2 lnkF ∗.

Proof:
Consider phase i.

Let A be the cache content at beginning. Sort A according to the
request order in this phase, say A = {a1, a2, ...ak}

Let bi be the requests that are not in A.

When aj is requested, and aj is marked “Old”; (Reason: the case
that aj is “Recent” is omited since it causes no cache fault.)

#OldPages = k − (j − 1); (Reason: a1, a2, ..., aj−1 are marked
as “Recent”.)

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

A randomize algo II

#OldPagesInCache = k − (j − 1) − |bi|; (Reason: a request in
bi evicts an “Old” page out of cache.)

Pages in cache are in random. Thus, we have:

Pr(aj is in cache) ≥ k−(j−1)−|bi|
k−(j−1) ;

Pr(aj is NOT in cache) ≤ 1 − k−(j−1)−|bi|
k−(j−1) (cache missing);

E(#missing) ≤ bi +

k
∑

j=1

|bi|

k − (j − 1)
(1)

= |bi| log(k − (j − 1)) (2)

= O(log(k)) (3)

In phase i and i + 1, there are k + bi distinct pages requested. Thus we
can bound the number of faults as follows:

#missing ≥ bi

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

A randomize algo III

#total − missing ≥ 1
2

∑

i |bi|

ratio: ≤ 2 log(k).

Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, ChinaCS612 Algorithm Design and Analysis

