
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CS711008Z Algorithm Design and Analysis
Lecture 10. Algorithm design technique: Network flow and its

applications

Dongbo Bu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

1 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

MaxFlow problem: Ford-Fulkerson algorithm,
MaxFlow-MinCut theorem;
A duality explanation of Ford-Fulkerson algorithm and
MaxFlow-MinCut theorem;
Efficient algorithms for MaxFlow problem: scaling
technique, Edmonds-Karp algorithm, Dinic’s algorithm
(the original version and Even’s version), Karzanov
algorithm and Push-Relabel algorihtm;
Extensions of MaxFlow problem: lower bound of capacity,
multiple sources & multiple sinks, indirect graph.

2 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A brief history of MinCut problem I

Figure: Soviet Railway network, 1955

3 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A brief history of MinCut problem II

“From Harris and Ross [1955]: Schematic diagram of the
railway network of the Western Soviet Union and Eastern
European countries, with a maximum flow of value 163,000
tons from Russia to Eastern Europe, and a cut of capacity
163,000 tons indicated as ‘the bottleneck’ ...”
A recently declassified U.S. Air Force report indicates that the
original motivation of MinCut problem and
Ford-Fulkerson algorithm is to disrupt rail transportation
of the Soviet Union [A. Shrijver, 2002].

4 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

MaxFlow problem and MinCut problem

5 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

MaxFlow problem

INPUT:
A directed graph G =< V,E >. Each edge e has a capacity Ce.
Two special nodes: source s and sink t;
OUTPUT:
For each edge e = (u, v), to assign a flow f(u, v) such that∑

u,(s,u)∈E f(s, u) is maximized.

s

u

v

tc1 =
2 c4 = 2

c3
=

3
c2 = 1 c5 =

1

Intuition: to push as many commodity as possible from source s
to sink t.

6 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

s − t flow

1/2 0/21
/3

0/1 1/1

s

u

v

t

Definition (s − t flow)
f : E → R+ is a s − t flow if:

1 (Capacity constraints): 0 ≤ f(e) ≤ Ce for all edge e;
2 (Conservation constraints): For any intermediate vertex

v ∈ V − {s, t}, fin(v) = fout(v), where fin(v) =
∑

e into v f(e)
and fout(v) =

∑
e out of v f(e). (Intuition: input = output for

any intermediate vertex.)
The value of flow f is defined as |f| = fout(s).

7 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

MinCut problem

INPUT:
A directed graph G =< V,E >. Each edge e has a capacity Ce.
Two special nodes: source s and sink t;
OUTPUT:
Find an s − t cut with the minimum cut capacity.

c1 =
2 c4 = 2

c3
=

3
c2 = 1 c5 =

1S

S̄

s

u

v

t

C(S, S̄) = 3

8 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

s − t cut

Definition (s − t cut)
An s − t cut is a partition (S, S̄) of V such that s ∈ S and t ∈ S̄.
The capacity of a cut (S, S̄) is defined as
C(S, S̄) =

∑
e from S to S̄ C(e).

c1 =
2 c4 = 2

c3
=

3
c2 = 1 c5 =

1S

S̄

s

u

v

t

C(S, S̄) = 3

9 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A brief history of algorithms to MinCut problem

Year Developers Time-complexity
1956 L. R. Ford and D. R. Fulkerson O(mC)
1970 Y. Dinitz O(mn2)
1972 J. Edmonds and R. Karp O(m2n)
1974 A. Karzanov O(n3)

1986 A. Goldberg and R. Tarjan O(mn2), O(n3), O(mn log(n2

m))
2013 J. Orlin O(mn)

10 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Ford-Fulkerson algorithm [1956]

11 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Lester Randolph Ford Jr. and Delbert Ray Fulkerson

Figure: Lester Randolph Ford Jr. and Delbert Ray Fulkerson

12 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Trial 1: Dynamic programming technique

Dynamic programming doesn’t seem to work as it is not easy
to define appropriate sub-problems. In fact, there is no
efficient algorithm known for Maximum Flow problem that
can really be viewed as belonging to the dynamic
programming paradigm.
We know that the MaxFlow problem is in P since it can be
formulated as a linear program (See Lecture 8). However, the
network structure has its own property to enable a more
efficient algorithm, informally called network simplex. In
addition, special-purpose algorithms are more efficient.

13 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Trial 2: Improvement strategy

Let’s return to the general Improvement strategy:
Improvement(f)

1: x = x0; //starting from an initial solution;
2: while TRUE do
3: x =Improve(x); //move one step towards optimum;
4: if Stopping(x, f) then
5: break;
6: end if
7: end while
8: return x;

14 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Three key questions of Improvement strategy

Three key questions:
1 How to construct an initial solution?

For MaxFlow problem, an initial solution can be easily
obtained by setting f(e) = 0 for any e (called 0−flow). It is
easy to verify that both conservation and capacity
constraints hold for the 0-flow.

2 How to improve a solution?
3 When shall we stop?

15 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A failure start: augmenting flow along a path in the
original graph

Let p be a simple s − t path in the network G.
1: Initialize f(e) = 0 for all e.
2: while there is an s − t path in graph G do
3: Arbitrarily choose an s − t path p in graph G;
4: f =augment(p, f);
5: end while
6: return f;

16 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Augmenting flow along a path

We define bottleneck(p, f) as the minimum residual capacity
of edges in path p.
augment(p, f)

1: Let b = bottleneck(p, f);
2: for each edge e = (u, v) ∈ p do
3: Increase f(u, v) by b;
4: end for

17 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Why we failed?

Consider the following example. We start from 0-flow and find
a s − t path in G, say p = s → u → v → t, to transmit one
more unit of commodity to increase the value of f.
However we cannot find a s − t path in G again to increase f
further (left panel) although the maximum flow value is 2
(right panel).

s

u

v

t

1/1 0/1

1
/1

1/10/1

|f| = 1

s

u

v

t

1/1 1/1

0
/1

1/11/1

|f| = 2

18 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Ford-Fulkerson algorithm: “undo” functionality

Key observation:
When constructing a flow f, one might commit errors on some
edges, i.e. the edges should not be used to transmit
commodity. For example, the edge u → v should not be used.

s

u

v

t

1/1 0/1

1/1
1/10/1

|f| = 1

To improve the current flow f, we should work out ways to
correct these errors, i.e. “undo” the transmission assigned on
the edges.

19 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Implementing the “undo” functionality

But how to implement the “undo” functionality?
Adding backward edges!
Suppose we add a backward edge v → u into the original
graph. Then we can correct the transmission via pushing back
commodity from v to u.

s

u

v

t

1/1 0/1

1
/1

1/10/1

Flow f

s

u

v

t0
1

01

0
1

1

1

Backward edges

20 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Residual graph with “backward” edges to correct errors

Definition (Residual Graph)
Given a directed graph G =< V,E > with a flow f, we define
residual graph Gf =< V,E′ >. For any edge e = (u, v) ∈ E, two
edges are added into E′ as follows:

1 Forward edge (u, v) with residual capacity:
If f(e) < C(e), edge e = (u, v) will be added to G′ with capacity
C(e) = C(e)− f(e).

2 Backward edge (v, u) with undo capacity:
If f(e) > 0, edge e′ = (v, u) will be added to G′ with capacity
C(e′) = f(e).

21 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finding an s − t path in Gf rather than G

s

u

v

t

1/1 0/1

1
/1

1/10/1

Flow f

s

u

v

t0
1

01

0
1

1

1

Residual graph Gf

Note that we cannot find an s − t path in G; however, we can
find an s − t path s → v → u → t in Gf, which contains a
backward edge (v, u).

22 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Augmenting the flow f along an s − t path in Gf

s

u

v

t
1/1 0/1

1/1

1/10/1

Flow f +

s

u

v

t0
1

01

0
1

1

1

An s − t path in Gf =

s

u

v

t
1/1 1/1

0/1

1/11/1

New flow f′

By using the backward edge v → u, the initial transmission
from u to v is pushed back.
More specifically, the first commodity transferred through flow
f changes its path (from s → u → v → t to s → u → t), while
the second one uses the path s → v → t.

23 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Ford-Fulkerson algorithm

Let p be a simple s − t path in residual graph Gf, called
augmentation path. We define bottleneck(p, f) as the
minimum capacity of edges in path p.

Ford-Fulkerson algorithm:
1: Initialize f(e) = 0 for all e.
2: while there is an s − t path in residual graph Gf do
3: Arbitrarily choose an s − t path p in Gf;
4: f =augment(p, f);
5: end while
6: return f;

24 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Correctness and time-complexity analysis

25 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Property 1: augmentation generates a new flow

Lemma
The operation f′ =augment(p, f) generates a new flow f′ in G.

s

u

v

t
1/1 0/1

1/1

1/10/1

Flow f +

s

u

v

t0
1

01
0

1

1

1

An s − t path in Gf =

s

u

v

t
1/1 1/1

0/1

1/11/1

New flow f′

26 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof.
Checking capacity constraints: Let’s examine the following
two cases of edge e = (u, v) in path p.

1 (u, v) is a forward edge arising from (u, v) ∈ E:
0 ≤ f(e) ≤ f′(e) = f(e) + bottleneck(p, f) ≤
f(e) + (C(e)− f(e)) ≤ C(e).

2 (u, v) is a backward edge arising from (v, u) ∈ E:
C(e) ≥ f(e) ≥ f′(e) = f(e)− bottleneck(p, f) ≥ f(e)− f(e) = 0.

Checking conservation constraints: For each node v, the
change of the amount of flow entering v is the same as the
change in the amount of flow exiting v.

27 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Property 2: Monotonically increasing

Lemma
|f′| > |f|.

s

u

v

t
1/1 0/1

1/1

1/10/1

Flow f +

s

u

v

t0
1

01

0
1

1

1

An s − t path in Gf =

s

u

v

t
1/1 1/1

0/1

1/11/1

New flow f′

Hint: |f′| = |f|+ bottleneck(p, f) > |f| since
bottleneck(p, f) > 0.

28 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Property 3: a trivial upper bound of flow

Lemma
|f| has an upper bound C =

∑
e out of s C(e).

(Intuition: the edges out of s are completely saturated by flow f.)

s

u

v

tc1 =
2 c4 = 2

c3
=

3
c2 = 1 c5 =

1

29 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Property 4: Augmentation step

Theorem
Assume all edges have integer capacities, thus at every
intermediate stage of the execution of Ford-Fulkerson
algorithm, both flow value |f| and residual capacities are integers,
and bottleneck(p, f) ≥ 1. There will be at most C iterations of the
while loop.

Time complexity: O(mC).
O(C) iterations: Under a reasonable assumption that all
capacities are integers, bottleneck(p, f) ≥ 1 at each iteration
and thus |f′| ≥ |f|+ 1.
At each iteration, it takes O(m + n) time to find an s − t path
in Gf using DFS or BFS technique.

Note that the bound is not polynomial as C is exponential in
the size of problem input. A polynomial algorithm is one with
a worst-case time bound polynomial in n, m, and logC (the
number of bits to represent C). We assume that elementary
arithmetic operations take unit time and algorithms
manipulate numbers that fit in a machine word. 30 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Property 5: A tighter upper bound

Theorem
Consider a flow f and an s − t cut (S, S̄). We have |f| ≤ C(S, S̄).

2/2 1/21
/3

0/1 1/1S

S̄

s

u

v

t

|f| = 2 ≤ C(S, S̄) = 3

31 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

2/2 1/21
/3

0/1 1/1S

S̄

s

u

v

t

Proof.

|f| = fout(S)− fin(S) (by flow value lemma)
≤ fout(S) (by fin(S) ≥ 0)
=

∑
e ∈ S → S̄

f(e)

≤
∑

e ∈ S → S̄
C(e) (by f(e) ≤ C(e))

= C(S, S̄)

32 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Flow value lemma

Lemma
Consider an s − t flow f and any s − t cut (S, S̄). The flow across
the cut is a constant |f|. Formally, |f| = fout(S)− fin(S).

2/2 1/21
/3

0/1 1/1S

S̄

s

u

v

t

|f| = 2 + 0 = 2
fout(S)− fin(S) = 2 + 1 − 1 = |f|

33 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

2/2 1/21
/3

0/1 1/1S

S̄

s

u

v

t

Proof.
We have 0 = fout(v)− fin(v) for any node v ̸= s and v ̸= t.
Thus we have:

|f| = fout(s)− fin(s) //Hint: fin(s) = 0
=

∑
v∈S

(fout(v)− fin(v))

= (
∑

e∈S→S̄
f(e) +

∑
e∈S→S

f(e))

−(
∑

e∈S̄→S
f(e) +

∑
e∈S→S

f(e))

= fout(S)− fin(S)
34 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Correctness

Theorem
Ford-Fulkerson ends up with a maximum flow f and a
minimum cut (S, S̄).

s

u

v

t

1/1 1/1

0
/1

1/11/1

Flow f

s

u

v

t

1

1

1

11

Residual graph Gf

S S̄

35 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof.
Ford-Fulkerson algorithms ends when there is no s − t
path in the residual graph Gf. Let S be the set of nodes
reachable from s in Gf, and S̄ = V − S. (S, S̄) forms an s − t
cut as S ̸= ϕ and S̄ ̸= ϕ.
Let’s examine two types of edges e = (u, v) ∈ E across the cut
(S, S̄):

1 u ∈ S, v ∈ S̄: we have f(e) = C(e). (Otherwise, S should be
extended to include v since (u, v) is in Gf.)

2 u ∈ S̄, v ∈ S: we have f(e) = 0. (Otherwise, S should be
extended to include u since (v, u) is in Gf.)

Thus we have

|f| = fout(S)− fin(S)
= fout(S) (by fin(S) = 0)

=
∑

e ∈ S → S̄
f(e)

=
∑

e ∈ S → S̄
C(e) (by f(e) = C(e))

= C(S, S̄)

36 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Understanding Ford-Fulkerson algorithm from the dual point
of view

37 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Duality explanation of MaxFlow-MinCut: Dual
problem

s

u

v

tx3

x2 x5

x1 x4

Dual: set variables for edges. Here xi denotes flow via edge i.
max f

s.t. x1 +x2 −f = 0 vertex s
−x4 −x5 +f = 0 vertex t

−x1 +x3 +x4 = 0 vertex u
−x2 −x3 +x5 = 0 vertex v

x1 ≤ C1
x2 ≤ C2

x3 ≤ C3
x4 ≤ C4

x5 ≤ C5
x1, x2, x3, x4, x5 ≥ 0

38 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An equivalent version

s

u

v

tx3

x2 x5

x1 x4

max f
s.t. x1 +x2 −f ≤0 vertex s

−x4 −x5 +f ≤0 vertex t
−x1 +x3 +x4 ≤0 vertex u

−x2 −x3 +x5 ≤0 vertex v
x1 ≤ C1

x2 ≤ C2
x3 ≤ C3

x4 ≤ C4
x5 ≤ C5

x1, x2, x3, x4, x5 ≥ 0
Note: The constraints (1), (2), (3), and (4) implies the equality
−x2 − x3 + x5 = 0. So do the other equalities.

39 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Duality explanation: Primal problem
Primal: set variables for nodes.
min C1z1 +C2z2 +C3z3 +C4z4 +C5z5
s.t. ys −yu +z1 ≥ 0

ys −yv +z2 ≥ 0
yu −yv +z3 ≥ 0

−yt +yu +z4 ≥ 0
−yt +yv +z5 ≥ 0

−ys +yt ≥ 1
ys, yt, yu, yv, z1, z2, z3, z4, z5 ≥ 0

Note:
1 Since the constraints involves the difference among ys, yu, yv

and yt, one of them can be fixed without effects. Here, we fix
ys = 0. Thus we have yt ≥ 1 (by the constraint −ys + yt ≥ 1).

2 Constraint (4) requires z4 ≥ yt − yu, and the objective is to
minimize a function containing C4z4, forcing yt = 1.

3 Constraint (1) requires z1 ≥ yu, and the objective is to
minimize a function containing C1z1, forcing z1 = yu. So does
constraint (2).

40 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An equivalent LP model

Primal: set variables for nodes.
min C1z1 +C2z2 +C3z3 +C4z4 +C5z5
s.t. −yu +z1 = 0

−yv +z2 = 0
yu −yv +z3 ≥ 0
yu +z4 ≥ 1

yv +z5 ≥ 1
ys = 0

yt = 1
yu, yv, z1, z2, z3, z4, z5 ≥ 0

Note: the coefficient matrix of constraints (3), (4) and (5) is
totally uni-modular, implying the optimal solution is an integer
solution.

41 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An equivalent ILP model

Primal: set variables for nodes.
min C1z1 +C2z2 +C3z3 +C4z4 +C5z5
s.t. −yu +z1 = 0

−yv +z2 = 0
yu −yv +z3 ≥ 0
yu +z4 ≥ 1

yv +z5 ≥ 1
ys = 0

yt = 1
yu, yv, z1, z2, z3, z4, z5 = 0/1

42 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

MaxFlow-MinCut: strong duality

min C1z1 +C2z2 +C3z3 +C4z4 +C5z5
s.t. −yu +z1 = 0

−yv +z2 = 0
yu −yv +z3 ≥ 0
yu +z4 ≥ 1

yv +z5 ≥ 1
ys = 0

yt = 1
yu, yv, z1, z2, z3, z4, z5 = 0/1

Suppose we explain the primal variables as:
yi represents whether node i is in S or S̄: if node i is in S,
yi = 0, and yi = 1 otherwise.
zi represents whether an edge is a cut edge: For example,
z1 = 1 iff ys = 0 and yu = 1, i.e., edge (s, u) is a cut edge.

Thus the primal problem is essentially to find a minimum cut.
By weak duality, we have f ≤ c and strong duality is exactly
equivalent to the MaximumFlow-MinimumCut theorem.

43 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Ford-Fulkerson algorithm is essentially a primal-dual algorithm

44 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Primal-dual algorithm

Recall that the generic primal-dual algorithm can be described
as follows.

1: Initialize x as a dual feasible solution;
2: while TRUE do
3: Construct DRP corresponding to x;
4: Let ωopt be the optimal solution to DRP;
5: if ωopt = 0 then
6: return x;
7: else
8: Improve x using the optimal solution to DRP;
9: end if

10: end while
We will show that solving DRP is equivalent to finding an
augmentation path in residual graph.

45 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dual problem and DRP I

s

u

v

t
x1/

64 x4/64

x3 /1

x5/
32x2/32

Dual D: set variables for edges;
max f

s.t. x1 +x2 −f ≤0 vertex s
−x4 −x5 +f ≤0 vertex t

−x1 +x3 +x4 ≤0 vertex u
−x2 −x3 +x5 ≤0 vertex v

x1 ≤ 64
x2 ≤ 32

x3 ≤ 1
x4 ≤ 64

x5 ≤ 32
x1, x2, x3, x4, x5 ≥ 0

46 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dual problem and DRP II

s

u

v

t
1/64 0/64

1/1

1/320/32

Let’s consider a dual feasible solution x = (1, 0, 1, 0, 1). Recall
how to write DRP from D:

Replacing the right-hand side Ci with 0;
Adding constraints: xi ≤ 1, f ≤ 1;
Keep only the tight constraints J. Here we category J into two
sets, i.e. J = JS ∪ JE, where JS records the saturated arcs
JS = {i|xi = Ci}, and JE records the empty arcs
JE = {i|xi = 0}. In the above example, JS = {3}, and
JE = {2, 4}.

47 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

DRP corresponds to finding an augmentation path
DRP:

max f
s.t. x1 +x2 −f = 0 vertex s

−x4 −x5 +f = 0 vertex t
−x1 +x3 +x4 = 0 vertex u

−x2 −x3 +x5 = 0 vertex v
xi ≤0 i ∈ JS

xj ≥0 j ∈ JE

x1, x2, x3, x4, x5, f ≤ 1

ωOPT = 0 implies that optimal solution is found. In contrast,
ωOPT = 1 implies an augmentation s− t path (with unit flow) in Gf.

s

u

v

t
x1

x4 ≥ 0x3
≤

0

x5
x2 ≥ 0

DRP

s

u

v

t63
1

01

31
1

64

32

Residual graph Gf

48 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

DRP and augmentation path in residual graph

s

u

v

t

x1
x4 ≥ 0x3

≤
0

x5
x2 ≥ 0

DRP

s

u

v

t63
1

01

31
1

64

32

Residual graph Gf

Note that DRP corresponds to finding an augmentation path
in the residual graph Gf.

xi ≤ 0, i ∈ JS, e.g., x3, denotes a backward edge.
xj ≥ 0, j ∈ JE, e.g., x2, denotes a forward edge,
and for other edges, there is no restriction for xi, e.g., x1.

Thus Ford-Fulkerson algorithm is essentially a
primal-dual algorithm.

49 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Ford-Fulkerson algorithm: bad example 1

50 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The integer restriction is important

In the analysis of Ford-Fulkerson algorithm, the integer
restriction of capacities is important: the bottleneck edge
leads to an increase of at least 1.
The analysis doesn’t hold if the capacities can be irrational. In
fact, the flow might be increased by a smaller and smaller
number and the iteration will be endless. Worse yet, this
endless iteration might not converge to the maximum flow.

(See an example by Uri Zwick)

51 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Ford-Fulkerson algorithm: bad example 2

s

u

v

tc1 =
64 c4 = 64

c3
=

1

c2 = 32 c5 =
32

52 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A bad example of Ford-Fulkerson algorithm: Step 1

s

u

v

t
0/64 0/64

0
/1

0/320/32

Flow f : |f| = 0

s

u

v

t
64 64

1

3232

An s − t path in Gf

53 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A bad example of Ford-Fulkerson algorithm: Step 2

s

u

v

t
1/64 0/64

1
/1

1/320/32

Flow f : |f| = 1

s

u

v

t63
1

01

31
1

64

32

An s − t path in Gf

54 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A bad example of Ford-Fulkerson algorithm: Step 3

s

u

v

t
1/64 1/64

0
/1

1/321/32

Flow f : |f| = 2

Note that after two iterations, the problem is similar to the
original problem except for the capacities on
(s, u), (s, v), (u, t), (v, t) decrease by 1.
Thus Ford-Fulkerson algorithm will end after 64 + 32
iterations as bottleneck = 1 at all intermediate stages.

55 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Ford-Fulkerson algorithm: weakness

Arbitrary selection of augmentation paths will lead to the
following weaknesses:

A path with small bottleneck capacity is chosen as
augmentation path;
We put flow on too many edges than necessary.

In the original paper by Ford and Fulkerson, several heuristics
for improvement were examined.

56 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Improvements of Ford-Fulkerson algorithm
Various strategies to select augmentation path in Gf:

1 Fat pipes:
To select the augmentation path with the largest bottleneck
capacity, or find an augmentation path with large
improvement using scaling technique.

2 Short pipes:
Edmonds-Karp algorithm: find the shortest augmentation
path.
Dinitz’ algorithm: extend BFS tree to layered network to
record all edges contained in shortest augmentation paths,
find augmentation path in the layered network, and perform
amortized analysis.
Dinic’s algorithm: running DFS in layered network to find
blocking flow that saturate all shortest augmentation paths.
Karzanov algorithm: unlike Dinitz’ algorithm saturates edges
when constructing blocking flow, Karzanov’s algorithm
saturates nodes using the pre-flow idea.
Push-Relabel algorithm: The algorithm uses the idea of
pre-flow; however, the pre-flow was not constructed in layered
network but in residual graph directly. Distance labels were
used to estimate the shortest distance from nodes to t.

57 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Improvement 1: Scaling technique for speed-up (by Y. Dinitz)

58 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Scaling technique

Question: can we choose a large augmentation path? The
larger bottleneck(p, f) is, the less iterations are needed.
An s − t path p in Gf with the largest bottleneck(p, f) can be
found using binary search, or a slight change of Dijkstra’s
algorithm in O(m+ n log n) time; however, it is still somewhat
inefficient.
Basic idea: Let’s relax the “largest” requirement to
“sufficiently large”. Specifically, we can set up a lower
bound ∆ for bottleneck(P, f) by simply removing the
“small” edges, i.e. the edges with capacities less than ∆
from G(f). This residual graph is called Gf(∆) and ∆ will be
scaled down as iteration proceeds.

59 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Scaling-Ford-Fulkerson(G)

1: Initialize f(e) = 0 for all e.
2: Let ∆ = C;
3: while ∆ ≥ 1 do
4: while there is an s − t path in Gf(∆) do
5: Choose an s − t path p;
6: f =augment(p, f);
7: end while
8: ∆ = ∆

2 ;
9: end while

10: return f;
Intuition: flow is augmented in a large step size whenever
possible; otherwise, the step size is scaled down. Step size is
controlled via removing the “small” edges out of residual
graph.
Note that ∆ turns to be 1 finally; thus no edge in residual
graph will be neglected.

60 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example: Step 1

s

u

v

t
0/64 0/64

0
/1

0/320/32

Flow f : |f| = 0

s

u

v

t
64 64

1
3232

No s − t path in Gf

Flow: 0 flow;
∆: ∆ = 96;
Gf(∆): the edges in light blue were removed since capcities are less than
96.
s − t path: cannot find. Thus ∆ is scaled: ∆ = ∆

2 = 48.

61 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example: Step 2

s

u

v

t
0/64 0/64

0
/1

0/320/32

Flow f : |f| = 0

s

u

v

t
64 64

1
3232

An s − t path in Gf

Flow: 0 flow;
∆: ∆ = 48;
Gf(∆): the edges in light blue were removed since capcities are less than
48.
s − t path: a path s − u − t appears. Perform augmentation operation.

62 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example: Step 3

s

u

v

t
64/64 64/64

0
/1

0/320/32

Flow f : |f| = 64

s

u

v

t
64 64

1
3232

No s − t path in Gf

Flow: 64;
∆: ∆ = 48;
Gf(∆): the edges in light blue were removed since capcities are less than
48.
s − t path: no path found. Perform scaling: ∆ = ∆

2 = 24.

63 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example: Step 4

s

u

v

t
64/64 64/64

0
/1

0/320/32

Flow f : |f| = 64

s

u

v

t
64 64

1
3232

An s − t path in Gf

Flow: 64;
∆: ∆ = 24;
Gf(∆): the edges in light blue were removed since capcities are less than
24.
s − t path: find a path: s − v − t. Perform augmentation.

64 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example: Step 5

s

u

v

t
64/64 64/64

0
/1

32/3232/32

Flow f : |f| = 96

s

u

v

t
64 64

1
3232

No s − t path in Gf

Flow: 96. Maximum flow obtained.
∆: ∆ = 24;
Gf(∆): the edges in light blue were removed since capcities are less than
24.
s − t path: cannot find a s − t path.

65 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Analysis: Outer while loop

Lemma
(Outer while loop number) The while iteration number is at
most 1 + log2 C.

Scaling Ford-Fulkerson algorithm:
1: Initialize f(e) = 0 for all e.
2: Let ∆ = C;
3: while ∆ ≥ 1 do
4: while there is an s − t path in Gf(∆) do
5: Choose an s − t path p;
6: f =augment(p, f);
7: end while
8: ∆ = ∆/2;
9: end while

10: return f;

66 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Analysis: Inner while loop

Theorem
(Inner while loop number) In a scaling phase, the number of
augmentations is at most 2m.

Scaling Ford-Fulkerson algorithm:
1: Initialize f(e) = 0 for all e.
2: Let ∆ = C;
3: while ∆ ≥ 1 do
4: while there is an s − t path in Gf(∆) do
5: Choose an s − t path p;
6: f =augment(p, f);
7: end while
8: ∆ = ∆/2;
9: end while

10: return f;

67 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Analysis: Inner while loop cont’d

Proof.
1 Let f be the flow that a ∆-scaling phase ends up with, and f∗ be the

maximum flow. We have |f| ≥ |f∗| − m∆. (Intuition: |f| is not too
bad as the difference to maximum flow is small.)

2 In the subsequent ∆
2 -scaling phase, each augmentation will increase

|f| at least ∆
2 .

Thus, there are at most 2m augmentations in the ∆
2 -scaling phase.

Time-complexity: O(m2 log2 C).
O(log2 C) outer while loop;
O(m) inner loops;
Each augmentation step takes O(m) time.

Scaling is one way to make the augmentation-path algorithm
polynomial-time if capacities are integral.

68 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

But why |f| ≥ |f∗| − m∆?
Proof.

Let S be the set of nodes reachable from s in the residual graph
Gf(∆), and S̄ = V − S. Thus (S, S̄) forms a cut as S ̸= ϕ and
S̄ ̸= ϕ.
Let’s examine two types of edges e = (u, v) ∈ E.

1 u ∈ S, v ∈ S̄: we have f(e) ≥ C(e)−∆. (Otherwise, S should
be extended to include v since (u, v) in Gf(∆).)

2 u ∈ S̄, v ∈ S: we have f(e) ≤ ∆. (Otherwise, S should be
extended to include v since (u, v) in Gf(∆).)

Thus we have:

|f| =
∑

e ∈ S → S̄
f(e)−

∑
e ∈ S̄ → S

f(e)

≥
∑

e ∈ S → S̄
(C(e)−∆)−

∑
e ∈ S̄ → S

∆

≥
∑

e ∈ S → S̄
C(e)− m∆

= C(S, S̄)− m∆

≥ |f∗| − m∆

69 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Improvement 2: Edmonds-Karp algorithm using shortest
augmentation paths

70 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Edmonds-Karp algorithm [1972]

Figure: Jack Edmonds, and Richard Karp

The algorithm was first published by Yefim Dinitz in 1970 and
independently published by Jack Edmonds and Richard Karp
in 1972.

71 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Edmonds-Karp algorithm

Edmonds-Karp(G)

1: Initialize f(e) = 0 for all e.
2: while there is a s − t path in Gf do
3: Find a shortest s − t path p in Gf using BFS;
4: f =augment(p, f);
5: end while
6: return f;

(a demo)

72 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem
Edmonds-Karp algorithm runs in O(m2n) time.

Proof.
During the execution of Edmonds-Karp algorithm, an edge
e = (u, v) serves as bottleneck edge at most n

2 times.
Thus, the while loop will be executed at most n

2 m times
since there are m edges in total.
It takes O(m) time to find the shortest path using BFS and
subsequently augment flow along the path.

Edmonds-Karp algorithm is strongly polynomial: its bound
is polynomial in n and m, even if capacities are real numbers,
assuming that elementary arithmetic operations on real
numbers take unit time. Strongly polynomial is more natural
from combinatorial point of view, as only arithmetic operation
complexity depends on the input size, and other operation
counts are independent of the size. 73 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem
Any edge e = (u, v) in G acts as bottleneck at most n

2 times.

Proof.
For a residual graph Gf, we first category all nodes into levels
L0,L1, ..., where L0 = {s}, and Li contains all nodes v such that
the shortest path from s to v has i hops. We use df(u) to denote the
level number of node u, i.e. the shortest distance from s to u in Gf.
Consider the two consecutive occurrences of edge e = (u, v) as
bottleneck, say at step k and step k′′′.

At step k, we have df(v) = df(u) + 1. Note that after flow
augmentation, the bottleneck edge e = (u, v) will be reversed.
At step k′′′, e = (u, v) becomes a bottleneck edge again, which
means that e′ = (v, u) should be reversed first before step k′′′,
say at step k′′.
At step k′′, we have df′′(u) = df′′(v) + 1.

Thus df′′(u) = df′′(v) + 1 ≥ df′(v) + 1 ≥ df(u) + 2. The lemma
holds as for any node, its maximal level is at most n and its level
number never decrease (why?).

74 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Analyzing the Edmonds-Karp algorithm

Step k : s u v t
df(u) df(v) df(v) = df(u) + 1

Step k′′′ : s u v t
df′′′(u) df′′′(v)

Step k + 1 : s u v t
df′(u) df′(v) df′(v) ≥ df(v)

...

Step k′′ : s u v t
df′′(u) df′′(v)

...

df′′(u) = df′′(v) + 1

df′′′(u) ≥ df(u) + 2

75 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Analyzing the Edmonds-Karp algorithm

Step k : s u v t
df(u) df(v) df(v) = df(u) + 1

Step k′′′ : s u v t
df′′′(u) df′′′(v)

Step k + 1 : s u v t
df′(u) df′(v) df′(v) ≥ df(v)

...

Step k′′ : s u v t
df′′(u) df′′(v)

...

df′′(u) = df′′(v) + 1

df′′′(u) ≥ df(u) + 2

75 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Analyzing the Edmonds-Karp algorithm

Step k : s u v t
df(u) df(v) df(v) = df(u) + 1

Step k′′′ : s u v t
df′′′(u) df′′′(v)

Step k + 1 : s u v t
df′(u) df′(v) df′(v) ≥ df(v)

...

Step k′′ : s u v t
df′′(u) df′′(v)

...

df′′(u) = df′′(v) + 1

df′′′(u) ≥ df(u) + 2

75 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Analyzing the Edmonds-Karp algorithm

Step k : s u v t
df(u) df(v) df(v) = df(u) + 1

Step k′′′ : s u v t
df′′′(u) df′′′(v)

Step k + 1 : s u v t
df′(u) df′(v) df′(v) ≥ df(v)

...

Step k′′ : s u v t
df′′(u) df′′(v)

...

df′′(u) = df′′(v) + 1

df′′′(u) ≥ df(u) + 2

75 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Node’s level number never decrease

Theorem
Consider a flow f and the corresponding residual graph Gf. Suppose
a shortest-path p from s to t in Gf was selected for augmentation,
forming a new flow f′. Then for any node v, df(v) ≤ df′(v).

Intuition: For any node v, its shortest-path distance df(v) in
residual graph Gf never decrease if shortest augmentation paths
were selected for augmentation.

s

u

v

t

4 3

1

32

Gf

df(s) = 0

df(u) = 1

df(v) = 1

df(t) = 2

s

u

v

t

1
2

4 3

1

2

Gf′

df′(s) = 0

df′(u) = 1

df′(v) = 2

df′(t) = 2

76 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof.
First we claim that for any edge (vi, vj) in Gf′ ,
df(vj) ≤ df(vi) + 1.

Case 1: (vi, vj) in Gf, e.g. (u, v): Obvious.
Case 2: (vi, vj) not in Gf: Take (u, s) as an example. (s, u)
should be in the augmentation (shortest) path in Gf and thus
df(u) = df(s) + 1.

Next, suppose df′(v) = r. Let (s, v1, ..., vr−1, v) be a shortest
path to v in Gf′ . We have:

df(v) ≤ df(vr−1) + 1
≤ df(vr−2) + 2
.....

≤ df(s) + r
= r

77 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Improvement 3: Dinitz’ algorithm and its variant Dinic’s algorithm

78 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Figure: Yefim Dinitz

79 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A brief history

Y. Dinitz worked in a group led by G. Adel’son Vel’sky, who
(together with E. Landis) designed the famous AVL-tree data
structure. Y. Dinitz absorbed the essential issues, including:

Design efficient algorithms based on deep investigation on
problem structures;
The technique of data structure maintenance;
Amortized analysis technique (about 17 years before the paper
by R. Tarjan).

80 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The original Dinitz’ algorithm
Basic idea:

The initial intention was just to accelerate Ford-Fulkerson
algorithm by means of a smart data structure.
Note that finding an augmentation path takes O(m) time and
becomes a bottleneck of Ford-Fulkerson algorithm. If only
BFS tree was used, saturation of a bottleneck edge will
disconnect s and t. Thus, it is invaluable to save all
information gathered in BFS for subsequent iterations.
For this aim, the BFS tree is enriched to layered network:

BFS tree: recording only the first edge found to a node v;
Layered network: recording all the edges residing on
shortest s − t paths in residual graph. Once layer numbers
were calculated for nodes, a shortest s − t path could be found
in O(n) time rather than O(m) time.

s t

Residual graph Gf

s t

BFS tree

s t

Layered network Nf81 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dinic’s algorithm: layered network + blocking flow

Shimon Even and Alon Itai understood the paper by Y. Dinitz
except for the layered network maintenance and that by A.
Karzanov. The gaps were spanned by using:

1 Blocking flow (first proposed by A. Karzanov and implicit in
the paper by Y. Dinitz): A blocking flow, also known as
shortest saturation flow aims to saturate all shortest s − t
paths in a residual network. After augmenting with a blocking
flow, the level number of node t increases by at least 1.

2 DFS: Dinic’s algorithm uses DFS technique to find a shortest
path in layered network. Only O(n) time is needed as it
exploits level numbers of nodes. In contrast, Edmonds-Karp
algorithm uses BFS technique to find a shortest path in
residual graph, which needs O(m) time.

Note: when running on bi-partite graph, the Dinic’s algorithm
turns into the Hopcroft-Karp algorithm.

82 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dinic’s algorithm

Dinic’s-Max-Flow(G)

1: Initialize f(e) = 0 for all e.
2: while TRUE do
3: Construct layered network Nf from residual graph Gf

using extended BFS technique;
4: if t is unreachable from s in Gf then
5: break;
6: end if
7: Find a blocking flow bf in Nf using DFS technique guided

by the layered network;
8: Augment flow f = f + bf;
9: end while

10: return f;

83 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Constructing layered network from residual network
Construct-Layered-Network(Gf)

1: Set df(s) = 0, df(v) = ∞ for node v ̸= s, and add s into queue
Q;

2: Set layered network Nf = (Vf,Ef) as Vf = {s} and Ef = {};
3: while Q is not empty do
4: v = Q.dequeue();
5: for each edge (v,w) in Gf do
6: if df(w) = ∞ then
7: Q.enqueue(w); df(w) = df(v) + 1;
8: Vf = Vf ∪ {w}; Ef = Ef ∪ {(v,w)};
9: end if

10: if df(w) = df(v) + 1 then
11: Ef = Ef ∪ {(v,w)};
12: end if
13: end for
14: end while
15: Perform BFS in Nf from t with all edges directions reversed,

and delete v from Nf if v cannot be visited;
16: return Nf;

84 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Constructing layered network from residual network: an
example

s t

Residual graph Gf

s t

BFS tree

s t

Layered network Nf

The difference from the standard BFS procedure is that for
any edge (v,w) with df(w) = df(v) + 1 will be added to Nf
even if w has already been added to Q. Thus, for each vertex
v, exactly all edges in shortest paths from s to v are added in
Nf.
The nodes (and their incident edges) not on the shortest paths
from s to t will be removed from Nf, e.g., the node in dash.

85 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finding blocking flow in layered network Nf

Dinic-Blocking-Flow(Nf)

1: Set bf as 0-flow;
2: while there exists an edge from s in Nf do
3: Find a path p from s of maximal length in Nf;
4: if p leads to t then
5: bf =augment(p, bf);
6: Remove from Nf the bottleneck edges in p;
7: else
8: Delete the last node in p (and incident edges);
9: end if

10: end while
11: return bf;

86 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dinic’s algorithm

The execution of the algorithm can be divided into phases,
each phase consisting of construction of layered network, and
finding blocking flow in it.
Here, a blocking flow contains a collection of shortest s − t
paths in Gf. After saturating these paths, t is unreachable
from s.
Intuition: after acquiring a layered network using O(m) time, a
blocking flow is found for further augmentation. Each path in
blocking flow in only O(n) time guided by the layered network.
In contrast, the Edmonds-Karp algorithm augments only
one s − t path after BFS process using O(m) time.

(a demo here)

87 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Analysis

Total time: O(mn2)
#WHILE = O(n). (Reason: After augmentation using block
flow, df(t) should increase by at least 1. See next page for
proof.)
At each iteration, it takes O(m) time to construct layered
network using extended BFS, and takes O(mn) time to find a
blocking flow since:

1 It takes O(n) time to find a shortest s − t path in a layered
network Nf using DFS technique.

2 At least one bottleneck edge in the augmentation path will be
saturated and thereafter be removed from Nf.

3 Thus it needs at most m iterations to find a blocking flow.

88 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

df(t) increases by at least 1 in each phase

Theorem
Consider a flow f and the corresponding layered network Nf.
Suppose a blocking flow bf was found in Nf and thereafter used for
augmentation, forming a new flow f′. Then df′(t) ≥ df(t) + 1.

Note: If only one shortest path, say s → v → t in the
following example, was selected for augmentation,
df′(t) = df(t) = 2. In contrast, when all shortest paths were
selected for augmentation, df′(t) ≥ df(t) + 1.

89 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example

s

u

v

t

4 3

1

32

Gf

df(s) = 0

df(u) = 1

df(v) = 1

df(t) = 2

s

u

v

t

4 3

32

Nf

df(s) = 0

df(u) = 1

df(v) = 1

df(t) = 2

s

u

v

t1

3

1
2

3

1

2

Gf′

df′(s) = 0

df′(u) = 1

df′(v) = 2

df′(t) = 3

90 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof.
Assume for contradiction that df′(t) = df(t) = r. Let
p = (s, v1, ..., vr−1, t) be a shortest path to t in Gf′ . Then

df(t) ≤ df(vr−1) + 1
.....

≤ df(s) + r = r

By our assumption that df(t) = r, all “≤” in the above
formula should be “ = ”. The equality df(vi+1) = df(vi) + 1
implies that the edge (vi, vi+1) should also be an edge in Gf
(Otherwise (vi, vi+1) should be generated via reversing
bottleneck edge (vi+1, vi), and thus df(vi) = df(vi+1) + 1.).
Thus p is also a path in Gf. Moreover, p should be a shortest
path in Gf since p is of length r and df(t) = r.
Recall that Gf′ is generated from Gf by saturating all shortest
paths (including p) in Gf. Thus at least an edge in p is a
bottleneck and should not appear in residual graph Gf′ . A
contradiction with the assumption that p is a path in Gf′ . 91 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Push-relabel algorithm [A. V. Goldberg, R. E. Tarjan, 1986]

92 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A brief introduction

The push-relabel algorithm is one of the most efficient algorithms
to compute a maximum flow. The generic algorithm has O(n2m)
time complexity, while the Improvement with FIFO vertex selection
rule has O(n3) running time, the highest active vertex selection
rule provides O(n2√m) complexity, and the Improvement with
Sleator’s and Tarjan’s dynamic tree data structure runs in
O(nmlog(n2/m)) time. In most cases it is more efficient than the
Edmonds-Karp algorithm, which runs in O(nm2) time.

93 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Difference between Push-Relabel and
Edmonds-Karp algorithms I

The optimal solution f should satisfy two constraints
simultaneously, namely, f is a flow, and there is no s − t path
in the residual graph Gf. It is not easy to find a solution f that
satisfies the two constraints simultaneously; thus a feasible
approach is to construct a solution satisfying one constraint
first, and improve it towards the satisfaction of the other
constraint.
Edmonds-Karp algorithm and Push-Relabel algorithm
work in just opposite manners:

1 Edmonds-Karp algorithm: Throughout its execution, the
algorithm maintains a flow f and gradually improve it until Gf
has no s − t path, which means f is a maximum flow.
Edmonds-Karp algorithm performs global augmentation,
i.e., sending more commodities from the source s all the way
to the sink t.

94 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Difference between Push-Relabel and
Edmonds-Karp algorithms II

2 Push-Relabel algorithm: Throughout its execution, the
algorithm maintains a preflow f such that Gf has no s − t path
and gradually convert f into a flow, and then it is a maximum
flow. Unlike Ford-Fulkerson algorithm, Push-Relabel
algorithm works in local manner, i.e., flows are pushed locally
between neighboring nodes under the guidance of labels of
nodes; thus, the time-costly BFS operation to find an s − t
augmentation path is avoided.

Another difference is that Edmonds-Karp augment flow by
finding a shortest s − t path in Gf whereas Push-Relabel
algorithm pushes flow to sink along what it estimates to be
the shortest path.

95 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preflow: a relaxation of flow

Definition (Preflow)
f is a preflow if

(Capacity condition): f(e) ≤ C(e);
(Excess condition): For any intermediate node v ̸= s, t,
Xf(v) =

∑
e into v f(e)−

∑
e out of v f(e) ≥ 0.

s

u

v

t
4/5 0/6

1/1
0/8 0/2

Xf(u) = 3

Xf(v) = 1

A preflow f becomes a flow if no intermediate node has excess. The
idea of preflow was proposed by Karzanov to find blocking flow in
layered network.

96 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Label of nodes

Definition (Valid label)
Consider a preflow f. A valid labeling of nodes is:

h(s) = n, and h(t) = 0;
For each edge (u, v) in the residual graph Gf, we have
h(v) ≥ h(u)− 1.

u

x

w

v

y

height

1

2

3

4 Valid label

Valid label

Valid label

Invalid label

(Intuition: h(v) is height of the node v, and for an edge in Gf, its
end cannot be too lower than its head.)

97 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Valid labeling means no s − t path in Gf

Theorem
There is no s − t path in a residual graph Gf if there exist valid
labels.

Proof.
Suppose there is a s − t path in Gf.
Notice that s − t path contains at most n − 1 edges.
Since h(s) = n and h(u) ≤ h(v) + 1, the height of t should be
great than 0. A contradiction with h(t) = 0.

98 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Push-relabel algorithm: Basic idea

Push-Relabel(G)

1: Set f as a preflow with all s − v edges saturated;
2: Set valid labels for nodes;
3: while TRUE do
4: if no intermediate node has excess then
5: return f;
6: end if
7: Select an intermediate node v with excess;
8: if v has a neighbor w such that h(v) > h(w) then
9: Push some excess from v to w;

10: else
11: Perform relabeling to increase h(v);
12: end if
13: end while

99 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Push-relabel algorithm

Push-Relabel(G)

1: Set h(s) = n and h(v) = 0 for any v ̸= s;
2: Set f(e) = C(e) for all e = (s, u), and set f(e) = 0 for other edges;
3: while there exists an intermediate node v with Ef(v) > 0 do
4: if there exists an edge (v,w) ∈ Gf s.t. h(v) > h(w) then
5: //Push excess from v to w;
6: if (v,w) is a forward edge then
7: e = (v,w);
8: f(e)+ = min{Ef(v),C(e)− f(e)};
9: else

10: e = (w, v);
11: f(e)− = min{Ef(v), f(e)};
12: end if
13: else
14: h(v) = h(v) + 1; //Relabel node v;
15: end if
16: end while
(a demo here)

100 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Correctness I

Theorem
Push-relabel algorithm keeps label valid, and thus outputs a
maximum flow when ends.

Proof.
(Induction on the number of push and relabel operations.)

Push operation: the new f is still a preflow since the capacity
condition still holds.
Push(f, v,w) may add edge (w, v) into Gf. We have
h(w) < h(v). (pre-condition). Thus, the label is valid for the
new Gf.
Relabel operation: The pre-condition implies h(v) ≤ h(w) for
any (v,w) ∈ Gf. relabel(f, h, v) changes h(v) = h(v) + 1.
Thus, the new h(v) ≤ h(w) + 1.

101 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Time-complexity: #Relabel I

Theorem
For any node v, #Relabel ≤ 2n − 1. Thus, the total label
operation number is less than 2n2.

Proof.
1 (Connectivity): For a node w with Ef(w) > 0, there should be

a path from w to s in Gf.
(Intuition: node w obtain a positive Ef(w) through a node v
by Push(f, v,w). This operation also causes edge (w, v) to be
added into Gf. Thus, there should be a path from w to s.)

2 (Upper bound of h(v)): h(v) < 2n − 1 since there is a path
from v to s. The length of the path is less than n − 1,
h(s) = n, and h(v) ≤ h(w) + 1 for any edge (v,w) in Gf.

102 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Time-complexity: #Push I

Two types of Push operations:
1 Saturated push (s-push): if Push(f, v,w) causes (v,w)

removed from Gf.
2 Unsaturated push (uns-push): other pushes.

#Push = #s-push +#uns-push.

Theorem
#s-push ≤ 2nm.

103 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Time-complexity: #Push II

Proof.
Consider an edge e = (v,w). We will show that during the
execution of algo, (v,w) appears in Gf at most 2n times.

(Removing): a saturated Push(f, v,w) removes (v,w) from
Gf. We have h(v) = h(w) + 1.
(Adding): Before applying Push(f, v,w) again, (v,w) should
be added to Gf first. The only way to add (v,w) to Gf is
Push(f,w, v). The pre-condition of Push(f,w, v) requires that
h(w) ≥ h(v) + 1, i.e., h(w) should be increased at least 2 since
the previous Push(f, v,w) operation. And we have
h(w) ≤ 2n − 1.

104 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Time-complexity: #Push I

Theorem
#uns-push ≤ 2n2m.

105 / 107

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Time-complexity: #Push II
Proof.
Define a measure Φ(f, h) =

∑
v:Ef(v)>0 h(v).

(Increase and upper bound) Φ(f, h) < 4n2m:
1 Relabel: a relabel operation increase Φ(f, h) by 1. The total

O(2n2) relabel operations increase Φ(f, h) at most O(2n2).
2 Saturized push: A saturated Push(f, v,w) operation increases

Φ(f, h) by h(w) since w has excess now. h(w) ≤ 2n − 1 implies
an upper bound for each operation. The total 2nm saturated
pushes increase Φ(f, h) by at most 4n2m.

(Decrease) An unsaturated Push(f, v,w) will reduce Φ(f, h) at
least 1.
(Intuition: after unsaturated Push(f, v,w), we have Ef(v) = 0,
which reduce h(v) from Φ(f, h); on the other side, w obtains
excess from v, which will increase Φ(f, h) by h(w). From
h(v) ≤ h(w) + 1, we have that Φ(f, h) reduces at least 1.)

Time complexity: O(n2m). 106 / 107

