
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CS711008Z Algorithm Design and Analysis
Lecture 11. Approximation algorithm: a brief introduction
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Outline

Introduction and the first example: MakeSpan problem;
The key idea in approximation algorithm design: 1)
constructing a feasible solution, and 2) “comparing with lower
bound of OPT” rather than “comparing with OPT”;
How to find a lower bound of OPT? Combinatorial technique,
LP-based techniques (LP-relaxation, duality, etc.);
SetCover: a good example to demonstrate four techniques:
Greedy, LP+Rounding, Dual-LP+Rounding,
Primal_and_dual;
Other techniques: scaling for Knapsack, pruning for
k-Center, TSP, DisjointPaths;

The process of design of approximation algorithm is not very
different from that of design of exact algorithms. It still involves
unraveling the problem structure and finding algorithm techniques
to exploit it.
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How to deal with hard problems?
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How to deal with hard problems?

Most natural optimization problem, including those arising in
important application areas, are NP-Hard.
It is widely believed that there is no efficient algorithm to a
NP-Hard problem.
Recall that efficient algorithm refers to a polynomial-time
deterministic algorithm to find optimal solution even in
worst case.
How to deal with hard problems? Trade-off “quality” and
“time”.
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Trade-off “quality” and “time”

We have a couple of options:
1 Give up polynomial-time in worst-case restriction: though

our algorithm takes exponential time in the worst case, we
hope that the algorithm run fast on the practical instances,
e.g. branch-and-bound, branch-and-cut, and
branch-and-pricing algorithms are used to solve a TSP
instance with over 24978 Swedish Cities (see
http://www.tsp.gatech.edu/history/pictorial/sw24978.html)

2 Give up optimum restriction: from optimal solution to
nearly optimal solution in the hope that nearly optimal is
easy to find, e.g. approximation algorithm (with theoretical
guarantee), heuristics, local search (without theoretical guarantee;

3 Give up deterministic restriction: we hope that the
expectation of running time of a randomized algorithm might
be polynomial;
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Approximation strategy
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Approximation strategy

Although this may seem a paradox, all exact science is dominated
by the idea of approximation.

—— B. Russel
Why do we study approximation algorithms?

1 As an algorithm with theoretical guarantee;
2 As a core algorithmic idea to solve practical problems after fine

tuning;
3 As a mathematically rigorous way to analyze heuristics;
4 As a way to explore deeper into the combinatorial problem

structure, to uncover problem structure;
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Some definitions of approximation algorithm

Definition (α-approximation algorithm)
An algorithm is an α-approximation algorithm for a minimization
problem if:

1 Time: the algorithm runs in polynomial time;
2 Quality: the algorithm outputs a solution S whose value is

within a factor of α of the value of optimal solution (denoted
as OPT), i.e. Value(S) ≤ αOPT.
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Some definitions of approximation algorithm

Definition (PTAS)
A PTAS (polynomial time approximation schema) for a
minimization problem is a family of algorithms {Aϵ : ϵ > 0} such
that for each ϵ, Aϵ is a (1 + ϵ)-approximation algorithm running in
polynomial time in input size.
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The first example: MakeSpan problem
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MakeSpan (LoadBalance) problem

Practical problem:
We have multiple servers to process a set of jobs. Intuitively,
we try to make the loads as balanced as possible.
How to schedule jobs to machines to finish all jobs as early as
possible?
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Problem statement

INPUT:
m servers M1,M2, ...,Mm, n jobs (each job j has a processing time
tj);
OUTPUT:
An assignment of jobs to machines to minimize the makespan , i.e.
the maximum load on any machine, T = maxi

∑
j∈A(i) tj, where

A(i) denotes the jobs assigned to machine i.
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Hardness of MakeSpan problem

Theorem
MakeSpan is a NP-Complete problem.

Proof.
We will prove that Partition ≤P MakeSpan.
Transformation:
Given an instance of Partition problem, we construct an
instance of MakeSpan problem as follows:

1 For each number si ∈ S, new a job i with ti = si;
2 The objective is to find a schedule of these jobs on 2 machines

with makespan T = 1
2
∑

i ti.

Equivalence: It is obvious that a partition corresponds to a
schedule.
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Greedy technique for MakeSpan problem

Key observation: solution is a partition of jobs, or
X = (x1, x2, ..., xn), where xi = 1, 2, ...,m.
Basic idea: Let’s describe the solving process as a series of
decisions. At each decision step, we assign a job to a
machine. Consider a specific job. We have m options.
Greedy rule: To make loads as balanced as possible, it is
reasonable to assign a job to the machine with the smallest
load.
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Greedy algorithm

GreedyMakeSpan1 algorithm
1: for i = 1 to m do
2: Ti = 0; // Ti denotes the load of machine i;
3: Ai = NULL; //initializing all machines with 0 jobs;
4: end for
5: for j = 1 to n do
6: Let k = argminTi;
7: Ak = Ak

∪
{j}; //assigning job j to machine Mk

8: Tk = Tk + tj;
9: end for
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An example

16 / 107



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Analysis

Let T be the makespan reported by GreedyMakeSpan1
algorithm, and OPT be the optimal makespan.
The objective is to measure the quality of T via comparing T
with OPT.

In the example, GreedyMakeSpan1 reports T = 8, which
is not too bad since T will not be greater than 2OPT.
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Using a lower bound of OPT rather than OPT itself

But how can we compare T against OPT while OPT is yet
unknown?
Note that though it is difficult to know OPT, it is usually easy
to obtain a lower bound of OPT.
Thus we can use the lower bound as a bridge to build
connection between T and OPT. More specifically, we
compare T with the lower bound of OPT rather than compare
T with OPT directly.
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Finding a lower bound of OPT

Take MakeSpan problem as an example.
Though OPT is unknown, we can easily set lower bound of
OPT as follows:

1 Key observation 1: OPT ≥ 1
m
∑

j tj =
19
3 .

2 Key observation 2: OPT ≥ tj for any j; thus, OPT ≥ 6.
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MakeSpanAlgo1 is not too bad

Using the lower bounds as bridge, we can prove the following
theorem:

Theorem
T ≤ 2OPT, i.e GreedyMakeSpanAlgo1 is a 2-approximation
algorithm.
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Proof.
Let Mi be the machine with the heaviest load T;
Divide T into two parts: the last job k, and the previous
jobs.Thus T = tk + A, where A denotes the total load of the
previous jobs.
We have T ≤ 2OPT since

1 tk ≤ OPT (by observation 2)
2 A ≤ OPT. Why?

Consider the state whenhe tjob k was assigned to Mi. At that
time, Mi had a total load of A, which is the smallest load of
all machines (by the greedy rule of the algorithm).
Formally, A ≤ 1

m (
∑n

j=1 tj − tk) ≤ 1
m
∑n

j=1 tj ≤ OPT (by key
observation 1).
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Question: is this an accurate analysis?
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A tight example of GreedyMakeSpanAlgo1
algorithm

Consider a special instance: a total of n = m(m − 1) + 1 jobs
with loads t1 = t2 = ... = tn−1 = 1, and tn = m.

GreedyMakeSpan1: T = 2m − 1 (if the largest job n is
processed at the last step).
OPT: OPT = m.
Thus, approximation factor is: α = T

OPT = 2 − 1
m . α can be

arbitrarily close to 2 when m increases.
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Another greedy algorithm for MakeSpan
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Basic idea

Basic idea: The tight example for
GreedyMakeSpanAlgo1 algorithm implies that it is not
wise to process the largest job finally. In other words, it might
be a good idea to process large jobs first.
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Another greedy algorithm

GreedyMakeSpan2 algorithm
1: for i = 1 to m do
2: Ti = 0; //assigning all machines with 0 jobs;
3: Ai = NULL;
4: end for
5: sort jobs in decreasing order of tj; //process large jobs first
6: for j = 1 to m do
7: Let k = argmin Ti; //assign job j to Mk;
8: Ak = Ak

∪
{j};

9: Tk = Tk + tj;
10: end for
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Analysis

Key observation 3: OPT ≥ 2tj for any j ≥ m + 1 if all jobs
were sorted decreasingly.
(Why? Consider the first m + 1 jobs only. At least two jobs
should be assigned to a machine. Thus, OPT ≥ 2tm+1. )
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Analysis

Theorem
T ≤ 1.5OPT, i.e, GreedyMakeSpanAlgo2 is a
1.5-approximation algorithm.

Proof.
Let Mi be the machine with the heaviest load T reported by
GreedyMakeSpanAlgo2 algorithm;
Divide T into two parts: the last job k, and the previous jobs.
Thus T = tk + A, where A denotes the total load of the
previous jobs.
T ≤ 1.5OPT since:

1 tk ≤ 1
2 OPT (by observation 3)

2 A ≤ OPT (the same argument to the last theorem)
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The key steps in approximation algorithm design
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A dilemma

We are facing a dilemma:
1 In order to establish the approximation guarantee, we should

compare the quality of a solution against the quality of the
optimal solution OPT.

2 However, it is NP-Hard to compute the optimal solution value
OPT and to find an optimal solution.

Question: How can we establish the connection with OPT
without the exact value of OPT?
The answer to this question provides a key step in the design
of approximation algorithms.
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The key step in approximation algorithm cont’d

Strategy: Finding a lower bound of OPT and comparing a
solution with the lower bound rather than comparing with
OPT directly!
Key step 1: Although it is NP-Hard to find optimal solution,
it might be polynomial-time computable to find a “tight
lower bound” of OPT.
Key step 2: We should figure out a process to yield a feasible
solution, and compare this solution with the lower bound of
OPT.
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Finding a lower bound

Then how to find a lower bound of OPT?
1 Combinatorial ways: problem specific and thus cohesive; then

we design greedy or DP algorithm;
2 LP-based method as a united way: LP-relaxation, duality, etc.
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Another example: Set Cover problem
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Set Cover problem

Practical problems:
An anti-virus package identifies a viruses based on
characteristic “keywords” set, and a keyword corresponds to
several viruses. The question is how to select a small
“representative” keywords set to detect all viruses.
To form a committee, containing as few people as possible, to
cover all requisite skills;

34 / 107



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Set Cover problem: formulation

Formalized Definition:
INPUT: a set of n elements U = {1, 2, ...,n}, and m subsets of U,
denoted as S1,S2, ...,Sm. Each subset Si has a weight wi.
OUTPUT: to find a collection of subsets, with the minimal weight
sum, such that all elements of U are covered.

Note: SetCover problem plays an important role in
approximation algorithm design as Matching problem in the
design of exact algorithm.

35 / 107



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example

Question: how to choose several subsets, with the minimal
weight sum, such that all elements are covered?
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Greedy algorithm

Key observation: solution is a collection of subsets. Imagine
the solving process as a series of decisions. At each decision
step, we decide to choose a subset or abandon it.
Greedy selection rule: we should consider two aspects of a
subset:

1 the smaller the weight, the better;
2 the more items it covers, the better.

Thus, it is reasonable to select a subset based on “the ratio
of weight over the number of items it covers”.
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Greedy algorithm

Greedy-Set-Cover algorithm
1: I = NULL; //I denotes the index of selected subsets;
2: R = U; // R denotes the remaining elements;
3: while R ̸= NULL do
4: j = argmini

wi
|Si∩R| ;

5: Let pj =
wj

|Sj∩R| ;
6: for all remaining element e ∈ R ∩ Sj do
7: Set price(e) = pj;
8: end for
9: I = I ∪ {j};

10: R = R − Sj;
11: end while

38 / 107



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example: Step 1

Step 1:
R = U = {1, 2, 3, 4, 5, 6, 7, 8};
p1 = w1

|S1∩R| =
6
4 ; p2 = w2

|S2∩R| =
2
2 ; p3 = w3

|S3∩R| =
7
4 ;

p4 = w4
|S4∩R| =

3
5 ; p5 = w5

|S5∩R| =
4
2 ;

Choose S4 since p4 is the smallest one.
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An example: Step 2

Step 2:
R = {1, 3, 7};
p1 = w1

|S1∩R| =
6
2 ; p2 = w2

|S2∩R| =
2
1 ; p3 = w3

|S3∩R| =
7
3 ;

p5 = w5
|S5∩R| =

4
1 ;

Choose S2 since p2 is the smallest one. 40 / 107
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An example: Step 3

Step 3:
R = {1, 3};
p1 = w1

|S1∩R| =
6
2 ; p3 = w3

|S3∩R| =
7
2 ;

Choose S1 since p1 is the smallest one.
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An example: Step 4

Step 4:
R = {}. Done!
Solution: We select I = {S1,S2,S4} with the sum of weight:
11.
Optimal solution: selecting {S3,S4} with the sum of weight:
10. 42 / 107
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Performance analysis

We will prove the following theorem:

Theorem
Greedy-Set-Cover algorithm is an H(f)-approximation
algorithm, where f = maxi |Si|.

Meaning: The algorithm returns a subset I = {S1,S2,S4}
with the total weight of 11. We guarantee that
W = 11 ≤ H(5)OPT = H(5)10.
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Proof.
Let S∗ be the optimal solution, and S be the solution returned by
Greedy-Set-Cover algorithm. We have:∑

Si∈S
wi =

∑
e∈U

price(e) (by Line 7-9) (1)

≤
∑

Sj∈S∗

∑
e∈Sj

price(e) (by S* covers U) (2)

≤
∑

Sj∈S∗

H(|Sj|)wj (by the lemma) (3)

≤
∑

Sj∈S∗

H(f)wj (d is the largest) (4)

= H(f)OPT (5)
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Finding a lower bound

Lemma
For each subset Si,

∑
e∈Si

price(e) ≤ H(|Si|)wi.

Take S1 as an example. We have:

Σe∈S1price(e) = (
w4
5 +

w4
5 ) + (

w1
2 +

w1
2 ) (6)

≤ (
w1
4 +

w1
4 ) + (

w1
2 +

w1
2 ) (7)

≤ (
w1
4 +

w1
3 ) + (

w1
2 +

w1
1 ) (8)

= w1H(4)

Here, the first ≤ is due to the selecting criteria in Step 2, i.e.
p4 = w4

5 is smaller than p1 = w1
4 , and the selecting criteria in

Step 3, i.e. p1 = w1
2 is smaller than p3 = w3

2 .
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Question: is this an accurate analysis?
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A tight example

Consider a special instance: n + 1 subsets with weights
1
n ,

1
n−1 , ...,

1
2 , 1 and 1 + ϵ, respectively.

Optimal solution: selecting only one subset with weight 1 + ϵ;
Greedy-Set-Cover result: selecting n subsets with the
sum of weight 1

n + 1
n−1 + ...+ 1

2 + 1 = H(n).
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LP as a unified approach framework to lower bound OPT

48 / 107



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Lower bound 1: zLP ≤ zILP = OPT
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LP as a unified framework: Step 1

Step 1: Formulate the problem as an integer linear program
(ILP);
We define a 0/1 variable xj for each subset Sj, where xj = 1
means the selection of Sj, and 0 means abandon.
ILP model:

min z =
∑m

j=1 wjxj
s.t.

∑
j:e∈sj

xj ≥ 1 ∀e ∈ U
xj = 0/1 ∀i

Thus we have OPT = zILP, where zILP denotes the optimal
objective value of the ILP model.
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LP as a unified approach framework: Step 2

Step 2: Relaxing ILP into LP;
LP relaxation:

min z =
∑m

j=1 wjxj
s.t.

∑
j:e∈sj

xj ≥ 1 ∀e ∈ U
xj ≥ 0 ∀i
xj ≤ 1 ∀i

Key observation 1: zLP ≤ zILP = OPT, where zLP denotes
the optimal objective value of the LP model.
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LP as a unified approach framework: Step 3

Step 3: Since the LP model might generate a fractional
solution, a clever way should be figured out to transform the
optimal solution to LP (in polynomial-time) to a feasible
solution to ILP, whose objective value is close to the optimal
LP objective value.
The final difficulty: how to obtain a feasible solution to ILP
based on the optimal solution to LP? Rounding!
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Algorithm1: LP+Rounding

LP+Rounding algorithm
1: Solve the linear program LP to get an optimal solution x∗;
2: I = NULL;
3: for all subset Sj do
4: if x∗j ≥ 1

d then
5: I = I + {j};
6: end if
7: end for
8: return I;

Here d denotes the largest coverage of any element in U, i.e.
d = maxe∈U |{j : e ∈ Sj}|.
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An example

min 6x1 + 2x2 + 7x3 + 3x4 + 4x5
s.t. x1 + x3 ≥ 1 (item 1,3)

x1 + x4 ≥ 1 (item 2,4)
x3 + x4 ≥ 1 (item 5)

x2 + x5 ≥ 1 (item 6)
x2 + x3 + x5 ≥ 1 (item 7)
x2 + x4 ≥ 1 (item 8)

xi ≥ 0
xi ≤ 1

LP optimal solution: x1 = 0.5; x2 = 1; x3 = 0.5; x4 = 0.5; x5 = 0;
Objective value of LP: 10. (zLP ≤ zILP = OPT.)
Rounding solution: x′1 = 1; x′2 = 1; x′3 = 1; x′4 = 1; x′5 = 0;
Objective value: 18 ≤ d × zLP.
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Correctness of Algorithm1

Theorem
Algorithm1 yields a set cover.

Proof.
(by contradiction)

Suppose there is an element e not covered, i.e. e /∈ ∪j∈ISj.
Then for each Sj that contains e as a member, we have
x∗j < 1

d ; (Otherwise, Sj should be selected by Algorithm1.)
Thus,

∑
j:e∈Sj

x∗j < 1
d |{j : i ∈ Sj}| ≤ 1.

A contradiction against the linear program constraints.
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Analysis of Algorithm1

Theorem
(Hochbaum ’82) Algorithm1 is a d-approximation algorithm for
SetCover.

Proof.

Algorithm1 returns a collection I with cost: C =
∑

j∈I wj;

C =
∑

j∈I
wj

≤
∑

j∈I
wjx∗j d

≤
∑m

j=1
wjx∗j d

= d ×
∑m

j=1
wjx∗j

= d × zLP

≤ d × OPT

Here, the first inequality follows due to the “rounding criteria”, i.e.
x∗j ≥ 1

d .
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Lower bound 2: zDual ≤ zLP ≤ zILP = OPT
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Algorithm2: Dual LP + Rounding

Basic idea: rounding the dual solution.
Dual:

max d =
∑

e∈U ye
s.t.

∑
e:e∈Sj

ye ≤ wj ∀Sj
ye ≥ 0 ∀e ∈ U
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Dual provides another lower bound

Key observation 2:
∑

e ye ≤ zLP ≤ OPT for any feasible dual
solution y;
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Algorithm2: Dual LP + Rounding

Dual LP + Rounding Algorithm
1: Solve the dual LP to get an optimal solution y∗;
2: I = NULL;
3: for all subset Sj do
4: if

∑
e:e∈Sj

y∗e = wj then
5: I = I + {j};
6: end if
7: end for
8: return I;
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An example

max y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8
s.t. y1 + y2 + y3 + y4 ≤ 6

y2 y7 + y8 ≤ 2
y1 + y3 + y5 + y7 ≤ 7

y2 + y4 + y5 + y8 ≤ 3
y6 + y7 ≤ 4

yi ≥ 0

Dual LP optimal solution: y1 = 6; y2 = 0; y3 = 0; y4 = 0; y5 = 0; y6 = 3;
y7 = 1; y8 = 0;
Objective value of Dual: 10 (zDualLP ≤ zLP ≤ zILP = OPT.)
Tight constraints: I = {1, 3, 4, 5};
Objective value: 20 ≤ d ∗ zDualLP.
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Correctness of Algorithm2

Theorem
Algorithm2 yields a set cover.

Proof.
(by contradiction again)

Suppose there is an element ê that is not covered by the
selected subsets in I;
Then for ALL Sj containing ê, we have

∑
e:e∈Sj

y∗e < wj;
(Otherwise, a Sj should be selected and thus e will be
covered.)
Thus, increasing y∗ê (by a small positive amount) will increase
the objective function value of dual LP without violating the
constraints. A contradiction with the optimality of y∗.
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Analysis of Algorithm2

Theorem
Algorithm2 is a d-approximation algorithm.

Proof.
Let C denote the sum weight of the subsets that Algorithm2
returns, i.e. C =

∑
j∈I wj. We have:

C =
∑

j∈I
wj

=
∑

j∈I

∑
e:e∈Sj

y∗e

≤ d
∑

e:e∈U
y∗e (since any e was included at most d times)

= dzDual LP

≤ dOPT (since zDual LP ≤ zLP ≤ zILP)
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Lower bound 3:
value of any dual feasible solution ≤ zDual ≤ zLP ≤ zILP = OPT
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Algorithm3: Primal_dual + Rounding

Basic idea: a feasible dual solution is enough for lower
bounding OPT. Thus, we can employ primal_dual strategy to
construct a feasible dual solution rather than solving Dual LP
to get an optimal dual solution.
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Algorithm3: Primal_dual + Rounding

Primal_Dual + Rounding Algorithm3
1: I = NULL;
2: ye = 0 for all e ∈ U;
3: while exists an element ê not covered do
4: for all subset Sj containing ê do
5: gj = wj −

∑
e:e∈Sj

ye; // calculate the gap of constraint j;
6: end for
7: i = argminj gj;
8: yê = yê + gi;
9: I = I ∪ {i};

10: end while
11: return I;
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An example: Step 1

Initially, we have yi = 0 for all 1 ≤ i ≤ 8.
Consider element y2. There are two constraints S1 and S4.
We increase y2 to 3 (selecting S4).
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An example: Step 2

Consider element y1. There are two constraints S1 and S3.
We increase y1 to 3 (selecting S1).
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An example: Step 3

Consider element y7. There are three constraints S2, S3 and
S5.
We increase y7 to 2 (selecting S2).
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An example: Step 4

All elements have been covered. Done!
Dual solution:
y1 = 3; y2 = 3; y7 = 2; y3 = y4 = y5 = y6 = y8 = 0;.
Dual objective value: 8. (Dual feasible solution,
z ≤ zDual ≤ zLP ≤ zILP = OPT)
Tight constraints: I = {S4,S1,S2}
Objective value: 11 ≤ d × z ≤ d × zDual ≤ d × OPT
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Correctness
Lemma
Algorithm3 yields a dual feasible solution y, and

∑
e:e∈Sj

ye = wj for any
j ∈ I.

Proof.

Base case: y = 0 is dual feasible since
∑

e:e∈Sj
ye = 0 ≤ wj;

Induction: assuming that y is dual feasible before an iteration of
while loop, i.e.

∑
e:e∈Sj

ye ≤ wj. Suppose we increase yê by gi to
generate a new solution y′. We will show that y′ is also a dual
feasible solution.∑

e:e∈Sj
ŷ′e =

∑
e:e∈Sj

ye + gi (gi is minimal)

=
∑

e:e∈Sj
ye + (wi −

∑
e:e∈Si

ye)

≤
∑

e:e∈Sj
ye + (wj −

∑
e:e∈Sj

ye)

= wj

71 / 107



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Performance analysis

Theorem
(Bar-Yehuda, Even ’81) Algorithm3 is a d-approximation algorithm.

Proof.
Let C denote the sum weight of subsets generated by Algorithm2,
i.e. C =

∑
j∈I wj. We have:

C =
∑

j∈I
wj

=
∑

j∈I

∑
e:e∈Sj

ye ( by lines 9-10)

≤ d
∑

e:e∈U
ye ( e is covered at most f times)

≤ dzDual (y is a dual feasible solution )

≤ dOPT (since y is only a dual feasible solution)
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Another example of rounding: the generalization of Makespan
problem
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The generalization of Makespan problem

Practical problem: We have multiple servers to process a set of
jobs. However, some machines cannot be assigned to a job. How
to schedule jobs to machines as “balanced” as possible?
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Formulation

INPUT:
m servers M1,M2, ...,Mm, n jobs J = {1, ..,n} (each job j has a
processing time tj). Each job j has a subset of machines
Sj ⊂ {M1, ...,Mm} that it can use.
OUTPUT:
An assignment of jobs to machines to minimize the makespan , i.e.
the maximum load on any machine, T = maxi

∑
j∈A(i) tj, where

A(i) denotes the jobs assigned to machine i;
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ILP formulation

(ILP)

min L
s.t.

∑m
i=1 xji = tj for all j ∈ J∑n
j=1 xji ≤ L for all i

xji = 0/tj for all j ∈ J, i ∈ Sj
xji = 0 for all j ∈ J, i /∈ Sj

(Intuition: xji indicates how much of the load of tj is assigned to
machine Mi; )
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Relax from ILP to LP

(LP)
min L
s.t.

∑m
i=1 xji = tj for all j ∈ J∑n
j=1 xji ≤ L for all i

xji ≤ tj for all j ∈ J, i ∈ Sj
xji ≥ 0 for all j ∈ J, i ∈ Sj
xji = 0 for all j ∈ J, i /∈ Sj

Key observation 1: zLP ≤ zILP = OPT
Key observation 2: maxj tj ≤ OPT
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An example

(LP)
min z = L

s.t. x12 +x13 = 6
x21 +x22 +x23 = 9
x31 +x32 +x33 = 15

x21 +x31 ≤ L
x12 +x22 +x32 ≤ L
x13 +x23 +x33 ≤ L

xji ≥ 0
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How to construct a valid schedule from LP solution?

Suppose we have already obtained a solution to the LP. The
final question is: how to construct a valid schedule from the
LP solution?
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How to construct a valid schedule from LP solution?

Recall that for any job j, we have tj = xj1 + xj2 + ...+ xjm.
There are two possible cases:

1 ∃i, xji = tj (called “integral job”): Intuitively, job j was
scheduled to machine Mi as a whole, e.g. job 1.

2 ∀i, xji < tj (called “fractional job”): Intuitively, job j was
decomposed into parts, which were distributed to different
machines, e.g., two parts of job 2 was distributed to M1 and
M2.

The difficulty is how to deal with fractional jobs.
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Two possibilities of the fractional jobs

Let’s focus on the fractional jobs via:
Removing the ”integer jobs”;
Removing the unused assignments, i.e. xji = 0;

There are two possibilities:
1 The assignment contains no cycle;
2 The assignment contains one or more cycles;
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Case 1: the assignment contains no cycle

In this case, a valid schedule can be constructed via the
following rounding strategy:

1 Rounding: If a part of a fractional job j was scheduled to
machine Mi, we can simply schedule the whole job j to Mi.

2 Restriction: Each machine receives at most one fractional job.
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Implementing rounding

The rounding operation is feasible since:
1 “No cycle” means a tree rooted at a job.
2 Notice that any leaf should be a “machine” rather than a

“job” (Reason: a “leaf job” is connected with its parent only;
thus it should be an “integer job”)

3 So we can simply assign a fractional job completely to an
arbitrary child, say assign J2 to M1, and assign J3 to M2.

Time complexity: O(mn).
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Case 1: the assignment contains no cycle cont’d

Combining the ”integer jobs”, we will have the following
schedule:
JM1 = {2}; JM2 = {1}; JM3 = {3}.

MakeSpan= 15 ≤ 2 × zLP = 20
We can show that the rounding strategy won’t introduce too
many load to any machine.

84 / 107



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem
MakeSpanApprox is a 2-approximation algorithm.

Proof.
Let T denotes the makespan that MakeSpanApprox yields, and T is
obtained from machine Mi.
Let Ji denote the jobs assigned to Mi. Ji consists of two parts: integral
jobs assigned to machine i (xij = tj), and at most one fractional job
(denoted as fi) that is assigned to multiple machines (xij < tj). We have:

T =
∑

j∈Ji
tj (9)

=
∑

j∈Ji,j̸=fi
tj + tfi (10)

=
∑

j∈Ji,j̸=fi
xij + tfi (by the definition of integral jobs) (11)

≤
∑

j∈Ji
xij + tfi (12)

≤ zLP + tfi (13)
≤ zLP + OPT ( by key observation 2) (14)
≤ 2OPT (by key observation 1) (15)
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Case 2: the assignment contains cycles

In fact, any cycle can be eliminated without load changes for
any machine using the following “augmentation” operation:

1 Consider a cycle C. We first find the smallest load (denoted as
δ);

2 Increasing/decreasing loads by δ on edges in the cycle;
3 Thus the cycle will be eliminated without no influence on the

loads. For example, edge J1 − M3 is cut to break the cycle.
Time complexity: O(|C|) for cycle C. The operation will be
repeated at most O(mn) times to remove all cycles.
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MakeSpanApprox Algorithm
1: Solving the LP model to get solution xij;
2: Removing cycles in the schedule graph via augmentation;
3: for i = 1 to m do
4: assigning integral job j to i if xij = tj;
5: assigning at most one fractional job to i;
6: end for
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Other useful technique: scaling and parametric pruning
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Other combinatorial techniques

Scaling: rounding a real number to an integer; grid;
Parametric pruning: Suppose we have already known OPT,
we might be able to prune away irrelevant parts of the input
and thereby simplify the search for a good solution.
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Scaling technique: from pseudo polynomial time algorithm to
PTAS
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Knapsack problem

Given a set of items, each item has a weight and a value, to
determine a set of items such that the total weight is less than a
given limit and the total value is as large as possible.

Formalized Definition:
Input:
a set of items. Item i has weight wi and value vi, and a total
weight limit W;
Output:
the set of items which maximize the total value with total
weight below W
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A Knapsack instance

What’s the best solution?
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A Knapsack instance

Greedy solution:

Note: there are two types of dynamic programming algorithms to
solve Knapsack problem.
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Dynamic programing algorithm 1
Imagine the solving process as a series of decisions.
Suppose we have already obtained the optimal solution S.
Let’s consider the first decision step, we have two options:
select item n, or abandon it.
Thus the general form of sub-problems can be set as: to
calculate the maximum value of any solution using a subset of
the items {1, 2, ..., i} and a bag of size w, denoted as
OPT(i,w).
Our objective: OPT(n,W).
Optimal sub-structure:
OPT(n,W) = max{OPT(n−1,W),OPT(n−1,W−wn)+vn};
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Knapsack DP1
1: for w = 1 to W do
2: M[0,w] = 0;
3: end for
4: for i = 1 to n do
5: for w = 1 to W do
6: M[i,w] = max{M[i − 1,w],wi + M[i − 1,w − wi]};
7: end for
8: end for
9: return M[n,W];

Time complexity: O(nW). Pseudo polynomial time.
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A dual problem

INPUT: a set of n items. An item i has weight wi and value vi.
The value requirement V;
OUTPUT: to select a subset of items to minimise the total
weight with value at least V;

Note: if this problem was solved, the Knapsack problem can be
solved by by finding the largest value V such that
OPT(n,V) ≤ W.
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Dynamic programming algorithm 2

Imagine the solving process as a series of decisions.
Suppose we have already obtained the optimal solution S.
Let’s consider the first decision step, there are two
possibilities: select item n or abandon it;
The general form of sub-problems: to calculate the smallest
bag size, i.e. the bag can hold a subset of items {1, 2, ..., i}
with value at least V (denoted as OPT(i,V));
Our objective: the largest V such that OPT(n,V) ≤ W.
(Notice that V ≤ nv∗, where v∗ = maxi{vi});
Optimal sub-structure:

OPT(n,V) = min


OPT(n − 1,V) abandon item n
wn select item n only
wn + OPT(n − 1,V − vn) otherwise
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Dynamic programming algorithm 2 cont’d

Knapsack DP2
1: for i = 0 to n do
2: M[i, 0] = 0;
3: end for
4: for i = 1 to n do
5: for V = 1 to

∑i
k=1 vk do

6: if V >
∑i−1

k=1 vk then
7: M[i,V] = wi + M[i − 1,V − vi];
8: else
9: M[i,V] = min{M[i − 1,V],wi,wi + M[n − 1, v − vi]};

10: end if
11: end for
12: end for
Time complexity: O(n2v∗). Still pseudo-polynomial time.
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Converting pseudo-polynomial time algorithm to PTAS

Basic idea: the algorithm is good when v∗ is small. But how
to deal with the case when v∗ is large? Scaling!
More specifically, a large vi can be scaled to a smaller
v̂i = ⌈ vi

b ⌉. We denote vi = v̂ib;
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A PTAS for Knapsack

Knapsack-Approx(ϵ)
1: Let v∗ = maxi vi;
2: Let b = ϵ

nv∗;
3: Calculate v̂i = ⌈ vi

b ⌉ for each item i;
4: Run KnapsackDP2 on the items with value v̂i and return the

optimal solution S;
Knapsack-Approx algorithm runs in polynomial time.
In fact, the running time is O(n2v̂∗) = O(n2 v∗

b ) = O(n3

ϵ ).
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Experimental results

Experimental results on an instance:

b v ϵ W # OP Time (ms)
1 2223975 0.001 1768 889590000 18352.128
3 741325 0.010 1768 98843333 5990.893
5 444800 0.028 1768 35584000 3649.624

10 222400 0.112 1768 8896000 1836.567
30 74125 1.011 1768 988333 620.822
50 44475 2.810 1768 355800 381.982

100 22250 11.236 1768 89000 183.707
300 7425 101.010 1768 9900 60.422
500 4450 280.899 1768 3560 38.340

1000 2225 1123.6 1768 890 17.943
3000 750 10000 1809 100 6.872
5000 450 27777.8 1809 36 4.059

10000 225 111111 1809 9 3.134
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Performance analysis

Theorem
Let S be the solution yielded by Knapsack-Approx algorithm, and
S∗ be any feasible solution such that

∑
i∈S∗ wi ≤ W. We will show

that
∑

i∈S vi ≥ 1
1+ϵ

∑
i∈S∗ vi.

Proof.

∑
i∈S∗

vi ≤
∑

i∈S∗
vi (by vi ≤ vi) (16)

≤
∑

i∈S
vi (S is optimal solution) (17)

≤
∑

i∈S
(vi + b) (by vi ≤ vi + b) (18)

≤ nb +
∑

i∈S
vi (19)

≤ (1 + ϵ)
∑

i∈S
vi (since nb ≤ ϵ

∑
i∈S

vi) (20)
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Why b was set to b = ϵ
nv∗?

Note: b is set to b = ϵ
nv∗ according to two sides of considerations:

1 Time-complexity: O(n2 v∗
b ) is polynomial in n and 1

ϵ .
2 Approximation ratio: nb ≤ ϵ

∑
i∈S vi.
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Parametric pruning
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Parametric pruning

The algorithm consists of three steps:
1 Pruning: Suppose we have a guess of OPT, denoted as

parameter t. For each given t, the input instance will be
pruned by removing the parts that will not be used in any
solution with cost > t. Denote the pruned instance as I(t).

2 Lower bound: the family of I(t) is used for computing a lower
bound of OPT, say t∗;

3 Good solution: a solution is found in instance I(αt∗) for a
suitable choice of α.
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Parameter pruning for K-center problem

(See extra slides)
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Appendix: Partition is NP-Complete

Partition problem is to decide whether a given multiset of
integers can be partitioned into two ”halves” that have the
same sum.
More precisely, given a multiset S of integers, is there a way
to partition S into two subsets S1 and S2 such that the sum of
the numbers in S1 equals the sum of the numbers in S2?
Partition problem can be easily proved to be NP-complete
via a reduction from SubsetSum problem.
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