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Abstract
Given a weighted bipartite graph, the maximum weight
matching (MWM) problem is to find a set of vertex-disjoint
edges with maximum weight. We present a new scaling al-
gorithm that runs in O(m

√
n logN) time, when the weights

are integers within the range of [0, N ]. The result im-
proves the previous bounds of O(Nm

√
n) by Gabow and

O(m
√
n log (nN)) by Gabow and Tarjan over 20 years ago.

Our improvement draws ideas from a not widely known re-
sult, the primal method by Balinski and Gomory.

1 Introduction

The input is a weighted bipartite graph G = (V,E,w),
where V consists of n left vertices and n right vertices,
|E| = m, and w : E → R. A matching M is
a set of vertex-disjoint edges. The maximum weight
matching (MWM) problem is to find a matching M
such that w(M) =

∑
e∈M w(e) is maximized among

all matchings, whereas the maximum weight perfect
matching (MWPM) problem requires every vertex to
be matched.

The MWPM problem and the MWM are reducible
to each other [15]. To reduce from the problem of MWM
to MWPM, obtain G̃ by making two copies of G and add
a zero weight edge between each two copies of vertex.
Then, G̃ is still bipartite and a MWPM in G̃ gives a
MWM in G. Conversely, to reduce from the problem of
MWPM to MWM, we simply add nN to the weight of
each edge, where N is the maximum weight of the edges.
This will guarantee that the MWM found is perfect.

Figure 1 shows the previous results on these prob-
lems. The first procedure for solving the MWPM prob-
lem dates back to 150 years ago by Jacobi [21]. However,
the procedure was not discovered until recently [27].
In the 1950s, Kuhn [24] and Munkres [26] developed
the “Hungarian” algorithm to solve the MWPM prob-
lem, where the former credited it to the earlier works of
König and Egerváry. Later in [1], Balinski and Gomory
gave an alternate approach to this problem, the primal
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method. The previous approaches grow the matching
from empty while maintaining the feasibility of the dual
program. In contrast, the primal method maintains the
perfect matching from the beginning and fixes the in-
feasible dual solution along the way.

Later, Edmonds and Karp [7] and, independently,
Tomizawa [32], observed that implementing the Hun-
garian algorithm for MWPM amounted to computing
single-source shortest paths n times on a nonnegatively
weighted graph. The running time of their algorithm
depends on the best implementation of Dijkstra’s algo-
rithm, which has been improved over time [22, 9, 30, 31].

Faster algorithms are known when the edge weights
are bounded integers in [−N,N ], and a word RAM
model with log n+ logN word size is assumed. Gabow
[11] gave a scaling approach for the MWPM prob-
lem, where he also showed the MWM problem can be
solved in O(Nm

√
n) time. Gabow and Tarjan [15] im-

proved the scaling approach to solve the MWPM in
O(m

√
n log(nN)) time. Later, Orlin and Ahuja [28]

gave another algorithm with the same running time.
There are several faster algorithms for dense graphs.

Cheriyan and Mehlhorn [2] exploited the RAM model
and used a bit compression technique to implement Or-
lin and Ahuja’s algorithm. Kao et al. [23] showed that
the MWM problem can be decomposed into MWM
problems with uniform weights, where a faster algo-
rithm for the maximum cardinality matching prob-
lem in [8] can be applied. Extending from [25, 19],
Sankowski gave an algebraic approach to solve this prob-
lem [29]. For general graphs, the relevant works are in
[6, 10, 17, 12, 14, 13, 16, 25, 19].

In this paper, we look at the MWM problem with
bounded integers in [0, N ], because negative weights can
always be ignored. We present a new scaling algorithm
that runs in O(m

√
n logN) time. Our algorithm im-

proves the previous bound of O(Nm
√
n) by Gabow [11]

and O(m
√
n log (nN)) by Gabow and Tarjan [15]. No-

tice that our improvement is strict when N = ω(1)
and N = no(1). Other algorithms by [23] and [29] are
not strongly polynomial and outperform ours only when
N = O(1) and the graph is very dense. The former re-



Bipartite Weighted Matching

Year Author Problem Running Time Notes

1865 Jacobi

1955 Kuhn

1957 Munkres
mwpm poly(n)

1964 Balinski & Gomory

1970 Edmonds & Karp(?)

1971 Tomizawa(?)
mwpm mn logn Using binary heaps

1977 Johnson(?) mwpm mn logd n Using d-ary heaps, d = 2m/n

mwpm mn3/4 logN
1983 Gabow

mwm Nm
√
n

N = max. integer weight

1984 Fredman & Tarjan(?) mwpm mn+ n2 logn Using Fibonacci heaps

1988 Gabow & Tarjan

1992 Orlin & Ahuja
mwpm m

√
n log(nN) integer weights

1996 Cheriyan & Mehlhorn mwpm n2.5 log(nN)( log logn
logn

)1/4

1999 Kao, Lam, Sung & Ting mwm Nm
√
n( log(n2/m)

logn
) integer weights

2002 Thorup(?) mwpm mn integer weights, randomized

2003 Thorup(?) mwpm mn+ n2 log logn integer weights

integer weights, randomized
2006 Sankowski mwpm Nnω

ω = matrix mult. exponent

new result mwm m
√
n logN integer weights

Figure 1: Previous results on the MWPM and MWM problems. Algorithms that solve MWPM also solve MWM with
the same running time. Conversely, algorithms that solve MWM can be used to solve MWPM, while the factor N becomes
nN in the running time. (*) denotes implementations of the Hungarian algorithm using different priority queues.

quires m = ω(n2−ε) for any ε > 0, whereas the latter
requires m = ω(nω−1/2), which is ω(n1.876) by the cur-
rent fastest matrix multiplication technology [3].

Our approach consists of three phases. The first
phase uses a search similar to one iteration of [15]
to find a good initial matching. The second phase
is the scaling phase. In contrast to [15], where they
run up to log(nN) scales to ensure the solution is
optimal, we run only up to logN scales. Then, the
third phase makes the solution optimal by fixing the
absolute error left by the first two phases. In some
sense, our first and third phase have the effect equivalent
to 0.5 log n scales of the Gabow-Tarjan algorithm [15],
thereby saving the additional log n scales. Like Balinski
and Gomory’s algorithm [1], our algorithm adjusts
the matching throughout the second and third phases
instead of finding a new one in each scale. In addition, as
in [18], we bound our running time by using Dilworth’s
Lemma, in particular, that every partial order has a
chain or anti-chain of size Ω(

√
n).

1.1 Definitions and Preliminaries A matching M
is a set of vertex-disjoint edges. A vertex is free if it is
not incident to an M edge, otherwise it is matched. If a

vertex u is matched, denote its mate by u′. The MWM
problem can be expressed as the following integer linear
program, where x represents the incidence vector of a
matching.

maximize
∑
e∈E

w(e)x(e)

subject to 0 ≤ x(e) ≤ 1, x(e) is an integer ∀e ∈ E∑
e=uv∈E

x(e) ≤ 1 ∀u ∈ V

It was shown that basic solutions to the linear program
are integral. The dual of the linear program is as follows.

minimize
∑
u∈V

y(u)

subject to y(e) ≥ w(e) ∀e ∈ E
y(u) ≥ 0 ∀u ∈ V

where we define y(uv)
def
= y(u) + y(v)

By the complementary slackness condition, M and
y are optimal iff ∀e ∈ M , y(e) = w(e) and for all free
vertices u, y(u) = 0. In the MWPM problem, the third
inequality in the LP becomes equality,

∑
e=uv∈E x(e) =



1,∀u ∈ V . Therefore, the condition y(u) ≥ 0,∀u ∈ V is
dropped in the dual program. If ∀e ∈ M , y(e) = w(e),
then M and y are optimal.

Definition 1.1. Given δ0, let δi = δ0/2
i, wi(e) =

δibw(e)/δic. The eligibility graph G[c, d] at scale i is
the subgraph of G containing all edges e satisfying either
e /∈ M and y(e) = wi(e) or e ∈ M and wi(e) + cδi ≤
y(e) ≤ wi(e) + dδi.

An alternating path (or cycle) is one whose edges
alternate between M and E\M . Our algorithm consists
of three phases, and we let δ0 = 2blog(N/

√
n)c and the

number of scales L = dlogNe, so that wL(e) = w(e) for
all e ∈ E. An augmenting walk/path/cycle is defined
differently in each phase:

1. Phase I: The phase operates at scale 0. An
augmenting walk refers to an alternating path in
G[1, 1] with free endpoints. For convenience, call
such a path an augmenting path.

2. Phase II: The phase operates at scales 1 . . . L. An
augmenting walk is either an alternating cycle in
G[1, 3] or an alternating path in G[1, 3] whose end
vertices have 0 y-values. For convenience, call
the former an augmenting cycle and the latter an
augmenting path. Notice that an endpoint of an
augmenting path can be either free or matched. If
an endpoint is matched, then we require its mate
to be contained in the path as well.

3. Phase III: The phase operates at scale L. An
augmenting walk is in G[0, 1] and defined the same
as Phase II with one more restriction: The walk P
must contain at least one matched edge that is not
tight. That is, y(e) 6= wL(e), for some e ∈ P ∩M .

Given an augmenting walk P , by augmenting M along
P , we get a matching M ⊕ P = (M \ P ) ∪ (P \M).
Given a subgraph H ⊆ G and a vertex set X ⊆ V , let
Vodd(X,H) denote the set of vertices reachable through
an odd-length alternating path in H starting with an
unmatched edge that incidents to a vertex in X, and
Veven(X,H) be the set reachable via an even-length
alternating path. For convenience, sometimes we denote

a singleton {x} by x. Let
−→
G denote the directed graph

obtained by orienting edges e from left to right if e /∈M ,
from right to left if e ∈M . Every alternating path in G

must be a path in
−→
G and vice versa.

2 Algorithm

Property 2.1. Throughout scale i ∈ [0, L], we main-
tain matching M and dual variables y satisfying the fol-
lowing:

1. (Granularity of y) y(u) is a nonnegative multiple
of δi.

2. (Domination) y(e) ≥ wi(e) for all e ∈ E.

3. (Near Tightness) y(e) ≤ wi(e) + 3δi for e ∈ M .
At the end of scale i, it is tightened so that y(e) ≤
wi(e) + δi for e ∈M .

4. (Free Vertex Duals) The y-values of free vertices
are 0 at the end of scale i.

Lemma 2.1. Let M∗ be the optimal matching. If M
and y satisfy Property 2.1 at the end of the scale L,
then w(M) ≥ w(M∗) − nδL. Furthermore, when M
is perfect and M∗ is the optimal perfect matching, the
same inequality holds if y(e) ≥ w(e) for all e ∈ E and
y(e) ≤ w(e) + δL for e ∈M .

Proof.

w(M) =
∑
e∈M

w(e)

≥
∑
e∈M

y(e)− nδL near tightness

=
∑
u∈V

y(u)− nδL free vertex duals

≥
∑
e∈M∗

y(e)− nδL non-negativity

≥
∑
e∈M∗

w(e)− nδL domination

= w(M∗)− nδL

If M and M∗ are perfect, then we can skip from the
second line to the fourth line, since

∑
e∈M y(e)−nδL =∑

e∈M∗ y(e)− nδL.

The goal of each phase is as follows. Phase I
finds the initial matching and dual variables satisfying
Property 2.1 for scale i = 0. Phase II maintains
Property 2.1 after entering from scale i− 1 to i, for i ∈
[1, L]. In particular, we want to have y(e) ≤ wi(e) + δi
for all e ∈M at the end of each scale. Phase III tightens
the near tightness condition to exact tightness for all
e ∈M after scale L so that y(e) = wL(e) = w(e) for all
e ∈M .

2.1 Phase I In this phase, our algorithm will be
working on G[1, 1] so that if one augments along an
augmenting walk, all edges of the walk become ineligi-
ble.

Our algorithm maintains an invariant: All free left
vertices, F , have equal and minimal y-values among left
vertices and all free right vertices have zero y-values.



After the initialization, Property 2.1(4) is violated. We
fix it by repeating the augmentation/dual adjustment
steps until all vertices in F have zero y-values. The
procedure described in the pseudocode is a modified
Gabow-Tarjan algorithm [15] for one scale, where we
always adjust dual variables by δ0 in each iteration and
stop when free vertices have zero y-values rather than
when the matching is perfect.

Initialization:
M ← ∅.

Set y(v)←

{
δ0bN/δ0c if v is a left vertex

0 otherwise
.

repeat
Augmentation:
Find a maximal set P of augmenting paths in
G[1, 1] and set M ←M ⊕ P .
Dual Adjustment:
Let F be the left free vertices.
For all v ∈ Veven(F,G[1, 1]), set y(v)← y(v)− δ0.
For all v ∈ Vodd(F,G[1, 1]) set y(v)← y(v) + δ0.

until F = ∅ or y(F ) = 0

After the augmentation step, there will be no
augmenting paths in G[1, 1], which implies no free
vertex is in Vodd(F,G[1, 1]). Therefore, our invariant
that right free vertices have zero y-values is maintained
after the dual adjustment. Also, since all y-values
of free vertices on the left will be decreased in every
dual adjustment, they must be minimal among all left
vertices. The number of augmentation/dual adjustment
steps will be bounded by the number of total possible
dual adjustments, which is δ0bN/δ0c/δ0 ≤ 2

√
n. Thus,

Phase I takes O(m
√
n) time.

In addition, the definition of eligibility on G[1, 1]
ensures that if there exists e ∈ M such that y(e) =
w0(e)+δ0 before the dual adjustment, then y(e) cannot
be increased after the adjustment. Therefore, y(e) ≤
w0(e) + δ0 for e ∈ M , near tightness is maintained
throughout this phase. Likewisely, if e /∈ M and
y(e) = w0(e), then y(e) does not decrease during the
adjustment. Also, due to the definitions of Veven and an
alternating path, y(e) does not decrease for all e ∈ M .
Thus, y(e) ≥ w0(e) for all e ∈ E, domination is
maintained throughtout this phase.

2.2 Phase II At the beginning of scale i ∈ [1, L], we
set y(u) ← y(u) + δi for all left vertices u and do not
change the y-values for all right vertices, so Property
2.1(2) (domination) is maintained. So is Property 2.1(3)

(near tightness):

y(e)← y(e) + δi

≤ wi−1(e) + δi−1 + δi

by Property 2.1(3) at the end of scale i− 1

≤ wi(e) + 3δi

since δi−1 = 2δi and wi−1(e) ≤ wi(e)

However, Property 2.1(4) may be violated, because now
the y-values of left free vertices are δi. Hence, we will
run one iteration of augmentation/dual adjustment step
on G[1, 3] described in the pseudocode of Phase I to
reduce them to zero. By the same reasoning in Phase I,
domination and near tightness (y(e) ≤ wi(e) + 3δi,∀e ∈
M) will not be violated during the step, which implies
Property 2.1 is now all maintained.

Next, we will repeat the augmentation/dual adjust-
ment steps described in Section 2.2.1 and 2.2.2 onG[1, 3]
until y(e) ≤ wi(e) + δi for all e ∈ M , or equivalently,
until M ∩G[2, 3] = ∅.

There are two reasons that we consider G[1, 3]
rather than other definitions for eligibility. First, as
in Phase I, since the definition of eligibility does not in-
clude matched tight edges, all edges of an augmenting
walk become ineligible after we augment along it. Sec-
ond, when doing the dual adjustment, we will not create
any more matched edges in G[2, 3] (though they might
be in G[1, 3]), since the propagation of dual adjustments
along the eligible edges e ensures that y(e) will not be
increased for e ∈M ∩G[1, 3]. This will be explained in
Lemma 2.6.

2.2.1 Phase II - Augmentation When augmenta-
tion is called in Phase II, we need to eliminate all aug-
menting walks from the eligibility graph G[1, 3]. This
can be divided into two stages. In the first stage we
eliminate the augmenting cycles, whereas in the second
stage we eliminate the augmenting paths. Notice that
unlike in Phase I, augmenting paths here may start or
end with matched edges.

In the first stage, we will find a maximal set of
vertex-disjoint augmenting cycles C, which can be done
by using a modified depth first search, cycle search(x).
We will inflict cycle search(x) on every matched vertex
x that has not been visited in previous searches. Recall
that x′ is the mate of x.

Lemma 2.2. The algorithm finds a maximal set of
vertex-disjoint augmenting cycles C. Moreover, if we
augment along every cycle in C, then the graph G[1, 3]
contains no more augmenting cycles.

Proof. Suppose the algorithm did not find a maximal
set of vertex-disjoint augmenting cycles, let C be such a



Algorithm 1 cycle search(u)

Mark u and u′ as visited
for every unmatched edge u′v do

if v is visited and v is an ancestor of u in the search
tree then

Add the cycle consisting of the path from v to u′

and the edge u′v to C.
Back up the search until leaving cycle earch(v)
so the parent of v is on the top of the stack.

else if v is not visited then
Call cycle search(v).

end if
end for

cycle that is vertex-disjoint from all cycles in C. Let
C = (v1, v2, . . . vk, v1) so that v1 is the vertex first
entered in the search. Let t be the largest index such
that vt is visited by the search before the search backs
up from v1. Since vt is not contained in any cycles in C,
the search must discover the next vertex of vt in C. If
t < k, then vt+1 is visited. If t = k, then we discovered
a cycle containing the edge vkv1. Both cases lead to a
contradiction.

Furthermore, if there exists a cycle C after augmen-
tation, then this cycle must share a vertex v with some
cycle C ′ ∈ C due to the maximality of C. However, if
v is contained in C, then C contains v and its mate.
This contradicts the fact that there will be no eligible
matched edge that incidents to v after the augmentation
on C ′.

Figure 2: An example illustrating starting vertices and
maximal augmenting paths in G[1, 3]. The plain edges de-
note unmatched edges, while the curled ones denote matched
edges. The shaded vertices denote vertices with zero y-
values. Vertex u1, v1, and v2 are starting vertices. The
path P = v2u3v3u4v4 is an augmenting path. However, it is
not a maximal augmenting path, since either u1v2u3v3u4v4
or v1u2v2u3v3u4v4 is an augmenting path containing P .

In the second stage, we will eliminate all the aug-

menting paths in G[1, 3]. This is done by finding a max-
imal set of vertex-disjoint maximal augmenting paths. A
maximal augmenting path is an augmenting path that
cannot be extended to a longer one (see Figure 2). Note
that we require such a path to be maximal, for other-
wise it is possible that after we augment along a path,
an endpoint of the path becomes free and is now an
endpoint of another augmenting path.

Consider the graph
−→
G [1, 3]. It must be a directed

acyclic graph, since G[1, 3] does not contain an aug-
menting cycle now. A vertex is said to be a starting
vertex if it has zero y-value and it is either a left free
vertex or a right matched vertex. Therefore, a start-
ing vertex is a possible starting point of an augmenting

path in
−→
G [1, 3]. Let S be the set of all starting vertices.

We will initiate the search on every unvisited vertex in

S in topological order of
−→
G [1, 3]. The way we initiate

the search on x depends on whether x is free or not.
If x is free, we will just call path search(x). Other-
wise, we will call path search(x′). It is guaranteed that
path search(x) is called on left vertices.

Algorithm 2 path search(u)

{Recall that x is the starting vertex and P is the
maximal set of maximal augmenting paths we have
found so far.}
Mark u as visited.
for every unmatched edge uv do

if v is free {v is a right free vertex} then
Add the path from x to v to P and terminate the
search.

else if v is not visited then
Call path search(v′).

end if
end for
if y(u) = 0 {u is a left matched vertex} then

Add the path from x to u to P and terminate the
search.

end if

If there exists an augmenting walk from x to v and
v is not free, our search will explore the possibility that
it can be extended from v before it is added to P.
If v is free, then it is impossible to extend the path.
Furthermore, since we initiated the starting vertices in
topological order, it is guaranteed that the path cannot
be extended from x either. Therefore, the augmenting
path found in our algorithm must be maximal.

Lemma 2.3. After we augment along every path in P,
the graph G[1, 3] contains no more augmenting paths.

Proof. Suppose that there exists an augmenting path
Q after the augmentation. Then by the maximality of



P, there must be some augmenting path in P sharing
vertices with Q. There can be two cases. Case 1:
There exists P ∈ P and v ∈ P ∩ Q such that v is
not an endpoint of either P or Q. In this case, by our
definition of an augmenting path, P contains v and its
mate before the augmentation on P and Q contains v
and its mate after the augmentation. However, after the
augmentation on P , there should be no eligible matched
edge that incidents to v, thus Q cannot contain both v
and its mate. Case 2: For all P ∈ P, either Q ∩ P = ∅
or Q and P intersect on their endpoints. Let P be the
earliest path added to P such that P and Q intersect.
Let x be the endpoint where they intersect, and xP and
xQ be the other endpoints of P and Q. If xP = xQ then
there was an augmenting cycle, which is not possible. If
xP is a starting vertex, then path search(xP ) should
have found a longer augmenting path than P , since
PQ is a longer one. On the other hand, if x is a
starting vertex, it must be a right matched vertex and
becomes free after augmentation, so xQ must also be a
starting vertex. Since our search is called in topological
order on starting vertices, xQ must be called before x,
which implies that the first augmenting path found that
intersects Q contains xQ but not x.

2.2.2 Phase II - Dual Adjustment Let B be the
set of violated matched edges that need to be tightened
before the end of scale i, that is, B = {e ∈ M :
y(e) − wi(e) > δi} = G[2, 3] ∩M . Define the badness,
f(e), to be the amount edge e has violated. That is,
f(e) is (y(e) − wi(e) − δi)/δi for e ∈ B, f(e) is 0 for
e /∈ B. Let f(B) =

∑
e∈B f(e) be the total badness

of B. Then B is empty if and only if f(B) = 0, since
f(e) > 0 for e ∈ B. The goal of dual adjustment is to
tighten Property 2.1(3), namely, to decrease f(B) to 0.

A B′ ⊆ B is said to be a chain if there is an eligible
alternating path containing B′. On the other hand, B′

is said to be an anti-chain if for any m1,m2 ∈ B′ such
that m1 6= m2, there exists no eligible alternating path
containing them.

Lemma 2.4. For any t > 1, there exists B′ ⊆ B such
that either B′ is a chain with f(B′) ≥ dte or B′ is an
anti-chain with |B′| ≥ df(B)/2te. Moreover, such B′

can be found in linear time.

Proof. This lemma basically follows from Dilworth’s

Lemma [5]. First obtain
−→
G [1, 3] by orienting the edges

in G[1, 3] and assign the length to be f(e) for every

e ∈
−→
G [1, 3]. Then,

−→
G [1, 3] must be a directed acyclic

graph since we have no augmenting cycles.
Let S denote the vertices with zero in-degrees.

Compute the longest path from S to every vertex in−→
G [1, 3], which can be done in linear time in topological

order. If there exists a path P having length at least
dte, then P ∩ B must be a chain with f(P ∩ B) ≥ dte.
Otherwise, for every uv ∈ B (assume that v is the left
vertex), the length of the longest path from S to v is in
the range of [1, dte − 1]. Since f(e) ≤ 2 for e ∈ B, we
must have at least d|B|/te ≥ df(B)/2te such v having
the same longest distance from S. If the distance is
k, then the set B′ = {uv ∈ B : v is a left vertex and
the longest distance from S to v is k} must be an anti-
chain. For u1v1, u2v2 ∈ B, if there is an alternating
path containing them in G[1, 3], there must be a path

from u1v1 to u2v2 or from u2v2 to u1v1 in
−→
G [1, 3] so the

longest distance from S to v1 and v2 must be different.

Below we show that if B′ is a chain we can decrease
the total badness by f(B′) in linear time. On the other
hand, if B′ is an anti-chain, then we can decrease the
total badness by |B′|/2 also in linear time.

2.2.3 Phase II - Dual Adjustment - Anti-chain
Case

Definition 2.1. A vertex x is said to be dual ad-
justable if for every v ∈ Vodd(x,G[1, 3]), v is not free
and for every v ∈ Veven(x,G[1, 3]), y(v) > 0.

Lemma 2.5. For every e = uv ∈ B, either u is
adjustable or v is adjustable or both. Furthermore, all
adjustable vertices can be found in O(m) time.

Proof. First, if e = uv ∈ B and u and v are both
not adjustable, then by our definition of adjustable,
there exist vertices w and x having zero y-values where
w  u→ v  x is an augmenting path. However, this
contradicts the fact that there are no augmenting paths
after the augmentation step.

To find the adjustable vertices, it is rather conve-
nient to mark up all those unadjustable vertices. Let
Ṽ = {v : v is free or v is matched and y(v′) = 0}, and
mark all vertices as unadjustable in Vodd(Ṽ , G[1, 3]).
This can be done in linear time.

Let B′ ⊆ B be an anti-chain. We call
antichain adjust(B′) to adjust the dual variables. In
the procedure, we will pick a set of dual adjustable
vertices X that are adjacent to B′ and on the same
side, then do a dual adjustment starting at X. Since
by Lemma 2.5, for any e = uv ∈ B′ either u is ad-
justable or v is adjustable or both, we can guarantee
that |X| ≥ |B′|/2. See Figure 3 for an example.

Lemma 2.6. The dual adjustment starting at X will not
break Property 2.1(1), 2.1(2), or 2.1(4). Furthermore,
it makes Property 2.1(3) tighter by decreasing f(B) by
|X|.



Algorithm 3 antichain adjust(B′)

Let Ṽ = {v : v is free or v is matched and y(v′) = 0}.
Mark vertices in V \ Vodd(Ṽ , G[1, 3]) as adjustable
vertices.
Let XL = {u : uv ∈ B′ and u is a left adjustable
vertex }.
Let XR = {u : uv ∈ B′ and u is a right adjustable
vertex}.
If |XR| > |XL|, then let X = XR; otherwise let
X = XL.
Dual adjustment starting at X:
For all v ∈ Veven(X,G[1, 3]), set y(v)← y(v)− δi.
For all v ∈ Vodd(X,G[1, 3]), set y(v)← y(v) + δi.

Proof. Since every vertex in X is adjustable, every
vertex v ∈ Vodd(X,G[1, 3]) must have y(v) > 0, im-
plying y(v) will be non-negative after subtracting δi.
Thus, Property 2.1(1) is maintained. In addition,
by the definitions of an alternating path and Veven,
Veven(X,G[1, 3]) cannot contain a free vertex. There-
fore, no dual variables of free vertices are adjusted,
meaning Property 2.1(4) is maintained. Since all ver-
tices in X are on the same side, y(e) can change by at
most δi. We only need to check:

1. If e = uv is tight before the adjustment, Property
2.1(2) (domination) holds for e after the adjust-
ment: If e /∈M , then e is eligible. If the y-value of
an endpoint gets subtracted by δi then another end-
point must be added by δi, which means y(e) does
not decrease. If e ∈ M , then it is not possible for
u or v to be in Veven(x,G[1, 3]), since e is ineligible
and we start with an unmatched edge. Therefore,
domination holds on e after the adjustment.

2. f(B) decreases by |X|: If e is tight before the
adjustment, then increasing y(e) by δi contributes
nothing to f(B). If e is not tight, then e is eligible
and f(e) cannot be increased either, since if one
endpoint gets added by δi, then another endpoint
must be subtracted by δi. Furthermore, if e ∈ B′
and e is incident to a vertex inX, then one endpoint
of e is in Veven(X,G[1, 3]) and the other cannot
be in Vodd(X,G[1, 3]), because B′ is an anti-chain.
Therefore, f(e) decreases by exactly 1.

Therefore, by doing the dual adjustment starting at X,
we can decrease f(B) by at least |B′|/2.

2.2.4 Phase II - Dual Adjustment - Chain Case
In the chain case, there exists an alternating path
containing B′. Take P to be the minimal alternating
path containing B′ so that P starts and ends with

(a)

(b)

Figure 3: An example of an eligible graph that illustrates
an anti-chain and adjustable vertices. (a) The light shaded
vertices denote vertices with zero y-values. The shaded
matched edges form an anti-chain of size 3. The dark shaded
vertices are adjustable vertices of the anti-chain. (b) The
dark vertices denote X, the selected vertices for the dual
adjustment. Vertices marked with ‘e’ and ‘o’ denote vertices
in Veven(X,G[1, 3]) and Vodd(X,G[1, 3]) respectively.

edges in B′. If we augment along P , then the edges
in B′ no longer contribute to f(B) since they become
unmatched, and new M -edges contribute nothing to
f(B). However, the endpoints of P , say u and v, become
free while possibly having positive y-values. Hence we
will need to make them matched by augmentation or
decrease their y-values to zero. In this subsection, we
relax our definition of augmenting path such that the
y-value of each endpoint is 0 except if it is u or v.
We perform a search similar to Phase I on u until
an augmenting path Pu starting from u is found or
y(u) becomes zero (which is a degenerated case when
Pu = {u}). After the search, we will not augment Pu
immediately but perform another search again on v to
find an augmenting path Pv. Now if there exists an
augmenting path Q in G[0, 3] whose endpoints are u
and v, then we will augment along it. See Figure 4
for an example. Otherwise, we let Q = Pu ∪ Pv and
then augment along Q. In this case, we must have
Pu∩Pv = ∅, for otherwise an augmenting path in G[0, 3]
between u and v exists. In the searches, we will use
G[0, 3] as the eligibility graph, which ensures the weight



Algorithm 4 search(x)

If x is a right vertex, set
−→
G ←

−→
GT (reverse the edges).

For each e ∈
−→
G , assign a new weight w′(e) =

{
y(e)− wi(e) if e /∈M
0 if e ∈M

Compute the distance d(z) from x to z for every z ∈
−→
G , where d(z) =∞ if z is not reachable from x.

Let h(z) =


d(z) if z is free and not on the same side as x

d(z) + y(z) if z is on the same side as x

∞ otherwise

.

Let zmin be the vertex such that h(z) is minimum, and let ∆ = h(zmin).
Let Px be the shortest path from x to zmin.

Set y(z)←

{
y(z)−max{0,∆− d(z)} if z is on the same side as x

y(z) +max{0,∆− d(z)} if z is not on the same side as x

return Px

of the new matching we get does not decrease. Below
we describe how the search works.

Let x ∈ {u, v} be the free vertex that we per-
form the search on. If there exists an augmenting
path in G[0, 3] starting at x, then we will stop. Re-
call that the other endpoint of x can be either free or
matched. On the other hand, if there is no augment-
ing path, then let γ be the minimum of min{y(z) :
z ∈ Veven(x,G[0, 3])} and min{y(v1v2) − wi(v1v2) :
v1 ∈ Veven(x,G[0, 3]) and v2 /∈ Vodd(x,G[0, 3])}. Then,
add γ to the y-value of every vertex in Vodd(x,G[0, 3])
and subtract γ from vertices in Veven(x,G[0, 3]). Keep
repeating the adjustment until we find an augmenting
path starting at x. Similar to one iteration in the Hun-
garian algorithm, this process is equivalent to comput-
ing shortest paths from x, which is described in Algo-
rithm 4, search(x).

In search(x), ∆ is the amount of dual adjustment
needed before an augmenting path opens up. The
augmenting path starts from x and ends at some zmin,
where zmin can be either a free vertex on the opposite
side of x or a zero y-valued matched vertex on the
same side as x. For the former situation, the dual
adjustment needed is d(zmin). For the latter situation,
we not only need to reach zmin but also need to decrease
its y-value to 0, so the dual adjustment needed is
d(zmin) + y(zmin). After finding ∆, we will adjust
the dual variables accordingly. search(x) returns an
augmenting path Px starting at x.

By Property 2.1(1), d(z) must be a non-negative
multiple of δi. Since our goal of computing the shortest
path is to find ∆, we can just compute those d(z) which
are no more than ∆. This can be done in O(m+ ∆/δi)
time by using an array as a priority queue in Dijkstra’s
algorithm. (See Dial’s implementation [4].)

Lemma 2.7. Augmenting along P and then Q does not
decrease the weight of the matching and ∆u+∆v ≤ 3nδi,
where ∆u and ∆v are the amount of dual adjustments
done in search(u) and search(v). Thus, the search can
be done in O(m) time.

Proof. Suppose M is the original matching, M ′ is the
matching obtained by augmenting along P , and M ′′

is the final matching after augmenting along Q. Let
w′′(e) = y(e)−wi(e) (notice that w′′ differs from w′ on
the matched edges). For a quantity q denote its value
before both searches by qold and after both searches by
qnew. After the searches, we must have:

wi(Q \M ′) =
∑

e∈Q\M ′
ynew(e)

tightness on unmatched edges

= ynew(u) + ynew(v) +
∑

e∈M ′∩Q
ynew(e) (*)

= ynew(u) + ynew(v) + wi(M
′ ∩Q)

+ w′′new(Q ∩M ′) defn. of w′′new

Therefore,

wi(M
′′) = wi(M

′) + ynew(u)(2.1)

+ ynew(v) + w′′new(Q ∩M ′)

(*) holds because beside u and v, the other possible
difference of vertices in Q \M ′ and Q ∩M ′ are those
with zero y-values, which are the endpoints of Pu and
Pv when Q = Pu ∪ Pv.

Similarly, before the searches, we have:

wi(M) = wi(M
′) + yold(u)(2.2)

+ yold(v)− w′′old(P \M ′)



(a) (b)

(c) (d)

Figure 4: An example illustrating procedures for the chain case. Edges are shown with their new weight w′. The shaded
vertices are free vertices with zero y-values. (a) After augmenting along P , u and v became free while having positive
y-values. (b) search(u) adjusted ∆u = 4δi and found an augmenting path Pu. (c) search(v) adjusted ∆v = 4δi and found
Pv. (d) Augmentation along Q. This is the case where there exists an augmenting path Q between u and v in G[0, 3],
which happens to be Pv in the example.

The amount of dual adjustments is at most the distance
between u and v, so ∆u + ∆v ≤ w′′old(P \M ′) ≤ 3nδi.
Moreover:

wi(M
′′) ≥ wi(M ′) + ynew(u) + ynew(v)

by (2.1) and w′′new(Q ∩M ′) ≥ 0

= wi(M
′) + yold(u) + yold(v)−∆u −∆v

≥ wi(M ′) + yold(u) + yold(v)− w′′old(P \M ′)
= wi(M) by (2.2)

Lemma 2.8. At most O(
√
n) rounds of augmentation

and dual adjustment are required to reduce f(B) to 0.

Proof. When f(B) = b, choose t =
√
b/2. Either we

can obtain an anti-chain B′ of size at least d
√
be and

decrease f(B) by d
√
b/2e, or we can obtain a chain

B′ such that f(B′) ≥ d
√
b/2e and decrease f(B) by

f(B′). In any case, we can decrease f(B) by d
√
b/2e.

The number of rounds is at most T (b), where T (b) =
T (b − d

√
b/2e) + 1 for b > 0 and T (b) = 0 for b = 0.

It can be shown by induction that T (b) ≤ 4
√
b, so that

T (b) ≤ 4
√
b ≤ 4

√
2n.

2.3 Phase III The procedure for Phase III is similar
to that for Phase II, but with several differences. First,

instead of operating on G[1, 3], we will operate on G[0, 1]
in this phase. Second, in the augmentation step, the
definition of augmenting walks is modified such that the
walk must contain at least one matched edge that is not
tight. One exception is that an augmenting path in
G[0, 3] of the chain case still refers to the old definition
in Phase II, where we do not require it to contain at least
one non-tight edge. Third, the way we find augmenting
walks will be different from Phase II, since a tight edge
in an augmenting walk will not become ineligible after
an augmentation.

2.3.1 Phase III - Augmentation

Lemma 2.9. Each augmentation along the augmenting
walk in G[0, 1] increases the weight of M. Consequently,
there can be at most

√
n augmenting walks in Phase III.

Proof. Let M be the original matching and M ′ be
the matching after augmentation. Suppose P is an
augmenting walk. We must have

∑
v∈M∩P y(v) =∑

v∈M ′∩P y(v), regardless of whether P is an augment-
ing cycle or an augmenting path. Since P contains
at least one non-tight matched edge, w(M ∩ P ) <∑
v∈M∩P y(v) =

∑
v∈M ′∩P y(v) = w(M ′ ∩ P ). Since



all weights are integers, the weight of the matching is
increased by at least one.

After Phase II, δL = 2blogN/
√
nc−dlogNe ≤ 1/

√
n.

By Lemma 2.1, we have w(M) ≥ w(M∗) − nδL ≥
w(M∗) −

√
n. Since each augmentation increases the

weight of M by at least one, and by Lemma 2.7, the
weight of M does not decrease in dual adjustment steps,
there can be at most

√
n augmentations.

We have to ensure that no augmenting walks ex-
ist in G[0, 1] after the augmentation step. Since an
augmenting walk may contain tight matched edges in
G[0, 1], Lemma 2.2 and Lemma 2.3 no longer guaran-
tee augmenting along a maximal set of augmenting cy-
cles/paths will break up all eligible cycles/paths. How-
ever, by Lemma 2.9, we only need to find one augment-
ing walk in time O(m) if it exists.

This can be done by the following procedure. First,

obtain
−→
G [0, 1] by orienting the edges of G[0, 1]. If there

is an augmenting cycle, then the cycle must contain a
non-tight edge, say e. Also, the endpoints of e must be

strongly connected in
−→
G [0, 1]. Therefore, to detect such

cycles, run a strongly connected component algorithm
first and then check whether the endpoints of non-tight
edges are strongly connected.

Second, to detect an augmenting path, run the
algorithm in O(m) time described in Lemma 2.5 to
determine whether v is adjustable for all v ∈ G. If there
exists a non-tight matched edge uv such that both u and
v are not adjustable, then there must be an augmenting
path containing uv. Therefore, an augmenting walk can
be found in O(m) time, if one exists, and the total time
spent on augmentation during Phase III is O(m

√
n).

2.3.2 Phase III - Dual Adjustment In Phase
III, our goal is to tighten all non-tight edges. Thus,
these edges are considered to be violated. That is,
B = {e ∈ M : y(e) − wi(e) = δi} = G[1, 1] ∩ M .
The definition of badness, f(e), is changed to (y(e) −
wi(e))/δi accordingly. In Lemma 2.5, if u and v are
both unadjustable, it is true that there will be an
augmenting path containing a non-tight edge, which
is uv. This will contradict with the fact that there
are no augmenting paths after the augmentation step.
Therefore, the lemma still works.

The other difference is Lemma 2.4, where the graph−→
G may contain zero-length cycles or zero-length paths
now. However, that does not affect how we select a
chain or an anti-chain. The difference is that the graph
may not be a DAG now but we still need to compute
the length of the longest path from S to every vertex in
linear time, where S is the set of vertices with zero in-
degrees. This can be done by the following procedure:

1. Find the strongly connected components of
−→
G [0, 0].

2. For each strongly connected component C in−→
G [0, 0], contract C into one vertex in

−→
G [0, 1], be-

cause all vertices in C are supposed to have the

same length of longest path from S in
−→
G [0, 1].

3. Compute the longest path in the new contracted
graph, which is a DAG.

Lemma 2.6, Lemma 2.7, and Lemma 2.8 all hold if
we replace G[1, 3] by G[0, 1], and the existence of tight
augmenting cycles/paths does not affect their correct-
ness. Thus, the total time spent on dual adjustment in
Phase III for f(B) to reach zero is still O(m

√
n).

2.4 Maximum Weighted Perfect Matching Sup-
pose a perfect matching exists in G. By the reduc-
tion described in Section 1, where we added nN weight
to every edge, we can solve the MWPM problem in
O(m

√
n log(nN)) time. This does not improve the pre-

vious bound in [15]. However, below we give an al-
gorithm that uses fewer scales, dlog(

√
nN)e instead of

dlog(nN)e. This is done by modifying the algorithm for
MWM, where we maintain the following:

Property 2.2. Let δ0 = 2blogNc, L = dlog(
√
nN)e.

At the end of each scale i ∈ [0, L], we maintain a perfect
matching M with the following:

1. (Granularity of y) y(u) is a multiple of δi.

2. (Domination) y(e) ≥ wi(e) for all e ∈ E.

3. (Near Tightness) y(e) ≤ wi(e) + 3δi. At the end
of scale i, it is tightened so that y(e) ≤ wi(e) + δi,

For scale i = 0, find a perfect matching M using
the Hopcroft-Karp algorithm in O(m

√
n) time [20], and

assign y(u) ← δ0 to all left vertices u, y(v) ← 0 to all
right vertices v.

Next, begin Phase II for scale i ∈ [1, L] and Phase
III at the end of scale L with the following modifications:

1. An augmenting walk only refers to an alternating
cycle. We no longer consider augmenting paths so
that we always keep the matching M to be perfect.
More precisely, in the augmentation step, we no
longer run path search(x). In the dual adjustment
step, if it is the anti-chain case, then either side of
an edge in B′ is adjustable, since now we allow the
dual variables to have negative values. Therefore,
for an anti-chain B′ we can always decrease f(B)
by |B′|.
In the chain case, the endpoints of P , say u and
v, are freed temporarily. Here, we must force the



search(x) to find an augmenting path to connect
u and v back. This can be done by only doing
search(u) until the augmenting path in G[0, 3]
between u and v opens up (i.e. force zmin to be v),
which is always possible since we no longer need to
keep y-values non-negative.

2. When f(B) = b, choose t =
√
b/2. Either we

can obtain an anti-chain B′ of size at least d
√
b/2e

and decrease f(B) by d
√
b/2e, or we can obtain a

chain B′ such that f(B′) ≥ d
√
b/2e and decrease

f(B) by f(B′). In any case, we can decrease f(B)
by d

√
b/2e, so the number of rounds is at most

T (b) = T (b − d
√
b/2e) + 1. It can be shown by

induction, T (b) ≤ 2
√

2b ≤ 4
√
n.

3. When Phase II ends at scale L, the result of Lemma
2.9 also holds. Since δL = 2blogNc−dlog(

√
nN)e ≤

1/
√
n, by Lemma 2.1, w(M) ≥ w(M∗) − nδL ≥

w(M∗)−
√
n. Thus, the matching can be improved

at most
√
n times.

Therefore, the algorithm runs in dlog(
√
nN)e scales,

where each scale takes O(m
√
n) time. The reason

why we cannot achieve the same bound as the MWM
problem is because Phase I does not apply. It is still
unknown whether the MWPM problem can be solved
in O(m

√
n logN) time.

3 Discussion

We believe that finding the MWM is easier than finding
the MWPM. In [16], Gabow and Tarjan gave a scaling
algorithm that solves the MWPM problem on general
graphs in O(m

√
n log nα(n) log(nN)) time. It is an

interesting open problem whether the MWM on general
graphs can be found in a faster time.

There are some reasons why it seems not possible
to extend this algorithm directly to the general graph
case, where there are blossoms. First, after entering the
next scale, the edges in blossoms might not be tight or
near tight anymore. It is likely one has to dissolve all
these old blossoms. In [16], they throw away the old
matching and try to find a new one while dissolving the
old blossoms in every scale. Let C and D be two old
blossoms such that D ⊆ C, C \D is called a shell. Their
algorithm treats each shell independently until either C
or D dissolves. However, it seems not possible to treat
each shell independently in our algorithm, because we
keep the old matching from the last scale and there
might be matched edges crossing the shells. On the
other hand, if we do not treat each shell independently,
it will be unclear how we reduce f(B) by

√
f(B) in a

round, because the chain/anti-chain argument does not
seem to work when there are nested blossoms.

Second, even if there are no old blossoms in the pre-
vious scale, when we find an augmenting walk passing
a blossom node, the edges inside the blossom become
ineligible. This no longer guarantees that augmenting
along the next augmenting walk passing this blossom
will increase the weight of the matching, which makes
Lemma 2.9 inapplicable.
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