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A CERTAIN ZERO-SUM TWO-PERSON GAME EQUIVALENT TO
THE OPTIMAL ASSIGNMENT PROBLEM' '

John von Neumann

The optimal assigrment problem is as follows: given n persons
and n Jjobs, andﬁa set of real numbers aij’
of the ith person in the jth job, what assignments of persons to jobs'
will yield maximum total value? A solution can be expressed as a permuta-
tion of n objects, or, equivalently, as an n x n permutation matrix.
(Such a matrix can be expressed by J.P » Where 5ij is the Kronecker
symbol and 1P + +J under permutation P.) The value
of a particular assignment (i.e., permutation) P will be E:i a P With-
out further investigation, a direct solution of the problem Ll appears

to require n! steps, -- the testing of each permutation to find the

each representing the value

is the image of 1

optimal permutations giving the maximum 3, & P

We observe that the solution is L1 invariant under the matrix
transformation aij —_ aij +ouy + Vj’ where u; and V3 are any sets of
constants. It is glear that zi uy + Ejvj will be added to each assign-
ment vallue, and that thus the order of values, particularly the maxima,
will be preserved. This enables us to transform a given assignment problem

with possibly negative a to an equivalent one with strictly positive

1]
by adding large enough positive u;
We shall now construct a certain related 2-person game and we

8.

13° and Vj‘

shall show that the extreme optimal strategies can be expressed in terms of

the optimal permutation matrices in the assignment problem. (The game
matrix for this game will be 2n X n?. From this 1t is not difficult to
infer how many steps are needed to get significant approximate solutions
with the method of G. W. Brown and J. von Neumann. [Cf.: "Contributions

to the Theory of Games," Annals of Mathematics Studies, No. 24, Princeton
University Press, 1950 -- pp. 73-79, especlally § 5.1 It turns out that
this number is a moderate power of n, 1i.e., cohsiderably smaller than the
"obvious" estimate nt! mentioned earlier.) '

'Rditors' Note: This is a transcript, prepared under Office of Naval
Research sponsorship by Hartley Rogers, Jr., of a seminar talk given by
Professor von Neumann at Princeton University, October 26, 1951.
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6 : VON NEUMANN

‘ We first construct a simple preliminary game, the 1-dimengional
game: We may think of the game as played with a set of n cells or boxes

indexed 1 =1, ..., n.
Move 1: Player I 'hides' in a cell.
Move 2: Player I1I, ignorant of 1I's choice, attempts to

'find' player I by similarly choosing a cell.

This is a play. The payoff is determined by a set of di
(positive). If player I is 'found’ in cell 1, he pays playsr II the
amount Ay otherwise he pays O. ' ‘

Whnat are the optimal strategies for. I? Let his strategy be to
choose cell 1 with probability Xy Then player II wiil obtain expected
payoff dixi by choosing i. Hence he will chocse a cell 1 for which

“iXi ig maximum. The value for him will thus be max (&ixi).

i
Now let x = (xi) be optimal for I. Assume that an
oy 4 4 m?x (d4%) - Choose € >0 such that 45 (xj + ) = m?x CYEIDR
Define
. —x.+& for 1= 3
X. J
+ =Xy otherwise
Then mix (OLiX:‘L) = m?L.X (eLixi), and Ei X'i = Ei Xy + € =1 + &£. Hence the
x!
xit = —=
1 1+ €

can be used as probabllities, and

max (dixi)

g
max (k;x}') = —rweme—— { max (o X, )
i e 1+ & i 170
i.e., x = (Xi) was not optimal. Thus necessarily all djxj = max (dixi),
. i
i, ox; = ...=dx =A Now X, x =1 implies A= /31 & s
i
and, of course, Xy = ﬁ? . The value of the game (for II) is clearly A.
i

We now introduce the game in which our particular interest lies.
We call 1t the 2-dimensicnal game; it is a generalization of the 1-dimen-
sional game as follows:
The cells are -doubly indexed from 1 to n. (They may be thought
of as fields in an n x n matrix.) '
Move 1: Player I hides as before.
Move 2: Player II now attempts to 'find' I by guessing
either of the indices of the cell in which player
I has hidden. _
He must state which index he is guessing. (I.e., II attempts to plck the
row, or the column, of I.) Player I, 1f so 'found' in cell 1,j pays to

|




A CERTAIN ZERO-SUM TWO-PERSON GAME 7

II the amount dij’

otherwise he pays O.

where the dij are a glven set of positive numbers;

Thus player I has n2 pure strategies and player II has 2n.

We now discuss optimal strategies for player I. Let his mixed
), X

gtrategy be =x = (Xij =13 Xij = 1, where each Xij represents the
probability of his hiding in cell i,j. Then player I1's pure strategies
will give a return of Ej °Lij Xij for row choice 1, or Ei °kij Xij

for column choice Jj. As in the 1-dimensional gamé, he can now simply play
pure strategles giving the maximum such return. Player I will try to
choose =x minimising this return. Thus the value of the game (for II)
will be: ‘ -
Min 'Max"( Zaj iy Kyeg oo 251 &ij' Xij') .
x 1',] :

The characterization of I's strategies 1s not quite as easy as before. The
sinmple direct compensatory adjustment of the 1-dimensional game cannoct be
made . ‘

For furthér progress, we obtaln certain results on the geometry

of convex bhodies.
We define:

dimensions),

il
N
—
[
]
=

R = Set of all vectors =z
such that

it
M
He
N
}.J
[
I

24 20, ZSJ 25 5

(in n® dimensions),

|
o~
[
~—

S = Bet of all vectors z =

.

such that

Z;5 20, :2j Z358 7 2, 2y 80

T = 3et of all vectors z = (z,.) (in n®  dimen-

1j
sions), such that Zij =dp . for some permutation P
of the integers 1, ..., nt *d (T thus consists of the
n'x n permutation matrices.) ‘
We prove two lemmas:
IEMMA 1. S = Set of all 2z such that =z { some

w e R.

PROOF. S 2 this set is immediats.




8 - VON NEUMANN

S C this set is shown as follows: For any z € 5 let N(z) be
the number of all 1 with 25 zlJ é_1' plus the_number of all j with
2 735 ¢ 1. Clearly N(z) =0, 1,2, ... and R 1s the set of those

z € 3 for which N(z) =

Now consider a z € 8. If =z ¢ R, then there is either

Eij Zij {1 for some i, or 22 . < for some j. However, all
%j %33 S 1, all 21 2y 5 <= 1, and 2 J = (‘_,:L lJ) Hence
lﬁ.zij {1 for some 1 implies )ﬁ_ 1 < 1 for some j,» and con-
versely. Therefore both :Sj 1j {1 for some i, =say i =41i', and

251 Z4 5 {1 for some j, say J= j'. Choose

1 - Nbx:(zs x5 25 Xy )

3

It

Then € » 0. Define

, = Zy.40 * € for i=i~',3=J‘l
150 .
= Zij octherwise
Then =z = (z'ij) €9, alsg always 21 ; < Z'ij , i.e., =z g Zt;  and
either Z’j z]!_,j=1 or Z’i Zi,j=1. Hence N(z >N(z)
Iterating this process gives a sequence =z < z! < z1 ( ... in

S with N(z) > N(z') > N(z'') > ..., which therefore must terminate. It
can only terminate with a =z D) ¢ R. Hence w = z(m) has all desired
properties.

IEMMA 2. R = Convex of T.

(This theorem is due to G. Birkhoff, Rev. Univ. Nac. Tacuman,
Series A, Vol. 5 [1946], pp. 147-148. Cf. alsc G. Birkhoff, "Lattice
Theory," Revised Edition, Amer. Math. Soc. Coll. Seriles, Vol. 25 [1948],
example 4* on p. 266. The proof that follows is more direct than
Birkhoff's.) ' _

PROOF. R 1s clearly convex. R T 1s immedlate. Hence
R> Convex T.

R C Convex T is demonstrated, 1f it is established, that all
extreme points of the convex R belong to T. Actually they form pre-
clsely the set T.

That every point of T 18 an extreme point of R is clear:
Az €T bhelongs to R, and if it were not extreme, then z =

tz' + {1 - t)z'' with z', z'* € R; z' # z''; 0 t< 1. Choose
ZiJ # z{Yy, sey Zij < ?ii. Then zy5 = tz'3 + (1 - t)z'j hence
13 < 243 4 Zii. Now either Zy3 = 0, implying Z' { o, or g =1,

inplying Zi3 > 1 -- and both are impossible.




A CERTAIN ZERO-SUM TWO-PERSON GAME 9

There remalins, therefore, only this: To prove that every extreme
point of R belongs to T. This is shown as follows:

For a z € R call a pair i,j inner, if zij # 0, 1. Cleariy
z €Tl (for a =z € R) means that all zij =0, 1, i.e., that no 1,j 1s
inmer. Hence 2z ¢ T means that inmmer 1,] exist.

If a 1ine 1 {or a column j) contains at most one inner

- = - . - . = - T » - 1
element 2335 then Z4 3 1 E%V Zg 4 (or Zy 3 1 5 Zi'J) is
necessarily =1, 0, -1, -2, ... . 3ince Zij 2 0, therefore zij =0, 1,

il.e., 1,) 4is not imner either. In other words: If 1,J 4is inner, then
there exists an imner i,J' (1',J) with Jj' # j (1+ # 1).

Now consider a z € R, such that z ¢ T. Let 1i,J be lnner.
Choose . j' # j such that 1,j' is inner, then i' ¥ 1 such that i',j'
is inner, then j'' # jJ' such that 1',j'' 1is inner, then 1'' # 1' such
that 1'',j'' is inner, etc. In this way two sequences i, irt, it'', ...
and j, j', J'', .%. arise, such that i(m),j(m) is inner, i(m),j(m+1
is inner, and 1™ » 1(me1) o 50m) o s(me1) 99 this for a1l m =0, 1,
2, ... ). Hence i(p) = i(q or j(p) = j(Q) must occur sometime for
D # Q. Choose such a pair with p < g, and with ¢ as small as pbssible,
and with p (for this gq) as large as possible. Hence i(p), i(p+1), Cee,
i(q'q), i(q) are pairwise different, also j(p), j(p+1), ceny j(q“]), j(Q)
are palrwise different, with the possible exception of i(p) = i(q) or

3 = 3 (or votn). Por ) = 59 gertne 1 - 1fP) 5 -
R A T B L ot ¢ dg-p-1 =
j(q—1)i )For g(?) # j(q),( ?ence nec?ssa§ily (i(p; = 149, “derine
. _ <P . 4(q _ .(q . L (p+1 . a(p+1 . _
J_? 1;_ (= 1 )( ']10)— J » 1-‘ = 1 ) J-‘ = J 3 rees lqu-1 =
q- . _ «(g- . ; ; .
i s Jq—p—1 = ] . Thus two sequences 1 345 -ves 15, and
Jor dys -++s Jgq (8 =q - p, ealsodefine J, = j ) arise, with the
following properties: io’ i1, caey is—1 are pairwise different, also
Jo» Jys» -++» Jg., are palrwise different, i,,j, 1is immer, i.,j. ., is
is inner (all this for t =0, 1, ..., 8 - 1). I.e., the quantities
(1) Za 5 s Za 5 5 wvvy Za  +
Lodo L1, lg-1da
(2) Ziga s 3 Zix 2 4 eeey Zs . (.:l :j)
“od1T Hde tg-1s 5.0

are all > 0, { 1.
Now let €& be the minimum of the quantities in the lines (1),

(2). Then &> 0. Define z' = (Zij) and z't' = (zii)‘ as follows:
=235 % E (Zij - €) for the 1,j of line (1)
zij(ziﬁ) = Zij - € (Zij + €) for the 1,j of line (2)
= Zij : otherwise

Then z' € R and z'' € R are readily verified. Also clearly z' # z'!
and z = %'z' + % z't,




Hence =z 18 not an extreme point In R, qg.e.d.

We now return to the 2-dimensional game and a characterization of

player I's optimal strategles. Let x = (Xij) be an optimal strategy and

let A be the value of the game (for player II). We define

. .\1 .
Clearly all =5 eLlJ 1 < A and all _,l nLlelJ < A, 1.e., all

J < 1 and all ELL 34]< 1. Hence z = (Zij) belongs to S.
Now Lemma 1 implies the existence of a w = (w J belonging to
R, with z { w.. Form :
d.i.u. .
W — .._x]_l..x]. B u = (u )
1] A 13
\ 3 = ¢ \‘\ = \/“ =
Then all 2 tz\.gula A Zj\fij A, and all f’id‘ijuij' A2y Wy A,
hence i¥?§, (‘__,.J dl,J 1100 &1 dij'uij‘) = A. Also zlJ ( Wy 130 hence
-+ 3 : < - N LY
X4 3 g Uy 5 Hence Z‘ij X5 5 g RFERIRY 8 245 %43/ 2; j_<_- 1.. Put
ViJ = Quij. ? . . 7 . .

v Then 245 V45 = Zij Xp5= 1, 1.2., the Vs ian be used as
probabiiities, like the g g Also 1¥a§' (443 ﬁi'jvi'j’ 25 ﬁij'vij') =
8A. If e < 1, then this contradicts the optimality of x = (Xij)- Hence

- ; < RN < P
& =1, l.e., ZygXyg= 25 Ups Since g5 ( uy this implies
Xij = uij’ i.e., Zij = wij' Hence =z = w € R.

Now Lemma 2 implies that =z 1is the center of gravity of certain
points of T. TI.e.,

= t oz, Y erT, t =1, t 0
z zv \ Z T zy v ¥ 2
The t = 0 may be cmitted, i.e., t > 0 may be assumed. Form
¥ dij ng ha ¥
Zij = . , X o= (Xi-)
Then the cptimality of x implies that one of all x¥. Also Z;j =& y
for a suitable permutation PY. Hernce iP s J
v A
Xes = —— o
1] 7 . v
R

In other words: All optimal strategies are centers of gravity of
optimal strategies of the special form
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(%) Xyg = EAT d ) (P a permutation)

Consider, therefore, the strategies of the form (*). For such a

strategy all Zsj oy %35 = A and all N % %33 = A Hence

5 (25 steigmary > 21 %y ) =2
>

Hence the optimal ones among these strategles are those that give the
minimum A. .
Now, since the Xi are probablllties, E:ij Xij =1, i.e.,

zidA' =1, 1l.e., =1/El°L . Hence the minimum A wm%wmﬁs'
to T’ the maximum E:l a L I.e., precisely thosse permutationsr P
give the optimal strategiesl’l in question, for which Zsi Y assumes
its maximum value. : i,1

To sum uUp: '

THEQOREM. The extreme optimal strategies (i.e.,
those, of which all others are centers of gravity) of
the 2-dimenslonal game are precisely the following ones:

Consider those permutations P which maximize

:5 1
ia :

1,1F
For eachh P of this class form the strategy X = (X .)

1]
according to (*) above.:

Note, that this means that player I plays only those cells where
the permutation matrix (of P) has a 1. {Here line guesses (i) and
column guesses (j) correspond to each other equivalently under the rela-
tion j = iP.) His play among these cells is then determined by the

1-dimensicnal game.
The condition expressed in the above Theorem for P is exactly

the optimal agssignment problem with alJ = 1/&13, where the aij are the
elements of the assignment matrix (which, we saw, could be considered as
all positive).
Several further remarks can be made.
1) A transformation of a; ——> agy+ Uy + Uy in the
agsignment matrix leaves the solution.unchanged and hence the game will

be invariant (in its Pr's) under the corresponding
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— i1
dij > T + dij(ui + V)

That the game should be so Ilnvariant is not at all clear initially from the
game itself. (Note, this is not complete invariance. The 1-dimensional
golutions for a particular P may change, though the P remains the
same.)

2) Various extensions of the optimum assignment problem are
posaible and can be gettled in essentially the same manner. Thus one can
specify certain,manyQto—many assignment patterns between persons and jobs,
and the like. :

In addition, certain formal generalizations of the game are
possible -- to various k-dimensional forms with k= 3, 4, ... . These
seem to be interesting, but present serious difficulties.

J. von Neumann

The Instltute for Advanced Study



