
CS711008Z Algorithm Design and Analysis
Lecture 12. Randomized algorithm: a brief introduction 1

Dongbo Bu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

1The slides were made based on Chapter 13 of Algorithm design,
Randomized Algorithm by R. Motwani and P. Raghavan.

1 / 74

Outline

Introduction and nine categories proposed by R. Karp;

The first example: GlobalMinCut problem;

Randomized algorithm in protocol design for distributed
system;

Randomization in approximation algorithm: LP+Random
Rounding;

Randomization coupled with divide-and-conquorer;

Hashing

Why randomized algorithm? Simplicity and speed. For many
applications, a randomized algorithm is the simplest algorithm
available, the fastest, or both.

2 / 74

A brief introduction

3 / 74

How to deal with hard problems? Trade-off “quality” and
“time”

We have a couple of options:
1 Give up polynomial-time restriction: hope that our algorithms run fast on

the practical instances. (e.g. branch-and-bound, branch-and-cut, and
branch-and-pricing algorithms are used to solve a TSP instance with over
24978 Swedish Cities. See
http://www.tsp.gatech.edu/history/pictorial/sw24978.html)

2 Give up optimum restriction: from “optimal” solution to “nearly optimal”
solution in the hope that “nearly optimal” is easy to find. e.g.,
approximation algorithm (with theoretical guarantee), heuristics, local
search (without theoretical guarantee);

3 Give up deterministic restriction: the expectation of running time of a
randomized algorithm might be polynomial;

4 Give up worst-case restriction: algorithm might be fast on special and
limited cases;

4 / 74

Deterministic algorithm

Goal: To prove that the algorithm solves the problem correctly
(always) and quickly (typically, the number of steps should be
polynomial in the size of the input)

(Excerpted from slides by P. Raghavan)

5 / 74

Randomized algorithm

In addition to input, algorithm takes a source of random
numbers and makes random choices during execution.

Behavior can vary even on a fixed input

6 / 74

Two views of randomness in the context of computation

1 The world is random: our algorithm is a deterministic
algorithm that confront randomly generated input, and we can
study the behavior of an algorithm on an “average” input
rather than the worst-case input.

2 The algorithm is random: the world provides the same
worst-case input as always; however, we allow our algorithm
to make random decisions during execution.

7 / 74

Two types of randomzied algorithms

1 Las Vegas: always correct. Analyze its expected running-time.

2 Monte Carlo: correctness depends on the random choice.
Analyze its error probability.

Note: still for worst-case input. (maxInstance expected time, or
maxInstance Pr[error]);

8 / 74

Paradigms for randomized algorithms

9 / 74

Paradigms for randomized algorithm (by R. Karp) I

A handful of general principles lies at the heart of almost all
randomized algorithms, despite the multitude of areas in which
they find application.

1 Foiling an adversary: The classical adversary argument for a
deterministic algorithm establishesa lower bound on the
running time by constructing an input on which the algo fares
poorly. While the adversary may be able to construct an input
to foil one deterministic algo, it is difficult to devise a single
input that is likely to defeat a randomized algo. (online algo,
efficient proof verification)

2 Random sampling: a random sample from a population is
representative of the whole population;

10 / 74

Paradigms for randomized algorithm (by R. Karp) II

3 Abundance of witnesses: To find a witness of a property of an
input (say, “x is prime”). If the witness lies at a search space
that is too large to search exhaustively, it suffices to randomly
choose an element if the space contains a large number of
witnesses.

4 Fingerprinting and hashing: to represent a long string by a
short fingerprint using a random mapping. If two fingerprints
are identical, the two strings are likely to be identical.

5 Random re-ordering input: After the re-ordering step, the
input is unlikely to be in one of the orderings that is
pathological for the naive algorithm;

11 / 74

Paradigms for randomized algorithm (by R. Karp) III

6 Rapidly mixing Markov chains: To count the number of
combinatorial objects, we can randomly sample an
appropriately defined population, which in turn relies on the
information of the number. Solution: defining a Markov chain
on the elements, and showing a short random walk is likely to
sample the population uniformly.

7 Probabilistic methods and existence proofs: To establish that
an object with cetain property exists by arguing that a
randomly chosen object has the property with positive
probability.

8 Load balancing: To spread load evenly among the resources in
a paralell or distributed environment, where resource
utilization decisions have to be made locally without reference
to the global impact of these decisions. To reduce the amount
of explicit communication or synchronization.

12 / 74

Paradigms for randomized algorithm (by R. Karp) IV

9 Isolation and symmetry breaking: In parallel environment, it is
usually important to require a set of processors to find the
same solution (consensus): choosing a random ordering on
the feasible solutions, and tehn requiring the processors to
find the solution with the lowest rank.

13 / 74

The first example: GlobalMinCut problem

14 / 74

Graph algorithm: GlobalMinCut problem

INPUT:

A graph G =< V,E >
OUTPUT: a cut c =< A,B > such that the size of c is
minimized. Here, A,B are non-empty vertex sets and V = A ∪B.

Note: The difference from the s− t cut problem, where two vertex
s and t are given, and we restrict the cut: s ∈ A, and t ∈ B.

15 / 74

A deterministic trial

Basic idea: Transfering undirected graph G to a directed
graph G′ by replacing an edge e = (u, v) with e′ = (u, v) and
e′′ = (v, u), each of capacity 1. Let s be an arbitrary node.
For t = 2 to n, call maximum-flow algorithm to calculate the
minimum s− t cut, and report the minimal one.

Intuition: If (A,B) is a minimum s− t cut in G′, (A,B) is
also a minimum cut among all those that separates s from t.
We need a cut to seperate s from something.

Time-complexity: O(n4).

Note: Gloabl minimum cut can be found as efficiently as s− t
cut by techniques that didn’t requires augmentation-path or a
notion of flow.

16 / 74

Randomized algorithm (D. Karger, ’92)

Advantage: qualitatively simpler than all previous algorithms.

17 / 74

A Las Vegas algorithm for GlobalMinCut problem

18 / 74

Analysis I

Theorem

The contraction algorithm returns a global min-cut with probabilty
at least 1

C2
n
.

Note: a bit counter-intuitive since there are exponentially many
possible cuts of G, and thus the probabilty seems to be
exponentially small.
Proof:

Suppose (A,B) is a global min-cut with k edges. We want a
lower bound of the probability that Contraction algo returns
(A,B).

Complement: failure due to an edge e = (u, v), u ∈ A, v ∈ B
is selected for contracting;

Let Fi be the event that an edge e in the cut is selected at
the i-th iteration. We have:

19 / 74

Analysis II

(The 1-st iteration) Pr[F1] =
k
|E| ≤

k
(1/2)kn = 2

n .

(Reason: Each node v has a degree at least k. Otherwise, the
cut (v, V − v) has a size less than k. Thus, the edge number
is at least (1/2)kn.)

(The j-th iteration) Pr[Fj |Fj−1...F1] ≤ 2
n−j .

(Reason: same argument to G′, where only n− j supernodes
are left.)

Pr[Fn−2 ∩ ... ∩ F1] (1)

= Pr[F1]Pr[F2|F1]...P r[Fn−2|Fn−3 ∩ ... ∩ F1] (2)

≥ (1−
2

n
)(1−

2

n− 1
)...(1 −

2

3
) (3)

=
n− 2

n

n− 3

n− 1

n− 4

n− 2
...
1

3
(4)

=
2

n(n− 1)
(5)

20 / 74

Further reduce failure probability via repeating

Basic idea: running Contraction algo r times will increase the
probabilty to find a global min-cut.

r = C2
n: Pr(FAILURE) ≤ (1− 1

C2
n
)C

2
n ≤ 1

e .

r = C2
n lnn: Pr(FAILURE) ≤ (1− 1

C2
n
)C

2
n lnn ≤ 1

elnn = 1
n .

Time complexity: O(rm) (Contraction algo costs O(m) time.)

21 / 74

Extension: the number of GloablMinCut

Question: what is the maximum number of global min-cuts an
undirected graph G can have?

Not obvious. Consider a directed graph as follows: s together
with any subset of v1, ..., vn constitutes a minimum s− t cut.
(2n cuts in total.)

22 / 74

Extension: the number of GloablMinCut cont’d

Theorem

An undirected graph G on n nodes has at most C2
n global min-cuts.

Proof:

Suppose there are r global min-cut c1, ..., cr;

Let Ci denote the event that ci is reported, and C denote the
success of Contraction algo;

For each i, we have Pr[Ci] ≥ 1
C2

n
.

Thus Pr[C] = Pr[C1 ∪ ... ∪ Cr]=
∑

i Pr[Ci] ≥ r 1
C2

n
. (Note:

= since all Ci are disjoint.)

We get r ≤ C2
n. (r

1
C2

n
≤ 1.)

23 / 74

Randomization in distributed computing

24 / 74

Protocol design: ContentionResolution

INPUT:
Suppose we have n nodes M1, ...,Mn, each competing for access to a
single shared database. The database can be accessed by at most one
node in a single time slice; if two or more nodes attempt to access it
simultaneously, then all nodes are “locked out” for the duration of that
slice.
GOAL:

to design a protocol to divide up the time slices among the nodes in an

equitable fashion. (suppose that the nodes cannot communicate with one

another at all.)

25 / 74

Protocol design: ContentionResolution

A randomized algorithm: Each node will attempt to access
the database at each slice with probability p, independently of
the decisions of others.

Intuition: each node randomizes its behavior.

Symmetry-breaking strategy: If all nodes operated in lockstep,
repeatedly trying to access the database at the same time,
there’d be no progress; but by randomizing, they “smooth
out” the contention.

26 / 74

Analysis of the protocol

Waiting for a particular node to succeed.

Theorem

After Θ(n) time slices, that probability that Mi has not yet
succeeded is less than a constant; and after Θ(n lnn) time slices,
the probability drops to a quite small quantity.

27 / 74

Proof.

Let A(i, t) denote the event that Mi attempts to access DB at time
t, and S(i, t) denote the success of the access.

We have:
Pr[S(i, t)] = Pr[A(i, t)] ×

∏

j ̸=i Pr[A(j, t)] = p(1− p)n−1

By setting the derivative to 0, we get p = 1

n
. And the maximum of

Pr[S(i, t)] is achieved: Pr[S(i, t)] = 1

n
(1− 1

n
)n−1.

1

en
≤ Pr[S(i, t)] ≤ 1

2n
. (Reason: As n increases from 2, (1− 1

n
)n

coverges monotonically from 1

4
to 1

e
, and (1 − 1

n
)n−1 coverges

monotonically from 1

2
to 1

e
.)

Let F (i, t) denote the “failure event” that Pi does not succeed in
any of the slices 1 through t;

Pr[F (i, t)] =
∏t

r=1
Pr[S(i, r)] = (1 − 1

n
(1− 1

n
)n−1)t.

A simpler estimation: Pr[F (i, t)] =
∏t

r=1
Pr[S(i, r)] ≤ (1 − 1

en
)t.

Pr[F (i, t)] ≤ (1 − 1

en
)t ≤ 1

e
when setting t to en.

Pr[F (i, t)] ≤ (1− 1

en
)t ≤ (1

e
)c lnn = n−c when setting t to cen lnn.

28 / 74

Analysis of the protocol

Waiting for all nodes to succeed.

Theorem

With probability at least 1− n−1, all nodes succeed in accessing
the DB at least once within t = 2en ln n time slices.

Proof.

Let F (t) denotes the event that some nodes have not yet
accessed DB after t time slices;

Pr[F (t)] = Pr[
⋃n

i=1 F (i, t)] ≤
∑n

i=1 Pr[F (i, t)]

Pr[F (t)] ≤ n× n−c after t = cen lnn time slices.

In particular, Pr[F (t)] ≤ 1
n after t = 2en ln n time slices.

29 / 74

Protocol design in distributed system: LoadBalance

INPUT: n processors P1, ..., Pn, and m jobs arrive in a stream
and need to be processed immediately;
GOAL: to design a protocol to distribute jobs among processors
evenly. (Assuming no central controller again.)

Randomized algorithm: assign each job to one of the processors
uniformaly at random.

30 / 74

Analysis: how well does this simple algo work? I

Theorem

(A simple case: m = n) With probability at least 1− n−1, there is
no processor that was assigned with over eγ(n) = Θ(logn

log logn) jobs.

31 / 74

Analysis: how well does this simple algo work? II

Proof.

Let Xi denote the number of jobs assigned to Pi. Define an index
random variable Yij as follows: Yij = 1 when job j is assigned to Pi, and
0 otherwise.

We have: Xi =
∑n

j=1 Yij .

Then,

E(Xi) = E(
∑n

j=1
Yij)

=
∑n

j=1
E(Yij)

=
∑n

j=1
Pr(Yij = 1)

= n× 1
n
= 1

Thus Pr[Xi > c] < ec−1

cc
(by Chernoff bound.)

Suppose we have a c such that Pr[Xi > c] < ec−1

cc
≤ 1

n2 , then
Pr[∃i,Xi > c] ≤ n× 1

n2 = 1
n
.

32 / 74

The remaining difficulty: how to choose a c?

Let γ(n) be the solution to xx = n. The estimation of γ(n)
can be given as follows:

Taking logarithm of xx = n gives: x lnx = lnn.

Taking logarithm again: lnx+ ln lnx = ln lnn.

We have: lnx ≤ ln lnn = log x+ ln lnx ≤ 2 ln x (by
log(log(x)) ≤ log(x) Dividing the equation: x lnx = lnn (by
lnln(n) ≥ 0 when n ≥ ee) , we get:
1
2x ≤ lnn

ln lnn ≤ x = γ(n).

Setting c = eγ(n), we have:

Pr[Xi > c] < ec−1

cc < (ec)
c = (1

γ(n))
eγ(n) < (1

γ(n))
2γ(n) = 1

n2 .

33 / 74

γ(n): the solution to x
x = n

34 / 74

More jobs

More jobs: (m = 6n lnn) The expected jobs number is:
µ = 6 ln n. We have:

Pr[Xi > 2µ] < (e4)
6 lnn < (1

e2)
lnn = 1

n2 . (by (e4)
6 < 1

e2 .)

35 / 74

Bounding the sum of independent random variables

36 / 74

Bound 1: Markov inequality

Suppose X is a non-negative random variable with mean
u = E(X).

We have: Pr[X ≥ t] ≤ E(X)
t .

37 / 74

Bound 2: Chebyshev inequality

Suppose X is a random variable with mean u = E(X), and
variance σ2 = V ar(X).

We have: Pr[|X − u| ≥ kσ] ≤ 1
k2 .

Note: the non-negative requirement is removed, but need the
information of variance.

38 / 74

Bound 3: Chernoff bound (upper bound) I

Theorem

(Upper bound) Let X = X1 +X2 + ...+Xn, where Xi is 0/1
variable that takes 1 with probability pi. Define
µ = E(X) =

∑

i pi. For any δ > 0, we have:

Pr[X > (1 + δ)µ] < (eδ

(1+δ)(1+δ))
µ.

(Intuition: the flucuations of Xi are likely to be “cancelled out” as
n increases.)

39 / 74

Bound 3: Chernoff bound (upper bound) II

Proof.

Step 1: Pr[X > (1 + δ)µ] = Pr[tX > t(1 + δ)µ] = Pr[etX >

et(1+δ)µ] ≤ E(etX)
et(1+δ)µ for any t > 0. (Applying Markov inequality

on etX)

Step 2: E(etX) = E(etX1+...+tXn) = E(etX1 ...etXn) (by
independence of Xi.)

Step 3:
E(etXi) = etpi + 1(1− pi) = 1 + pi(et − 1) ≤ epi(et − 1) (by
1 + x ≤ ex, for x > 0.)

Thus we have:

Pr[X > (1 + δ)µ] ≤ E(etX)
et(1+δ)µ ≤

∏
i e

pi(e
t
−1)

et(1+δ)µ = eµ(e
t
−1)

et(1+δ)µ .

Step 4: Setting t = ln(1 + δ).

40 / 74

Bound 3: Chernoff bound (lower bound) I

Theorem

(Lower bound) Let X = X1 +X2 + ...+Xn, where Xi is 0/1
variable that takes 1 with probability pi. Define
µ = E(X) =

∑

i pi. For any δ > 0, we have:

Pr[X < (1− δ)µ] < e−
1
2µδ

2
.

41 / 74

Comparison of Markov inequality and Chernoff bound

Trial: The number of heads in 100 tosses of a coin.
Pr[head] = 0.75. Lines: The real probability (in red); Markov
bound (in blue); Chernoff bound (in green).

42 / 74

LP+Random rounding paradigm: MaxSAT problem

43 / 74

A randomized approximation algorithm for Max3Sat

INPUT:
Given a set of clauses C1, ..., Ck, each of length 3, over a set of
boolean variables X = {x1, ..., xn};
OUTPUT:
to find an assignment to maximize the number of satisfied clauses;

e.g.
C1 : x1 ∨ ¬x2 ∨ x3
C2 : ¬x1 ∨ ¬x2 ∨ x4
C3 : ¬x3 ∨ ¬x4 ∨ x5
C4 : ¬x2 ∨ ¬x4 ∨ x7

44 / 74

Algo1

Algo1 (remarkably simple):

1: set each variable xi to 1 with probability 1
2 .

45 / 74

Algo1 is good

Theorem

The expected number of clauses satisfied by Algo1 is within an
approximation factor 7

8 of optimal.

Proof.

Let X be the number of satisifed clauses. Xi is an index
variable such that Xi = 1 if Ci was satisfied, and Xi = 0
otherwise.

X = X1 + ...+Xk

E(X) = E(X1 + ...+Xk) = E(X1) + ...+ E(Xk) =
7
8k

(E(Xi) =
7
8)

and we have a lower bound: OPT ≤ k.

Thus, E(X) ≥ 7
8OPT .

46 / 74

Extensions

Probability method:

Corollary

There exists at least an assignment to satisfy at least 7
8k clauses.

(Intuition: the expectation is over 7
8k clauses. Just an existence

proof.)

47 / 74

Extensions

Probability method again:

Corollary

All 3SAT instance with at most 7 clauses are satisfied.

(Intuition: The unsatisfied clause number is 1
8k = 7

8 < 1.)

48 / 74

Algo 2

Question: how to find an assignment to satisfy at least 7
8k

clauses?

Algo 2:

1: repeat Algo1 until at least 7
8k clauses are satisfied.

49 / 74

Find a good assignment: analysis I

Theorem

The expected running time of Algo2 is polynomial. In particular,
the expected number of repetition is less than 8k.

50 / 74

Find a good assignment: analysis II

Proof.

Let p be the probability that at least 7
8 clauses are satisfied;

It suffices to prove that 1
p ≤ 8k. (Reason: the expected

waiting time of an event with probability p is 1
p .)

Let pj be the probability that EXACTLY j clauses are
satisfied. We have:

1 p =
∑

j≥
7

8
k
pj ,

2 p+
∑

j<
7

8
k
pj = 1;

3 E(X) = 7

8
k =

∑k
j=1

jpj =
∑

j≥
7

8
k
jpj +

∑

j<
7

8
k
jpj .

Thus,
7
8k ≤

∑

j≥
7
8k

kpj +
∑

j<
7
8k

k′pj = kp+ k′(1− p) ≤ k′ + kp.

(k′ is the max number such that k′ < 7
8k.)

Thus, kp ≥ 7
8k − k′, and p ≥ 1

8k . (since
7
8k − k′ ≥ 1

8 .)

51 / 74

Algo3: “LP+Random Rounding” strategy

52 / 74

ILP formulation

C1 : x1 ∨ ¬x2 ∨ x3
C2 : ¬x1 ∨ ¬x2 ∨ x4
C3 : ¬x3 ∨ ¬x4 ∨ x5
C4 : ¬x2 ∨ ¬x4 ∨ x7
ILP:

max z = z1 + z2 + ...zk
s.t. x1 + (1− x2) + x3 ≥ z1

(1− x1) + (1− x2) + x4 ≥ z2
(1− x3) + (1− x4) + x5 ≥ z3

xi = 0/1
zj = 0/1

53 / 74

Relax ILP to LP

LP:
max z = z1 + z2 + ...zk
s.t. x1 + (1− x2) + x3 ≥ z1

(1− x1) + (1− x2) + x4 ≥ z2
(1− x3) + (1− x4) + x5 ≥ z3

......
xi ≤ 1
zj ≤ 1

54 / 74

LP + Random Rounding

Algo3:

1: Let x∗, z∗ denote the optimal solution to LP.
2: Randomly set variable xi = TRUE with probability x∗i .

55 / 74

Performance

Theorem

A clause Cj is satisfied with a probability at least (1− (1− 1
3)

3)z∗j .

Proof.

Suppose w.l.o.g Cj = x1 ∨ x2 ∨ x3. We have:

Pr(Cj is satisfied) = 1− (1− x∗1)(1− x∗2)(1 − x∗3)

≥ 1− (13 ((1− x∗1) + (1− x∗2) + (1− x∗3)))
3 (by F

≥ 1− (1− 1
3z

∗
j)

3 (by Fact 2.)

≥ (1− (1− 1
3)

3)z∗j (by Fact 3.)

56 / 74

Some facts

Fact 1: The opitmal solution satisfies: x∗1 + x∗2 + x∗3 ≥ z∗j .

Fact 2: (x1x2...xn)
1
n ≤ 1

n(x1 + x2 + ...+ xn)
Fact 3: f(x) = 1− (1− 1

3x)
3 is concave, and greater than

g(x) = (1− (1− 1
3)

3)x at the two ends of [0, 1]. Thus,
f(x) ≥ g(x) for any x ∈ [0, 1].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

1-(1-x/3)^3
(1-(1-1/3)^3)*x

57 / 74

Theorem

(Goemans, W ’94) Algo3 is a (1− 1
e)-approximation algorithm,

where (1− 1
e) = 0.632.

Proof.

Let X be the number of satisfied clauses. Let index variable cj be 1
when clause Cj is satisfied, and 0 otherwise. Thus, X = c1 + c2...+ ck.

E(X) = E(c1) + E(c2) + ...+ E(ck)

=
∑

j
Pr(Cj is satisfied) (previous theorem)

≥
∑

j
(1− (1− 1

3
)3)z∗j

≥ (1− (1− 1

3
)3)

∑

j
z∗j

= (1− (1− 1

3
)3)zLP

≥ (1− (1− 1

3
)3)OPT (by zLP ≥ zILP = OPT)

≥ (1− 1

e
)OPT (by (1− 1

n
)n ≤ 1

e
)

58 / 74

LP+Random rounding paradigm: VLSI Design problem

59 / 74

Problem Statement I

A gate-array is a two-dimensional
√
n×

√
n array of gates

abutting each other.

A net is a set of gates to be connected by a wire. In our
problem, the number of gates in a set is exactly 2.

Assume that the wire for each net contains at most one 90o

turn, called “one-bend” route. Thus, in joining the two
end-points of a net, the wire will either first traverse the
horizontal dimension and then the vertical dimension, or the
other way around. In particular, a net , which connects two
gates in the same column or the same row, only has one
choice.

Let wS(b) denote teh number of wires that pass through
boundary b in a solution S. Here, each of the four edges of a
grid is called a boundary b.

60 / 74

Problem Statement II

The Problem is minS maxb wS(b). (Intuition: not too many wires
pass through any boundary.)

61 / 74

Algorithm I

This problem can be cast as a 0− 1 linear program (because
for each net, there is at most 2 choices.).

For each net i from left end-point to the right end-point, we
define 2 variables xi0 and xi1 to describe the direction of the
wire:

xi0 = 1, xi1 = 0 if net i goes horizontally first

xi0 = 0, xi1 = 1 if net i goes vertically first

For each boundary b in the array, let

Tb0 = {i|net i passes through b if xi0 = 1}
Tb1 = {i|net i passes through b if xi1 = 1}

62 / 74

Algorithm II

With these definitions, our integer program can be expressed
as:

minw

xi0 + xi1 = 1 ∀i
∑

i∈Tb0

xi0 +
∑

i∈Tb1

xi1 ≤ w ∀b

xi0, xi1 ∈ {0, 1}

Let OPT be the objective value of the above ILP .

63 / 74

Algorithm III

We solve instead the linear program relaxation of ILP by
replacing xi0, xi1 ∈ {0, 1} to xi0, xi1 ∈ [0, 1] :

minw

xi0 + xi1 = 1 ∀i
∑

i∈Tb0

xi0 +
∑

i∈Tb1

xi1 ≤ w ∀b

xi0, xi1 ∈ [0, 1]

Let x̂i0 and x̂i1 be the solution, ŵ be the objective value, of the
above LP . Obviously, ŵ ≤ OPT .

64 / 74

LP +Random Rounding

Algo: Randomized Rounding x̂i0 and x̂i1 to 0 and 1.

Indepently for each i, define 2 random variables, x̄i0 and x̄i1.

Pr(x̄i0 = 1, x̄i1 = 0) = x̂i0

Pr(x̄i1 = 1, x̄i0 = 0) = x̂i1

Obviously, E(x̄i0) = x̂i0 and E(x̄i1) = x̂i1.

Now we get a solution S = {x̂i0, x̂i1, i = 1, 2, ..., n} to the
problem, how about its performance?

65 / 74

Analysis I

Theorem

Let ϵ be a real number such that 0 < ϵ < 1. Then with probability
1− ϵ, the solution S produced by randomized rounding satisfies
wS ≤ (1 +∆(ŵ, ϵ/2n))ŵ ≤ (1 +∆(OPT, ϵ/2n))OPT .

where ∆(µ, ϵ) is defined as : if let
[

eδ

(1+δ)1+δ

]µ
= ϵ, then

δ = ∆(µ, ϵ).

Proof

The second inequality is obvious.

In order to prove the first inequality, we just need to prove
that : for any boundary b, the probability that
wS(b) > ŵ(1 +∆(ŵ, ϵ/2n)) is at most ϵ/2n. (Why?)

Consider a boundary b, wS(b) =
∑

i∈Tb0
x̄i0 +

∑

i∈Tb1
x̄i1 then

E(wS(b)) =
∑

i∈Tb0
E(x̄i0) +

∑

i∈Tb1
E(x̄i1) =

∑

i∈Tb0
x̂i0 +

∑

i∈Tb1
x̂i1 ≤ ŵ

66 / 74

Analysis II

According to the Definition of ∆ and Chenoff Bound, we have
Pr(wS(b) > ŵ(1 +∆(ŵ, ϵ/2n))) ≤ ϵ/2n and the theorem
follows.

67 / 74

Randomized divide-and-conquorer

68 / 74

Randomized divide-and-conquorer: Selection problem
I

INPUT:
Given a set of number S = {a1, a2, ..., an}, and a number k ≤ n;
OUTPUT:
the median in S, or the k-th smallest item.

Note: known deterministic linear algorithms, say Blum ’73 (16n
comparisons), and D. Zuick ’95 (2.95n comparisons).
Randomized algorithm:

69 / 74

Randomized divide-and-conquorer: Selection problem
II

70 / 74

Randomized divide-and-conquorer: Selection problem
III

(Intuition: sloving an extension of the original problem, i.e., to find
the k-th median. At first, an element ai is chosen to split S into
two parts S+ = {aj : aj ≥ ai}, and S− = {aj : aj < ai}. We can
determine whether the k-th median is in S+ or S−. Thus, we
perform iteration on ONLY one subset.)
Difficulty: how to choose the splitter?

Bad choice: select the smallest element at each iteration.
T (n) = T (n− 1) +O(n) = O(n2)

71 / 74

Randomized divide-and-conquorer: Selection problem
IV

Ideal choice: select the median at each iteration.
T (n) = T (n2) +O(n) = O(n)

Good choice: select a “centered” element ai, i.e., |S+| ≥ ϵn,
and |S−| ≥ ϵn for a fixed ϵ > 0.
T (n) ≤ T ((1− ϵ)n) +O(n) ≤
cn+ c(1− ϵ)n+ c(1 − ϵ)2n+ = O(n).

e.g.: ϵ = 1
4 :

72 / 74

Randomized divide-and-conquorer: Selection problem
V

Key observation: if we choose a splitter ai ∈ S uniformly at
random, it is easy to get a good splitter since a fairly large fraction
of the elements are “centered”.

Theorem

The expected running time of Select(n,k) is O(n).

73 / 74

Randomized divide-and-conquorer: Selection problem
VI

Proof.

Let ϵ = 1
4 . We’ll say that the algorithm is in phase j when the

size of set under consideration is in [n(34)
j−1, n(34)

j].

Let X be the number of steps. And Xj be the number of
steps in phase j. Thus, X = X0 +X1 +

Consider the j-th phase. The probability to find a centered
splitter is ≥ 1

2 since at least half elements are centered. Thus,
the expected number of iterations to find a centered splitter
is: 2.

Each iteration costs cn(34)
j steps since there are at most

n(34)
j elements in phase j. Thus, E(Xj) ≤ 2cn(34)

j .

E(X) = E(X0 +X1 +) ≤
∑

j 2cn(
3
4)

j ≤ 8cn.

74 / 74

Hashing

(See extra slides)

75 / 74

