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1 Introduction

Combinatorial optimization searches for an optimum object in a finite collection
of objects. Typically, the collection has a concise representation (like a graph),
while the number of objects is huge — more precisely, grows exponentially in
the size of the representation (like all matchings or all Hamiltonian circuits).
So scanning all objects one by one and selecting the best one is not an option.
More efficient methods should be found.

In the 1960s, Edmonds advocated the idea to call a method efficient if its
running time is bounded by a polynomial in the size of the representation. Since
then, this criterion has won broad acceptance, also because Edmonds found
polynomial-time algorithms for several important combinatorial optimization
problems (like the matching problem). The class of polynomial-time solvable
problems is denoted by P.

Further relief in the landscape of combinatorial optimization was discovered
around 1970 when Cook and Karp found out that several other prominent com-
binatorial optimization problems (including the traveling salesman problem) are
the hardest in a large natural class of problems, the class NP. The class NP in-
cludes most combinatorial optimization problems. Any problem in NP can be
reduced to such ‘NP-complete’ problems. All NP-complete problems are equiv-
alent in the sense that the polynomial-time solvability of one of them implies
the same for all of them.

Almost every combinatorial optimization problem has since been either proved
to be polynomial-time solvable or NP-complete — and none of the problems have
been proved to be both. This spotlights the big mystery: are the two properties
disjoint (equivalently, P6=NP), or do they coincide (P=NP)?

Polyhedral and linear programming techniques have turned out to be essen-
tial in solving combinatorial optimization problems and studying their complex-
ity. Often a polynomial-time algorithm yields, as a by-product, a description (in
terms of inequalities) of an associated polyhedron. Conversely, an appropriate
description of the polyhedron often implies the polynomial-time solvability of the
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associated optimization problem, by applying linear programming techniques.
With the duality theorem of linear programming, polyhedral characterizations
yield min-max relations, and vice versa. This area of discrete mathematics is
called polyhedral combinatorics. We give some basic, illustrative examples. For
an extensive survey, we refer to Schrijver [39]. Background on linear program-
ming can be found in [38].

2 Perfect matchings

Let G = (V, E) be an undirected graph. A perfect matching in G is a set M of
disjoint edges covering all vertices. Let w : E → R+. For any perfect matching
M , denote

(1) w(M) :=
∑

e∈M

w(e).

We will call w(M) the weight of M .
Suppose now that we want to find a perfect matching M in G with weight

w(M) as small as possible. In notation, we want to ‘solve’

(2) min{w(M) | M perfect matching in G}.

This problem shows up in several practical situation, for instance when an op-
timum assignment or schedule has to be determined.

We can formulate problem (2) equivalently as follows. For any perfect match-
ing M , denote the incidence vector of M in R

E by χM ; that is,

(3) χM (e) :=

{

1 if e ∈ M,

0 if e 6∈ M ,

for e ∈ E. Considering w as a vector in R
E , we have w(M) = wTχM . Hence

problem (2) can be rewritten as

(4) min{wTχM | M perfect matching in G}.

This amounts to minimizing the linear function wTx over a finite set of vectors.
Therefore, the optimum value does not change if we minimize over the convex

hull of these vectors:

(5) min{wTx | x ∈ conv.hull{χM | M perfect matching in G}}.

The set
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(6) conv.hull{χM | M perfect matching in G}

is a polytope in R
E , called the perfect matching polytope of G.

As it is a polytope, there exist a matrix A and a vector b such that

(7) conv.hull{χM | M perfect matching in G} = {x ∈ R
E | Ax ≤ b}.

Then problem (5) is equivalent to

(8) min{wTx | Ax ≤ b}.

In this way we have formulated the original combinatorial problem (2) as a linear

programming problem. This enables us to apply linear programming methods
to study the original problem.

The question at this point is, however, how to find the matrix A and the
vector b. We know that A and b do exist, but we must know them in order to
apply linear programming methods.

For bipartite graphs, such an A and b can easily be found. (A graph is
bipartite if its vertices can be split into two classes such that each edge connects
a vertex in one class with a vertex in the other class.) If G is bipartite, the
matching polytope of G is equal to the set of all vectors x ∈ R

E satisfying

(9) x(e) ≥ 0 for e ∈ E,
∑

e∋v

x(e) = 1 for v ∈ V .

(The sum ranges over all edges e containing v.)
This is in fact equivalent to a theorem of Birkhoff [2], saying that each doubly

stochastic matrix is a convex combination of permutation matrices. (A matrix
is doubly stochastic if it is nonnegative and each row sum and each column sum
is equal to 1. A permutation matrix is a 0, 1 matrix with precisely one 1 in each
row and each column.)

It is not difficult to show that the perfect matching polytope for bipartite
graphs is indeed completely determined by (9). First note that the perfect
matching polytope is contained in the polytope determined by (9), since χM

satisfies (9) for each perfect matching M . To see the reverse inclusion, we note
that, if G is bipartite, then the V × E incidence matrix AG of G is totally uni-

modular, i.e., each square submatrix has determinant belonging to {0, +1,−1}.
(This was shown by Poincaré [37].)

Theorem 1. The incidence matrix AG of a bipartite graph G = (V, E) is totally

unimodular.

Proof. Let B be a square submatrix of AG, of order k say. We show that det B
equals 0 or ±1 by induction on t. If k = 1, the statement is trivial. So let k > 1.
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We distinguish three cases.
Case 1: B has a column with only 0’s. Then det B=0.
Case 2: B has a column with exactly one 1. In that case we can write

(possibly after permuting rows or columns):

(10) B =

(

1 bT

0 B′

)

,

for some matrix B′ and vector b, where 0 denotes the all-zero vector in R
t−1.

By the induction hypothesis, detB′ ∈ {0,±1}. Hence, by (10), det B ∈ {0,±1}.
Case 3. Each column of B contains exactly two 1’s. Then, since G is

bipartite, we can write (possibly after permuting rows):

(11) B =

(

B′

B′′

)

,

in such a way that each column of B′ contains exactly one 1 and each column
of B′′ contains exactly one 1. So adding up all rows in B′ gives the all-one
vector, and also adding up all rows in B′′ gives the all-one vector. The rows of
B therefore are linearly dependent, and hence detB=0.

The total unimodularity of AG implies that the vertices of the polytope
determined by (9) are integer vectors, i.e., belong to Z

E . Now each integer
vector satisfying (9) must trivially be equal to χM for some perfect matching
M . Hence,

(12) if G is bipartite, the perfect matching polytope is determined by (9).

We therefore can apply linear programming techniques to handle problem
(2). Thus we can find a minimum-weight perfect matching in a bipartite graph
in polynomial time, with any polynomial-time linear programming algorithm.
Moreover, the duality theorem of linear programming gives

(13) min{w(M) | M perfect matching in G}
= min{wTx | x ≥ 0, AGx = 1}
= max{yT

1 | y ∈ R
V , yTAG ≥ wT}.

(1 denotes an all-one vector.) This is an example of a min-max formula that can
be derived from a polyhedral characterization. Conversely, min-max formulas
(in particular in a weighted form) often give polyhedral characterizations.

The polyhedral description together with linear programming duality also
gives a certificate of optimality of a perfect matching M : to convince your
‘boss’ that a certain perfect matching M has minimum weight, it is possible and
sufficient to display a vector y in R

V satisfying yTAG ≥ wT and yT
1 = w(M).
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In other words, it yields a good characterization for the minimum-weight perfect
matching problem in bipartite graphs.

3 But what about nonbipartite graphs?

For general, nonbipartite graphs G, the perfect matching polytope is not de-
termined by (9). For instance, if G is an odd circuit, then the vector x ∈ R

E

defined by x(e) := 1
2 for all e ∈ E, satisfies (9) but does not belong to the perfect

matching polytope of G (as G has no perfect matching at all).
A pioneering and central theorem in polyhedral combinatorics of Edmonds

[8] gives a complete description of the inequalities needed to describe the perfect
matching polytope for arbitrary graphs: one should add to (9) the inequalities

(14)
∑

e∈δ(U)

x(e) ≥ 1 for each odd-size subset U of V .

Here δ(U) denotes the set of edges connecting U and V \ U .
Trivially, the incidence vector χM of any perfect matching M satisfies (14).

So the perfect matching polytope of G is contained in the polytope determined
by (9) and (14). The content of Edmonds’ theorem is the converse inclusion.

Theorem 2. For any graph G, the perfect matching polytope is determined by

(9) and (14).

Proof. Clearly, the perfect matching polytope is contained in the polytope Q
determined by (9) and (14). Suppose that the converse inclusion does not hold.
Then we can choose a vertex x of Q that is not in the perfect matching polytope.

We may assume that we have chosen this counterexample such that |V |+ |E|
is as small as possible. Hence 0 < x(e) < 1 for all e ∈ E (otherwise, if x(e) = 0,
we can delete e, and if x(e) = 1, we can delete e and its ends). So each degree
of G is at least 2, and hence |E| ≥ |V |. If |E| = |V |, each degree is 2, in which
case the theorem is trivially true. So |E| > |V |. Note also that |V | is even, since
otherwise Q = ∅ (consider U := V in (14)).

As x is a vertex of Q, there exist |E| linearly independent constraints among
(9) and (14) satisfied with equality. Since |E| > |V |, there is an odd subset U
of V with 3 ≤ |U | ≤ |V | − 3 and

∑

e∈δ(U) x(e) = 1.

Consider the projections x′ and x′′ of x to the edge sets of the graphs G/U
and G/U , respectively (where U := V \U , and where G/W is the graph obtained
from G by contracting all vertices in W to one vertex). Here we keep parallel
edges.

Then x′ and x′′ satisfy (9) and (14) for G/U and G/U , respectively, and
hence belong to the perfect matching polytopes of G/U and G/U , by the mini-
mality of |V | + |E|.

So there is a k such that G/U has perfect matchings M ′

1, . . . , M
′

k and G/U
has perfect matchings M ′′

1 , . . . , M ′′

k with
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(15) x′ =
1

k

k
∑

i=1

χM ′

i and x′′ =
1

k

k
∑

i=1

χM ′′

i .

(Note that x is rational as it is a vertex of Q.)
Now for each e ∈ δ(U), the number of i with e ∈ M ′

i is equal to kx′(e) =
kx(e) = kx′′(e), which is equal to the number of i with e ∈ M ′′

i . Hence we can
assume that, for each i = 1, . . . , k, M ′

i and M ′′

i have an edge in δ(U) in common.
So Mi := M ′

i ∪ M ′′

i is a perfect matching of G. Then

(16) x =
1

k

k
∑

i=1

χMi .

Hence x belongs to the perfect matching polytope of G.

In fact, Edmonds designed a polynomial-time algorithm to find a minimum-
weight perfect matching in a graph, which gave this polyhedral characterization
as a by-product. Conversely, from the characterization one may derive the
polynomial-time solvability of the weighted perfect matching problem. In ap-
plying linear programming methods for this, one will be faced with the fact that
(9),(14) consists of exponentially many inequalities, since there exist exponen-
tially many odd-size subsets U of V . So in order to solve the problem with
linear programming methods, we cannot just list all inequalities.

However, the ellipsoid method for linear programming (Khachiyan [26]) does
not require that all inequalities are listed a priori ([22,23]). It suffices to have a
polynomial-time algorithm answering the question:

(17) given x ∈ R
E , does x belong to the perfect matching polytope of G?

Such an algorithm indeed exists, as it has been shown that the inequalities (9)
and (14) can be checked in time bounded by a polynomial in |V |, |E|, and the
size of x. This method obviously should avoid testing all inequalities (14) one
by one.

Combining the description of the perfect matching polytope with the duality
theorem of linear programming gives a min-max formula for the minimum weight
of a perfect matching. It again yields a certificate of optimality: if we have a
perfect matching M , we can convince our ‘boss’ that M has minimum weight,
by supplying a dual solution y of objective value w(M). So the minimum-
weight perfect matching problem has a good characterization — i.e., belongs to
NP∩co-NP.

This gives one motivation for studying polyhedral methods. The ellipsoid
method proves polynomial-time solvability, it however does not yield a practical
method, but rather an incentive to search for a practically efficient algorithm.
The polyhedral method can be helpful also in this, e.g., by imitating the simplex
method with a constraint generation technique, or by a primal-dual approach.
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We note that Edmonds’ theorem is equivalent to the following.

(18) The convex hull of the symmetric permutation matrices in R
n×n is

equal to the set of doubly stochastic matrices with the property that
for each odd number k and each principal submatrix B of order k,
the sum of the entries in B is at most k − 1.

4 Hamiltonian circuits and the traveling sales-

man problem

As we saw, perfect matchings form an area where the search for an inequality
system determining the corresponding polytope has been successful. This is in
contrast with, for instance, Hamiltonian circuits. (A Hamiltonian circuit is a
circuit covering all vertices.) No full description in terms of inequalities of the
convex hull of the incidence vectors of edge sets of Hamiltonian circuits — the
traveling salesman polytope — is known. The corresponding optimization prob-
lem is the traveling salesman problem: ‘find a Hamiltonian circuit of minimum
weight’, which problem is NP-complete.

This implies that, unless NP=co-NP, there exist facet-inducing inequalities
for the traveling salesman polytope that have no polynomial-time certificate of
validity. Otherwise, linear programming duality would yield a good characteri-
zation. So unless NP=co-NP there is no hope for an appropriate characterization
of the traveling salesman polytope. It can be seen that the following ‘obvious’
set of inequalities is not enough to determine the traveling salesman polytope:

(19) x(e) ≥ 0 for e ∈ E,
∑

e∋v

x(e) = 2 for v ∈ V ,

∑

e∈δ(U)

x(e) ≥ 2 for ∅ 6= U 6= V .

In matrix terms, unless NP=co-NP, there is no hope for an appropriate
description of the convex hull of those n × n permutation matrices made by a
permuation with precisely one orbit. (Simply requiring that the entries in any
nonempty proper principal submatrix of order k add up to at most k − 1 is not
enough.)

Moreover, unless NP=P, there is no polynomial-time algorithm answering
the question

(20) given x ∈ R
E , does x belong to the traveling salesman polytope?

Otherwise, the ellipsoid method would give the polynomial-time solvability of
the traveling salesman problem.
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Nevertheless, polyhedral combinatorics can be applied to the traveling sales-
man problem in a positive way. If we include the traveling salesman polytope in
a larger polytope (a relaxation) over which we can optimize in polynomial time
(which is the case for the polytope determined by (19)), we obtain a polynomial-
time computable bound for the traveling salesman problem. The closer the re-
laxation is to the traveling salesman polytope, the better the bound is. This
can be very useful in a branch-and-bound algorithm. This idea originates from
Dantzig, Fulkerson, and Johnson [6].

5 Stable sets and semidefinite programming

Related to the problems described above is the problem of finding a maximum-
size stable set in a graph G = (V, E) (and more generally, a maximum-weight
stable set, but we will restrict ourselves here to the cardinality case). Here a
subset S of V is called stable if any two vertices in S are nonadjacent in G. The
problem comes up in practice for instance when assigning frquencies to radio
stations or mobile phones.

Finding a maximum-size stable set is again an NP-complete problem, so no
good description of the corresponding stable set polytope (the convex hull of the
incidence vectors in R

V of the stable sets) may be expected.
However, for certain graphs, the so-called perfect graphs, a maximum-size

stable set can be found in polynomial time ([22]). The basic idea is to apply
semidefinite programming to calculate the following bound of Lovász [34] on the
maximum size α(G) of a stable set in G:

(21) ϑ(G) := max{1TM1 | M ∈ R
n×n positive semidefinite, Mi,j = 0 if

ij ∈ E, trace(M) = 1}.

Here we assume without loss of generality that G has vertex set {1, . . . , n}.
To see that α(G) ≤ ϑ(G), let S be a maximum-size stable set in G, and

define the matrix M by

(22) M := |S|−1 · χS(χS)T,

where χS is the incidence vector of S in R
V , taken as column vector. Then M

is positive semidefinite, Mi,j = 0 if ij ∈ E, and traceM = 1. So α(G) = |S| =
1

TM1 ≤ ϑ(G).
The value ϑ(G) can be calculated in polynomial time, as it is a semidefinite

programming problem. A generic form of such a problem is: given c1, . . . , ct ∈ R

and real symmetric matrices A0, . . . , At, B (of equal dimensions), find x1, . . . , xt ∈
R that maximize

∑

i cixi subject to the condition that (
∑

i xiAi)−B is positive
semidefinite. If all Ai and B are diagonal matrices, we have a linear program-
ming problem. Semidefinite programming problems can be solved in polynomial
time, with the ellipsoid method or with an ‘interior-point method’.
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It follows that if α(G) = ϑ(G), we can calculate α(G) in polynomial time.
Moreover, if

(23) α(G′) = ϑ(G′) for each induced subgraph G′ of G,

then we can find a maximum-size stable set in polynomial time. (An induced

subgraph is a subgraph (V ′, E′) of (V, E) with V ′ ⊆ V and E′ = {ij ∈ E | i, j ∈
V ′}.)

Which graphs satisfy (23)? First, it was shown by Lovász [35] that these are
precisely the graphs G such that

(24) α(G′) = γ(G′) for each induced subgraph G′ of G.

Here γ(H) denotes the colouring number of H, and H denotes the complemen-
tary graph of H (whose edges are precisely the nonedges of H).

Berge [1] introduced the name perfect for graphs G satisfying (24), and he
conjectured that these are precisely those graphs G with the property that
neither G nor G contains a chordless circuit of odd length ≥ 5. (Necessity of
this condition is easy.) This strong perfect graph conjecture was only recently
proved by Chudnovsky, Robertson, Seymour, and Thomas [3], requiring deep
decomposition techniques for graphs. Berge’s weak perfect graph conjecture,
stating that the complement G of any perfect graph is perfect again, was shown
earlier by Lovász [33].

6 Historically

The first min-max relations in combinatorial optimization were proved by Dénes
Kőnig [27,28], on edge-colouring and matchings in bipartite graphs, and by
Karl Menger [36], on disjoint paths in graphs. The matching theorem of Kőnig
was extended to the weighted case by Egerváry [14]. The proofs by Kőnig
and Egerváry were in principal algorithmic, and also for Menger’s theorem an
algorithmic proof was given in the 1930s. The theorem of Egerváry may be seen
as polyhedral.

Applying linear programming techniques to combinatorial optimization prob-
lems came along with the introduction of linear programming in the 1940s and
1950s. In fact, linear programming forms the hinge in the history of combinato-
rial optimization. Its initial conception by Kantorovich [25] and Koopmans [29]
was motivated by combinatorial applications, in particular in transportation
and transshipment.

After the formulation of linear programming as generic problem, and the de-
velopment in 1947 by Dantzig [5] of the simplex method as a tool, one has tried
to attack about all combinatorial optimization problems with linear program-
ming techniques, quite often very successfully. In the 1950s, Dantzig [4], Ford
and Fulkerson [16,15,17], Hoffman [24], Kuhn [30,31], and others studied prob-
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lems like the transportation, maximum flow, and assignment problems. These
problems can be reduced to linear programming by the total unimodularity of
the underlying matrix, thus yielding extensions and polyhedral and algorithmic
interpretations of the earlier results of Kőnig, Egerváry, and Menger. Kuhn
realized that the polyhedral methods of Egerváry for weighted bipartite match-
ing are in fact algorithmic, and yield the efficient ‘Hungarian’ method for the
assignment problem. Dantzig, Fulkerson, and Johnson [6,7] gave a solution
method for the traveling salesman problem, based on linear programming with
a rudimentary, combinatorial version of a cutting plane technique.

A considerable extension and deepening, and a major justification, of the
field of polyhedral combinatorics was obtained in the 1960s and 1970s by the
work and pioneering vision of Edmonds [8,9,10,11,12,13]. He characterized basic
polytopes like the perfect matching polytope, the arborescence polytope, and
the matroid intersection polytope; he introduced (with Giles) the important
concept of total dual integrality; and he advocated the interconnections between
polyhedra, min-max relations, good characterizations, and efficient algorithms.

Also during the 1960s and 1970s, Fulkerson [18,19,20,21] designed the clar-
ifying framework of blocking and antiblocking polyhedra, throwing new light
by the classical polarity of vertices and facets of polyhedra on combinatorial
min-max relations and enabling, with a theorem of Lehman [32], the deduc-
tion of one polyhedral characterization from another. It stood at the basis of
the solution of Berge’s weak perfect graph conjecture in 1972 by Lovász [33].
As mentioned, Berge’s strong perfect graph conjecture was recently proved by
Chudnovsky, Robertson, Seymour, and Thomas [3].
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