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1The slides are made based on Algorithm Design, Randomized algorithm by R.
Motwani and P. Raghavan, and a lecture by T. Chan.
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Introduction
Greedy algorithm: Furthest-Future principle;

°
°

@ Label on-line algorithm framework;
@ The performance of LRU principle;
°

A randomized on-line algorithm (Fiat et al '91);
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PAGING problem |

INPUT:

Given a sequence of requests 71,72, ...,T,, and a cache of size k;
OUTPUT:

schedule the eviction decisions to reduce cache-missing as much as
possible.
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An example |

An eviction sequence: see a fig.
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A dynamic-programming method |

@ Subproblem: finding the optimal evictions for requests r;...r,, when
cache contents are ¢y, co, ..., ¢, ¢; € 5, |E| =m.

@ Let OPT(i,¢1,co,..,ck) be the optimal solution value to the
subproblem. We have the following recursion:

PT(i+1,c,,c,...,¢ 1

OPT(i,cx, ¢ cx) = min 4 OL LU 1561, ¢y ) +
OPT(i+1,¢1,c2, ..., Ck)

OPT(n,c1,c2,y...,ck) = 0.

Here, ¢}, ch, ..., ¢}, differs from ¢1, co, ..., cx at only one page.

and

Time-complexity: DP table size: O(nCF)). Filling each entry takes
k(m — k) + 1 time.
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A greedy solution: Furthest-Future principle (L. Belady,

'66) |

FF rule: evicts the farthest-future element;
Furthest-Future eviction sequence Spp: see a fig.

Theorem

Srr incurs no more missing than any other schedule S* and hence is
optimal.

Proof:

9 Exchange argument again!.
@ Basic idea: From an optimal schedule S*, we generate a series of
schedule S1,Ss, ..., Sy, such that:

@ The first i evictions of S; are the same to that of Spr. Thus,
Sn = SFF.
@ Sit1 incurs no more missing than S;.
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A greedy solution: Furthest-Future principle (L. Belady,
'66) Il

Basic idea: interpolating a sequence of Si to change S*to S_FF.

Two requirements:
1. Si: the first i evitions of Si are same to that of S_FF.
2. Si+1 incurs no more evictions than Si.

@ Difficulty: how to construct S;;; based on S;?
@ Consider the j + 1-th request d. S; and Srr have the same cache
content till now.
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A greedy solution: Furthest-Future principle (L. Belady,

'66) Il

@ Suppose S; evicts f but Spr evicts e # f. We design S;41 as
follows:

© Siy1 evicts e at the j + 1-th step. Now, S;+1 and S; has different
cache content.

@ Siy1 simulates the actions of S; from j + 2 step until the following
two events occurs:

@ Case 1: request g # e, f, and S; evict e.
We let S;4+1 evict f. The cache are same now. Thus, we can copy
the remaining of S; to Sit1.

Q Case 2: request f and S; evicts ¢’
We let S;11 evict €/, too. And fill e if needed.

Key: the Furthest-Future principle ensures that before an request of
e, there should be a request of f (Case 1).
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Case 1:
FF evicts e rather than f since e is
a request farther than f.
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1. Si+1 simulate the action of S_FF first. | 2. Then copy Si's actions. 4. Now Si+1 and Si have the same
Thus, Si+1 differs from Si only at ‘e’ 3. When a request 'f' arrives, cache content; thus Si+1 can simply
and 'f. itis a good chance for Si+1  copy Si's actions.
to change to Si by simply
evicting e'.
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Case 2:
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1. Si+1 simulate the action of S_FF first. = 2. Then copy Si'slactions. 4. Now Si+1 and Si have the same
Thus, Si+1 differs from Si only at 'e’ 3. When Si evicts 'e’, cache content; thus Si+1 can simply
and 'f". Si+1 evicts 'f' to reduce the  copy Si's actions.

difference.
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From FF to LRU

@ LRU: least recently used.
@ Intuition: “longest in the past rather than the farthest in the future”
since we have no idea of the future requests.

@ Reason: locality of reference, i.e., a program will generally keep
accessing the things it has just been accessing.

CS612 Algorithm Design and Analysis

Dongbo Bu



Theoretical analysis of LRU principle (Sleator and Tarjan )

Key idea: divide the requests into “phases’. Each phase consists of a set
of evictions.
A Label-based algorithm framework:

@ initially make all pages in cache as “old";

© when a request of page P arrives,

©@ mark P “recent”;

@ if Pisnot in cache

o if all cache pages are “recent”,

%) remark all pages “old”, and begin a new phase;
@ choose an old page ¢ to evict;

Old: the pages have already been loaded before this phase.
Recent: the pages are loaded in this phase.
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Theoretical analysis of LRU principle (Sleator and Tarjan )

phase 1
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Theoretical analysis of LRU principle (Sleator and Tarjan )

Analysis:
Suppose there are r phases.
@ Fact 1: Every phase contains k distinct requests. (Reason: when a
page changes from “Old” to “Recent”, it will stay in cache till the
phase ends.)

@ Fact 2: At each phase, there are at most k evictions. Thus, there
are at most rk evictions. (Intuition: evicting a page cause a page
remarking from “Old” to “Recent”.)

@ Fact 3: An optimal solution incurrs at least r — 1 missing. (Reason:

the first request of a phase i cause a remarking of a page from
“Old” to “Recent”. )

@ Therefore, the ratio of any Label-based algorithm is k.

Worst-case: repeating a cycle of requests 1,2, ...,k + 1 when cache size is
k.
Note: LRU is a Label-based method.
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A randomize algo |

Algo: choose a “random” old page to evict.

Theorem

Let denote the minimal eviction number as F*. The expected number of
evictions of RandomEvition algorithm is at most 2In kF™.

Proof:
Consider phase i.

@ Let A be the cache content at beginning. Sort A according to the
request order in this phase, say A = {a1,a2,...a;}

@ Let b; be the requests that are not in A.

@ When q; is requested, and a; is marked “Old"; (Reason: the case
that a; is “Recent” is omited since it causes no cache fault.)

e #OldPages =k — (j — 1); (Reason: a1, as,...,aj_1 are marked
as “Recent”.)
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A randomize algo I

o  #OldPagesInCache =k — (j — 1) — |b;|; (Reason: a request in
b; evicts an “Old" page out of cache.)

Pages in cache are in random. Thus, we have:

@ Pr(a; is in cache ) > %

@ Pr(a; is NOT in cache ) <1 — % (cache missing);
°
~ b
E(#missin < b+ — 1
[bi|log(k — (7 — 1)) ()
= O(log(k)) (3)

In phase 7 and ¢ + 1, there are k + b; distinct pages requested. Thus we
can bound the number of faults as follows:

@ #missing > b;
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A randomize algo Il

@ #total — missing > % > 1bil
@ ratio: < 2log(k).
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