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Abstract We discuss some relevant results obtained by Egervary in the
early Thirties, whose importance has been recognized several years later. We
start with a quite well-known historical fact: the first modern polynomial-
time algorithm for the assignment problem, invented by Harold W. Kuhn
half a century ago, was christened the “Hungarian method” to highlight that
it derives from two older results, by Kénig (1916) and Egervéry (1931). (A
recently discovered posthumous paper by Jacobi (1804-1851) contains how-
ever a solution method that appears to be equivalent to the Hungarian
algorithm.) Our second topic concerns a combinatorial optimization prob-
lem, independently defined in satellite communication and in scheduling
theory, for which the same polynomial-time algorithm was independently
published thirty years ago by various authors. It can be shown that such
algorithm directly implements another result contained in the same 1931
paper by Egervary. We finally observe that the latter result also implies the
famous Birkhoff-von Neumann theorem on doubly stochastic matrices.

Key words Assignment problem, Hungarian algorithm, Open shop sched-
uling, Satellite switched time division multiple access

1 Introduction

This paper is devoted to a discussion on the implications of a paper that
was published in Hungarian by Jen6 Egervary [6] in 1931, and was ignored
for many years by the international mathematical community. The paper,
translated into English by Harold W. Kuhn [20] in 1955, basically consists
of two theorems. The first one is a cornerstone of the famous “Hungarian
method” for the assignment problem. The proof of the second (much less
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known) theorem provides a polynomial-time algorithm for a combinatorial
optimization problem that was independently established in the Seventies
in two different domains, for which different authors proposed solution al-
gorithms that replicate the one defined by Egervary. In addition, an easy
extension of the second theorem to non-negative real matrices contains as a
special case the celebrated Birkhoff-von Neumann theorem, that was pub-
lished in Spanish by Garrett Birkhoff [1] in 1946 and for which John von
Neumann [37] gave in 1953 an elegant elementary proof.

In Section 2 we recall the early years of the assignment problem and
the contributions of the Hungarian mathematicians. More details on these
exciting events can be found in Kuhn [22], Schrijver [32] (Chapter 17), Frank
[8], Jiittner [18], Schrijver [33] and Burkard, Dell’Amico and Martello [2]
(Chapters 2-4). We conclude the section by briefly reviewing the recent
historical discovery of a posthumous paper by Jacobi that anticipates by
many decades the Hungarian algorithm.

In Section 3 we consider two equivalent problems, arising in satellite
communication and in scheduling theory, and discuss two well-known al-
gorithms independently proposed by different authors. It turns out that
such algorithms are equivalent, and implement a technique developed by
Egervary for proving a second theorem given in the same 1931 paper. We
conclude with the observation that the latter Egervary’s result also implies
the famous Birkhoff-von Neumann theorem on doubly stochastic matrices.
More details on these topics can be found in Dell’Amico and Martello [3].

2 Assignment problem

The Assignment Problem (AP) has a very simple definition: Given an n xn
matrix A = (a;;), find a permutation ¢ of the integers 1,2,...,n that
maximizes (or, alternatively, minimizes)

Z i (i)
i=1

The problem is equivalently defined by the classical mathematical model

max iiaijxij (1)

i=1 j=1

st Y wg=1  (i=12...,n), (2)
j=1

doag=1  (j=12...,n), (3)
i=1

Ti; € {0, 1} (’L,j = 1,2,...,’17,). (4)
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In spite of its simplicity, in the last fifty years this problem attracted
hundreds of researchers, accompanying and sometimes anticipating the de-
velopment of Combinatorial Optimization.

The origins of the assignment problem date back to the Eighteenth cen-
tury, when Monge [28] formulated a continuous mass transportation prob-
lem as a huge AP that minimizes the cost for transporting all the molecules.
The combinatorial structure of the problem was investigated in the early
Twentieth century (Miller [27], Kénig [25], Frobenius [10], Egervéry [6]), as
we will see in the present section, while the first (exponential-time) implicit
enumeration algorithm was proposed in the Forties (Easterfield[4]). How-
ever, the problem was formulated in a modern way in the Fifties, not by
a mathematician, but by psychologist. In 1950 Robert L. Thorndike [36],
President of the Division on Evaluation and Measurement of the American
Psychological Association, defined the AP in the same way teachers use
nowadays to describe it to students:

Given a set of ... N job vacancies to be filled, and N individuals to be
used in filling them, assign the individuals to the jobs in such a way that
the average success of all the individuals in all the jobs to which they are
assigned will be a maximum
The problem name, though, was not invented by Thorndike, but by Votaw
and Orden [38] in a 1952 paper titled “The personnel assignment problem”.

Thorndike reports that he presented the problem to a mathematician,
who observed that there is a finite number of permutations in the assignment
of men to jobs, so from the point of view of the mathematician there was
no problem: one had only to try them all and choose the best. He dismissed
the problem at that point, and Thorndike observes:

This is rather cold comfort to the psychologist, however, when one con-
siders that only ten men and ten jobs mean over three and a half million
permutations. Trying out all the permutations may be a mathematical so-
lution to the problem, it is not a practical solution.
It is funny that a psychologist of the Fifties could apprehend a complexity
issue better than a mathematician. (Mathematicians will indeed understand
complexity 15 years later with Jack Edmonds [5].) Also note that a modern
personal computer could solve the “ten men and ten jobs” instance by
complete enumeration, but no supercomputer on Earth could enumerate
a “twenty-five men and twenty-five jobs” instance within any acceptable
time.

In his reminiscences on the origin of the Hungarian method, Kuhn [22]
reminds that he was attracted to the problem in 1953, when C.B. Tompkins
(1912-1971), a pioneer in numerical analysis and computing, was unsuccess-
fully trying to program a SWAC (Standards Western Automatic Computer)
to solve small-size AP instances. In that period Kuhn was reading the clas-
sic graph theory textbook by Dénes Kénig [26], Theorie der Endlichen und
Unendlichen Graphen, and encountered his augmenting path algorithm for
the matching problem on bipartite graphs. We need here to go further back
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to the past, and examine some fundamental results obtained in the early
years of the Twentieth Century.

2.1 Konig’s Theorem

Let G = (U, V; E) be a bipartite graph. A matching is a subset M of E such

that every vertex of G coincides with at most one edge of M. If [U| = |[V| =n

a matching of cardinality n is called perfect. A vertex cover is a subset C' of

U UV such that every edge of G coincides with at least one vertex of C.
In 1916 Konig [25] gave a constructive proof of the following

Theorem 1 (Kénig [25], 1916) In a bipartite graph the mazimum cardinal-
ity of a matching is equal to the minimum cardinality of a vertex cover.

The problem of finding the matching of maximum cardinality can be mod-
eled as a linear program whose constraint matrix is the adjacency matrix
of the bipartite graph. Hence this beautiful theorem can be seen as the first
duality result in linear programming. The celebrated lemma proved in 1902
by Farkas [7] (another Hungarian mathematician) was a first step in this
direction, but limited to a feasibility property. The Egervary’s Theorem,
discussed in Section 2.2, will then extend the Koénig’s result to the weighted
case, thus fully developing the dual aspect of the problem.

A result equivalent to Theorem 1 (formulated as a property on the de-
composition of matrices) had been proven in 1912 by Frobenius [9] through
algebraic considerations. However, the most notable aspect of Kénig’s con-
tribution is his proving technique. It is clear that |M| < |C| holds for any
matching M and vertex cover C (for any vertex of C, at most one emanating
edge can belong to a matching). In order to show that equality holds, i.e.,
that there is a matching M whose cardinality is equal to that of a minimum
vertex cover, Kénig gave a constructive proof that can be summarized as:

1. given any non maximum (possibly empty) matching, there is an algo-
rithm to produce a new matching with cardinality increased by 1;

2. if the algorithm fails then there exists a vertex cover having the same
cardinality as the current matching.

Although described in a slightly different way (by associating a directed
graph to G), the algorithm of point 1. is nothing else than the well-known
augmenting path algorithm. Given a matching M in G, the algorithm finds
a path formed by an odd number of edges of F, such that all edges in odd
position do not belong to M and all edges in even position belong to M. By
interchanging matching and non-matching edges along the path one obtains
a new matching with one more edge.

It can be shown (see, e.g., Burkard, Dell’Amico and Martello [2]) that
Theorem 1 implies the famous marriage theorem, proved in 1935 by Hall
[14]. For any vertex i € U, let N (i) denote the set of its neighbors: N (i) =
{j €V : [i,j] € E}. For any subset U’ C U, let N(U’) = J;c» N(i). Then
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Theorem 2 (Hall [14], 1935) A bipartite graph G = (U, V; E) with |U| =
|V | admits a perfect matching if and only if

Ul <IN ()

holds for all subsets U’ of U.

2.2 Egervary’s Theorem I

Let us return to the Fifties, and to Kuhn reading Ko6nig’s book. The match-
ing problem is the special case of assignment problem that arises when
the cost matrix is binary. A footnote in Kénig’s book mentioned a 1931
paper by Egervary [6] published, in Hungarian, in Matematikai és Fizikai
Lapok (Mathematical and Physical Pages). According to Kénig, this pa-
per extended his result to the weighted case. Kuhn then borrowed from his
library a Hungarian dictionary and a grammar, and wrote an English trans-
lation of the paper, that was published as a technical report of the George
Washington University (Kuhn [20]).

Egervary’s analysis is based on covering systems. Given an n X n matrix
A = (a;;), a covering system is a set of lines (rows and columns) that contain
the 7th row with multiplicity A; and the jth column with multiplicity u;,
and satisfy

)\1+sz&1] (l,]:1,2,,n) (6)

A covering system of minimum value

n

> Ok A+ ) (7)

k=1

is called a minimal covering system. It immediately appears that the mini-
mization of (7) subject to (6) is, in modern terminology, the dual problem
associated with the primal model (1)-(4), with dual variables (\;) and (p;)
associated with constraints (2) and (3), respectively.

The main result proved by Egervary is indeed the following:

Theorem 3 (Egervary [6], 1931) If (a;;) is an n xn matriz of non-negative
integers then, subject to condition (6), we have

min ;(Ak + pi) = mgx; Wi (i)

In other words, the primal and the dual problem have the same solution
value.

Given a complete bipartite graph G = (U, V; E) with |U| = |V| =n, let
a;; be the weight of edge [i,j] € E (i,j = 1,2,...,n). Define the weight of a
matching M in G as w(M) = 37, ;o aij- It is clear that 5 (A +px) >
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w(M) holds for any perfect matching M and any pair ((A;), (i;)) satisfying
6). Hence

min > (A + ) > msz Qig(i)- (8)

k=1 =1

Differently from Konig, Egervary did not provide an explicit algorithm
to prove that equality holds in (8). However, his proof implicitly defines the
following iterative method:

1. initialize with any ()\;) and (u;) satisfying A;+p; > a5(4,5 = 1,2,...,n);

2. find a maximum matching M (Theorem 1) in the subgraph G(A, p1) of
G that only contains the edges of E that satisfy \; + p; = aj;

3. if M is perfect then its weight is w(M) = Y7, (Mg + px): stop;

4. else G(A, ) must contain (Theorem 2) a subset |U’| C U such that
|U’| > |N(U")|: update the covering system through (Theorem 3)

(9)

X=X\ —1forieU
Hj = ,uj—l—lforjEN(U’),

thus decreasing the value of > 7_, (A\x + &) by [U'| — |[N(U")| > 0, and
go to 2.

From an algorithmic point of view it is easy to observe that the two 1s in
(9) can be replaced by min{\; + pu; —a;; : i € U',j € N(U')} for a more
effective update of the covering system. This is the basic structure of the
algorithm developed by Kuhn [19,21]. Kuhn christened it the Hungarian
method, in honor of these two great Hungarian mathematicians, who also
shared a common tragic fate. In 1944, in the period of the anti-Semitic
atrocities that took place after the Nazi occupation, fearing imprisonment
for his being Jewish, Dénes Koénig committed suicide. In 1958, in the pe-
riod of the Communist repression that followed the 1956 revolution, fearing
imprisonment for specious accusations, Jen6 Egervary committed suicide.
(See Gallai [12], Rézsa [31], Galdntai [11] and Rapcsék [30] for further bio-
graphical information.)

2.8 Is the Hungarian algorithm a German algorithm?

We briefly mention in this section a recent historical discovery that connects
the Hungarian algorithm to a posthumous paper by Jacobi [16], written in
Latin and titled De investigando ordine systematis aequationum differen-
tialum vulgarium cujuscunque. (On the research of the order of a system of
arbitrary ordinary differential equations. An English translation has been
provided by Ollivier, see [17].) Jacobi introduces a bound on the order of a
system of m ordinary differential equations in m unknowns, and observes
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that its computation can be reduced to the following problem, that is inter-
esting to read in its original formulation. Preliminary observe that Jacobi,
who died in 1851, did not even have a proper terminology. Although ma-
trices and Latin squares were already known by Chinese mathematicians
more than two thousands years ago, the term matriz was coined in 1850 by
Sylvester [35] in a sentence that nicely explains his choice of this word:

. an oblong arrangement of terms consisting, suppose, of m lines and n
colummns. This will not in itself represent a determinant, but is, as it were,
a Matrix out of which we may form various systems of determinants by
fizing upon a number p, and selecting at will p lines and p columns, the
squares corresponding to which may be termed determinants of the p-th
order.
Jacobi gave thus the following definition, in which however the assignment
problem is easily recognized:

Disponantur nn quantitates hi,” quaecunque in schema Quadrati, ita ut
habeantur n series horizontales et n series verticales, quarum quaeque est
n terminorum. Ez illis quantitatibus eligantur n transversales, i.e. in se-
riebus horizontalibus simul atque verticalibus diversis positae, quod fieri
potest 1 -2 -...-n modis; ex omnibus illis modis quaerendum est is, qui
summam n numerorum electorum suppeditet mazximam.

(Arrange nn arbitrary numbers h,(;) in a square table so that there are
n horizontal series and n vertical series, each having n numbers. Among
these numbers, we want to select n transversals, i.e., all placed in different
horizontal and vertical series, which may be done in 1-2-...-n ways; among
all these ways, we want to find one that gives the maximum sum of the n
selected numbers.)

Not only Jacobi defined the AP, but, more importantly, he gave a polyno-
mial-time algorithm to solve it. Although a thorough analysis of this method
has not been provided yet, Ollivier and Sadik [29] recently observed that it is
essentially identical to the Hungarian algorithm, thus anticipating by many
decades the results we have examined in the previous sections. As wittily
observed by Kuhn [24], this makes another application of “Stigler’s law
of eponymy”: No scientific discovery is named after its original discoverer
(Stigler [34], see also Kuhn [23]).

3 Open shop and satellite communication

In this section we show that the proof of the second theorem in the Egervary
[6] paper provides a polynomial-time algorithm that anticipates by several
decades algorithms re-discovered in the Seventies in two different research
areas.
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3.1 Open shop scheduling and time slot assignment

The following problem arises in scheduling theory. We are given m machines
and n jobs. Each job requires processing on every machine (in any order),
each machine can process at most one job at a time, and no job can be
processed simultaneously on two machines. We will assume, without loss
of generality, that m = n. A non-negative integer matrix T gives the total
amount of time, ¢;;, job j must be processed on machine i (4,j =1,2,...,n).
Each processing can be interrupted at any time and resumed later. The
Preemptive Open Shop Scheduling Problem is then to find a feasible schedule
such that the completion time of the latest job (makespan) is as small as
possible. (If preemption is not allowed, i.e., no processing can be interrupted,
the problem is strongly N'P-hard.)

In satellite based telecommunication systems, a satellite is used to trans-
mit information between n different earth stations. Onboard the satellite
there are n transponders, and the interconnections between sending and
receiving stations are obtained through an n x n switch. A specific set of
n interconnections is called a switch mode, and can be represented by a
permutation matriz P = (p;;), .., a binary n x n matrix with exactly one
l-entry in every row and column. An n X n non-negative traffic matriz T
specifies, for each pair (¢, j), the total amount of time ¢;; needed to transmit
(through one or more switch modes) the required information from station
i to station j. Consider a value ¢ such that ¢;; > ¢ if p;; = 1: After applying
switch mode P for a time interval of length ¢, the residual traffic matrix
is T — tP. This transmission technique is called Satellite-Switched Time-
Division Multiple Access (SS/TDMA). The Time Slot Assignment Problem
is to find a sequence of switch modes and the corresponding transmission
times such that all the information is transmitted in minimum total time.

It is immediate that the above two descriptions define the same problem.
A polynomial-time algorithm for the scheduling version was proposed in
1976 by Gonzalez and Sahni [13]. Independently, Inukai [15] proposed in
1979 a polynomial-time algorithm for the telecommunication version. These
algorithms work as follows. (We will use the scheduling terminology.)

Consider the maximum row sum of 7' (maximum total processing time
required by any job),

n
r = max t

1<i<n 4
=

R

and the maximum column sum (maximum total processing time needed on
any machine),
n
¢ = max tij.
1<j<n <

i=1

It is clear that

t* = max(r, c)
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is a lower bound on the optimal solution value.

It is then possible to define, without affecting the solution value, a
modified T" matrix in which every line has the same sum t*. This can
be easily obtained by defining, for each row i (resp. column j), the slack
a; = t* — 30 tij (vesp. b; = t* — 371, t;;), and obtaining a correction
matrix S through the following iteration:

for i :=1tondo

for j:=1tondo
sij = min(a;, b;);
a; = a; — Sij;
bj = bj — Sij
endfor

endfor

The Inukai [15] algorithm can then be briefly described as follows:

1. define the modified traffic matrix T := T + S,

2. let G = (U,V; E) be a bipartite graph with |U| = |V| and E = {[i,j] :
tij >0}

3. find a perfect matching in G, and the corresponding permutation matrix
P;

4. 7 :=min{t;; : p;; =1}, T :=T — 7P;

5. if T is a zero matrix then stop else go to 2.

The Gonzalez and Sahni [13] algorithm starts with the weighted bipartite
graph G = (U,V;E) in which t;; is the weight of edge [i,j] € E (i,j =
1,2,...,n), and enlarges it by adding:

(i) n vertices to U (fictitious machines);
(ii) n vertices to V (fictitious jobs), and

(iii) different sets of edges with weights such that, for the resulting graph,
the sum of weights of the edges incident with each vertex is ¢*.

Steps 2.—5. above are then executed on the enlarged graph. It is not difficult
to prove that the two algorithms are perfectly equivalent (see Dell’Amico
and Martello [3]).

3.2 Egervary’s Theorem II

Let us now consider the second theorem presented by Egervéry [6]. Given a
non-negative integer n X n matrix A, consider the n! distinct permutation
matrices PF = (pfj) (that Egervary calls diagonal lines). A system of per-
mutation matrices which contains the kth matrix, P¥, with multiplicity v
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is called a diagonal covering system for A if

n!
> wepl > ai; (5 =1,2,...,n). (10)
k=1
A diagonal covering system of minimum value
n!
> v
k=1
is called a minimal diagonal covering system. Then

Theorem 4 (Egervary [6], 1931) If (a;;) is an n x n matriz of non-negative
integers then, subject to condition (10), we have

n! n n
min E vp = max [ max E a;;, Max E ai; | (= a),
5 ,
k=1 j=1 R

In other words, the minimum number of permutation matrices needed to
cover a matrix T (see Section 3.1) is equal to the maximum sum of the
elements in a line of T. The proof of Theorem 4 provided by Egervary
implicitly defines an algorithm that operates in two steps:

1. define a majorant of A, i.e., a matrix A* such that
a;kj 2 @ij (27.72172,,77,) (11)

and

n

day =Y aj=a (i,j=12...,n). (12)
i=1 j=1

2. iteratively subtract from A* permutation matrices P such that aj; >0
if p;; = 1 until A* becomes a zero matrix.

Egervary’s implementation of Step 1 is equivalent to the iteration given in
Section 3.1 to define the modified traffic matrix T'+.5 which has all line sums
equal. Now consider the permutation matrix P selected at any iteration of
Step 2, and let 6 = min;;{a;; : p;; = 1}. Since the next § — 1 iterations
could select the same matrix, Step 2 can be improved by subtracting from
A* at each iteration, matrix §P. The resulting algorithm is the Inukai [15]
algorithm described in Section 3.1.
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3.8 Doubly stochastic matrices

An n X n non-negative real matrix A satisfying

Yay=Yay=1 (i,j=12...,n). (13)
i=1 J=1

is called doubly stochastic. In 1946 Garret Birkhoff, son of the famous Amer-
ican mathematician George David Birkhoff, published on an Argentinian
journal an article [1] in Spanish titled “Tres observaciones sobre el algebra
lineal” (Three observations on linear algebra). The most notable of these
observations reads as follows:

Si una matriz n x n A satisface (13), entonces es una media aritmética de
permutaciones.

(If an n x n matrix A satisfies (13) then it is a convex combination of
permutation matrices.) In 1953 John von Neumann [37] gave an elegant
elementary proof of this theorem, which is generally known as the Birkhoff—
von Neumann theorem. This result too, however, had been anticipated by
Egervéry.

We have seen that Step 2. of the implicit Egervary’s algorithm of Sec-
tion 3.2 decomposes an integer matrix A* satisfying (12) into a sum of
permutation matrices. Hence, in its original formulation, it does not apply
to a real matrix. However, the simple modification we have discussed (sub-
tract, at each iteration, the current permutation matrix P multiplied by the
minimum aj; value such that p;; = 1) produces an algorithm that decom-
poses a doubly stochastic matrix into a convex combination of permutation
matrices.
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