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SOLUTICNS OF GAMES BY DIFFERENTTAL EQUATIONS*A V///#

G.‘w. Brown and J. von Neumann

§1.

The purpose of this note 1s to give a new proof for the exlstence
of a "value" and of "good strategies" for a zero-sum two-person game. This
proof seems tTo have some interest because of two distinguishing traits:

(a) Although the theorem to be proved is of an algebraical nature,
a very simple proof 1s cobtained by analytical means.

(b) The proof is "constructive" in a sense that lends itself to
utilizatlon when actually computing the solutions of specific games. The
procedure could be "mechanized" with relative ease, both for "digital" and
for "analogy" methods. In the latter case it is probably much less sensi-
.tive to the precision of the equipment, than the somewhat related problem
of "linear\équation'Sblving" or "matrix inversion."

The derivations which follow are based on results that were
obtained independently by the two authors. Further results of one of them
(G. W. Brown) are published elsewhere [1]1.

§2.

Consider first the special case of a symmetric game, i.e., where

the "game matrix" Aij(i’ J=1, ..., m 1is antisymmetric: Aij.z - Aji'
Write for vectors, x = (Xi), u = (ui), and use the notations

‘.P(ui) = Max (O, ui) H

=
)
I

% ¥ (uy) s
Yx) =3 (#(u;))?
1

Consider the differential eguation system

axy
(2) =P - 0 - ox,

' Numbers 1in square brackets refer to the bibliography at the end of this
paper.

*Accepted as a direct contribution to ANNALS OF MATHEMATICS STUDY No. 2k,
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Th BROWN AND VON NEUMANN

starting with a vector

O _ ;.0 o o _ 2
(3) : X ~(Xi),XiZO,iZXi—-1 )
dxy
x; = 0 implies ¢~ =¥(u;) 2 0, hence x; 2> 0 can never go
over into x; { 0, i.e., always
(4) X 20

Summing over all 1 gives

& (Zx) =00 - Zxy)

T3
i.e.,
Lo 1 - Zx = - 0
dt T i ‘ ’
hence 2. Xy = 1 can never go over intoc 2 Xy + 1, 1.e., always
i 1
(5) S x, =1
T 1
Next, when ¥{(u;) > 0, then
dy(u.) dx. :
1 _ -
o7 = JZ-Aij ——‘Eld = JZAi,j Y(Uj) - 0(x) % Aijxj P
hence always
a(#(uy))? 5
—gg—— =22 Aij 9(ui) ‘f(uj) -2 d(x) Z Aij ‘!(ui)xj

J J

Summing over all 1 glves
av(x) _ ‘ B
Tt =2 1Z;J Apg e(uy) #luy) - 2 0(x) 123 SERALIES

The first term on the right-hand side vanishes, because Aij ls antisym-
metric. The second term i1s egqual to

%‘?(Ui) JZAinj =Zi:?(ui)ui X

2Existence of a unique solution to this system is assured by virtus of the
fact that the system is piecewise well-behaved, with matching of first
derivatives at the boundaries. The related system obtained by dropping
the last term in (2) is plecewise a linear system, and has a Towing solu-
tion, proportional to the solution of (2). The last term in (2) simply
normalizes the solution to make (5) hold. :
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whenever ?(15) + 0, then Y(ui) = u,. Hence the above expression is

i
equal to Z.:-('?(ui))2 = ¥Y(x). Therefore
1 .

(6) A¥E) ~ -~ 2 9(x) Y (x)

Now clearly
L
(7) (¥(x))Z { o(x) < (m¥(x))

Hence as long as ¥Y(x) > 0, also ¢(x) > 0, and VY(x) 1is decreasing;

also

1
2

, 3 -2
d?éi) < -2 (x5, - v f gx%%l 27
hence
S 1 - L
(P(x) 2> (Mx)) Z et
Y(Xo)
(8) - R JCIIG N
@ + (Xo)2 t)

If ever Y¥(x) = 0, then this remains true from then on (i.e.,
for all larger t), and so (8) 1s true again.
Finally from (7), (8)

1 1
2 z
m” Y(x )
(9) o (x) < °—
1+ ‘P(Xo)2 t
and from (8)
1
W(Xo)e

(10) P(u;) < :

By (8), (9), (10) t —> + » implies
Y(x) —> 0, d(x) —> 0,

and all

() — 0

e
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That the x; themselves have limits for t —> + » is not
clear; (2) and (10) do not seem to suffice to prove this. Nevertheless,

since the range (4), (5) of the X; 1s compact, limit points x° = (X?)
of the x =(x;) for t —> + » must exlst. For any such x° (&), (5)

mist again be true, and (10) gives that all

¥ Cui) =0,

i.e., all

(11) ZA, .x%<0
leJ

Hence any x" = (x3) represents a "good strategy,” and the
"value" of the (symmetric) game is, as it should be, zero.

§u.

Consider next an arbitrary game, i.e., one with an unrestricted
"game matrix" Bkl (k=1, ..., p; 1=1, ..., g). Various ways of
reducing this to a symmetric game are known. They differ from each other, -
among other things, in the order m of the symmetric game, l.e., of the
antisymmetric matrix Aij(i, J=1, ..., m) to which they lead. A very
elegant method of this type has been lately found [2] which gives the
remarkably low value' m = p + g + 1. One of the authors (J. von Neumann)
had obtained earlier another method, which gives the larger value m = pq.
(This is referred to, but not described, in [3], page 168.} We will follow
here the second procedure, partly because its underlying qualitative idea
is simpler, and partly because, although its m is congiderably larger
than that of the other method (pq vs. p+ g+ 1, ecf. above), it leads
ultimately to a set of differential equations in fewer variables
(p+aq-2 vs. p+ g, cf. the remarks at the end of §5.).

The qualitative idea behind the method referred to is this:
Assume that a player knew how to play every conceivable symmetric game A.
Assume that he were asked to play a (not necessarily symmetric) game B.
How could he then reduce it to known (symmetric) patterns?

He could do 1t 1like this: He could imagine that he is playing
(simultaneously) two games B: Say B' and B". In B' he has the role
of the first player, in B" he has the role of the second player — for his
opponent the positions are reversed. The total game A, congisting of B
and of B" together, is clearly symmetric. Hence the player will know how
to play A — hence also its parts, say B', i.e., ' B.

In spite of the apparent "practical" futility of this "reduction,"
it nevertheless expresses a valld mathematical procedure. The mathematical
procedure 1s as follows:
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Iet k', 1' be the indices Xk, 1 for the game B', and k", 1"

those for the game B". The player under consideration then controls the
indices k', 1", and his opponent contrcls k", 1'. Hence 1 may be made
to correspond to the pair (k', 1"), and j to the pair (k", 1').  The
game matrices are Bk'l' for B' and - Bynqn for B", 1.e.

Bk'l' - oy for A, 1i.e.

(12) Aij = Bk'l' - Bpnqn, where 1 = (k*, 1)y, j = (k", 1)

The symmetry of this new game, i.e. the antisymmetry of Ai is
obvious. Clearly m = pd.

Hence a system x = (Xi) = (xkl) exists, such that all

J‘:

and all

J
(ef. (B), (8), (11)). This means

2K . 0
Z'A_‘I_JXJ ..<_

Xpq 2 0, 2 Ko o= 1
kl £ 7° Tl k1 2

and
; (Bk'].' - Bklllll) Xl{"l' _<__ 9 »
k"1t
1l.e
EZ B ,X",< Z Bn an 32
k“lg k'l k 1 - k"l’ k 1 k l'
ZB,,(Z.Xn,)<ZBn"(ZX'"1)
l' k l klr k 1 - k" k 1 l' k l
Putting
(13) ikz%xkl’ "\1=§Xk1’

these inequalities yield

(14) £,.20, ny2o0,

(15) . =1’ Z =1 ]
%{fk £

and

% Bk' llv\ll _{__ %" B ';,lnikﬂ )
"
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i.e.

16 Max Z B { MinZ B .
(16) ax £Biy S M2 18k

(14), (1s5), (16) imply, of course, that equality holds in {(16), that
€= (§k) and w = (ql) are "good strategles" for the two players, and

that the common value of both sides of (ﬂ6) is the "value" of the (originalh

not necessarily symmetric) game. (Cf. [3], pp. 153 and 158.)

§5.

Apply now the differential equation system (2) to the "derived"
game (12). Restating (1), (2) glves

Yerym = k..zl, (Byrge = Bywgn) Hyngo s
¥$(u) = Max (0, u)
d(x) = 5%_?(ukl)
Voo = Z(flugy) y2
and
el

—at =?(ukl) - ¢(x) 1 -

This system Ilnvolves m = pg variables Xpq - It can, however, be "con-
tracted" as follows:

Clearly
Werqn = % By - % Bynpngyn
i.e
Uy T Ve - Wy
where

Vk=§3k1"\1 ;
(17)

Wy = %:Bklgk .
¥(u) may be defined as before:
(18) _ f{u) = Max (0, u)

P(x), ¥(x) depend no longer on all py components of x = (xi) = (Xkl),
but only on the p + @ components of § = (Sk)- and Y\:_(ql):
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( 3 ) =Z *( - 2
9(&,n 2 ¥, wy)
() (f ) = (¥ )2
y = .‘V —W .
Y(g, n & x - Y1

Summing the Xkl—differential—equations over all 1 gives

| 2
(20) T - ZHw, - ) - G €y

summing them over all k gives

(21) d—?=%(vk-wl> - (g,

Thus a system (20), (21) has been obtained, which involves only p + ¢
variables £, and w, .

Combining the observations of §3. and those at the end of §u.
shows, since the g = (gk), n= (q]) vary in the compact Jolnt range
defined by (1%), (15), that they possess (joint) limiting points g = (g;),
N = (q?}. Any such pair represents a pair of "good strategles."

Because of (15), the number of variables invelved in (2) is not

m, but m - 1. Because of (15), the number of varisbles involved in (20),
(21) is not p+ g, but p+ g - 2.
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