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ON COMBINATORIAL PROPERTIES OF MATRICES
by E. Egervary

[A translation by H. W. Kuhn of "Matrixok Kombi-

na'orius Tulajdonsdgairol," Matematikai es Fizi-

kai Lapok 38 (1931) pp. 16-28.]
The starting point of the present work is the following theorem due to
i Dénes Kdnig:

If the elements of & matrix are rartly zeros and partly num-

bers different from zero (or independent variables), then the
minimum number of linesl that contain all of the non-zero ele-

ments of the matrix 1s equal to the maximum number of non-zero

elements that can be chosen with no two on the same line,

Konig, in proving this theorem by graph~-theoretical means, arrived at the
ﬂftheorem in a graph-theoretical formulation which has connections with other

questions of graph theor;y.2

A special case of this theorem is equivalent to the following result of
; Frobenius on detenninants.3 For the determinant of an n by n matrix with
elements that are partly zef§ and partly independent variables to vanish

{ identically,u it is hecessary and sufficient that at least n + 1 lines have
? all zeros in common. This condition is sufficient since the realization of
;.this situation fdr an n by n matrix with 2n lines means that all of the

] non-vanishing elements are contained in the femaining n -1 lines and thus,
z according to the theorem above, no more than n - 1 'different‘non—vanishing

i elements can be chesen with no two on the same line,

The name line applies to either the rows or columms of the matrix,

, Konig presented this theorem to the Tdrsulat (society) in March, 1931,
t and it will appear in his forth-coming book on the theory of graphs. (Theorie
| der Graphen, New York: Chelsea Publ. Co., 1950)

3 3 G. Frobenius: Uver zerlegbare Determinanten, Sitz. d. Berl. Ak. 1917,
| I. pp. 274-77.

Such a determinant is said to vanish identically if all of the terms of
} the expansion of the determinant are identically zero.




That is to say, all of the terms of the expansion of the determinant are zero.
If the condition is not satisfied, that is, if no more than n 1lines have all
zeros in common, then the non-vanishing elements cobviously occupy at least n
lines and thus, according to the theorem above, it is possible to choose n
distinct non-vanishing elements, no two of which lie on the same line. Hence
the determinant does not vanish identically. Frobenius gave a proof of this
gpecial case of the theorem by algebraic methods.

The aforementioned theorem is given a new pfoéf ixl§l and is generalized
i11§2 to a theorem in the following form:

I. If (gij) is & given n by n matrix with non-negative

integers as elements, and if Ai and pﬁ are non-negative

integers such that

(l) I\i + 113 zZ ai:] (i} ej = l! 2’ AR / 1’1),
then , |

) min | )
(2 min ( + ) = max(a + a + we. + &
, -1 XK ey lvl , Eg nVn ’

where Vi, Vé’ ...,'Vh runs‘through all permutations of

1, 25 «eey no

Taking t@e special case,Ain which the given‘elements aij only assumes
the values O and 1, the theorem of Konig mentioned above follows as an
obvious consequence,

Further, a theorem is established in §3 which stands in a dual relation
to the preceding theorem. Namely, if (bgj), withP =1, 2, ..., n!, denotes
all distinet n by n matrices that arise from the unit matrix through
permutations of the rows (or columns), then the following theorem is valid:

II. If (aij) is a given n by n matrix with non-negative

integers as elements, and if vp are non-negative integers such

that
n!

P
(3) v.5 . > a, (i, 3 =1, 2, vv., 1)
%1 p iy = i3 ] y s ’ s




ni
L Z= W = : ces ; . :
) minP::L p %fg (alj tagy t BBy f 85 + e 4 ain).

Kénig's theorem,” also proved by graph-theoretical means, which says that
;‘if all of the elements of a matrix are O or 1, and if each row and earh
%‘column contains exactly k elements equal to 1, then the matrix is the sum
E%of exactly k matrices of the type Gﬁéj), is obviously a special case of
E.Theorem IT.
Finally, the part of conditions (1) and (3) thet requires )i,yxj, and
:?W%, to be integers is dropped, giving immediate extensions of Theorems I and
;II, valid for square matrices with arbitrary real numbers as elements,.
: %1
Let (aid) be a given n by n matrix with elements which are
gseparated into two classes by a property T. Representing the matrix schematically
;as a grid of n2 squares, place a mark in the proper square for each element that
;satisfieS? T and leave blank those squares that correspond to elements that do
.Enot satisfy T,
2 Further, call any system of lines (rows and columns) that containi all of
;the marks in the configuration H, obtained as described above, a covering
gsystem of lines. Finally, call any subset of the marks of H, that does not
aéontain two marks that fall on the same line, an independent system of marks.
Then Kdnig's theorem clearly assumes the following form. For all
iconfigurations of marks H (written in a square grid), the minimum number of
éiines necessary to cover H is eQual to the maximum number of independent
?marks that can be chosen from H.
The theorem is proved by complete induction. Since it is clearly valid

Zfor configurations that consist of only one mark, the theorem will be proved

] > Konig, D. Graphok és alkalmazasuk a determindnsok es halmozok
 eleméletére, Mat. és Term. -tud. Brt. 34%. k8t. (1916) pp. 104 - 119 and Math.
E Ann. 77 (1916) pp. 453-65.
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in general if, assuming it to be true for all configurations HN with at mest
N marks, it can be shown for all configurations HN+1 with N + 1 marks.

To this end, we shall show that when one mark is added to an HN with N
marks to complete it to an HN+1 with N + 1 marks, the characteristic
numbers m and M (which are assumed to be équal for the configuration HN and
which obviously do not decrease with the adjunction of the (N + 1)-st mark)
f  either both remain the same or both increase by one with the adjunction.

The blank squares in the grid (in which the (N +1)-st mark may be written)
are separated into two classes with the help of the minimal covering systems
for the given configuration HN: 1. a1l those that are covered by at least
one minimal covering system for HN’ 2. all those that are covered by no
minimai covering system for HN.

In the first place, it is contended that if the (N + 1)-st mark is
written in an arbitrary square of the first class, then the numbers m and M
do not increase and hence do not change.

On the one hand, it is clear that, since every square from the first class

is covered by at least one minimal covering system for H_. with m lines, the

N
configuration HN+1 is covered by the same m lines, and hence m is ngt
increased by the adjunction.

On the other hand, since the configuration HN*l can be covered by m ‘
lines, following the definition of independent marks (and using the Schubfach
Prinzip), not more than m = M independent marks can be chosen from these
lines. Thus, for this kind of adjunction, M does not increase,

Further, it is contended that if the (N + 1)-st mark is written in a
square of the second class, then the characteristic numbers m and M both
increase by one. |

On the one hand, it is clear that HN+l cannot be covered by m lines,

since such a set of m 1lines covering HN+1 would be a minimal covering
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system for HN which covers the sguare chosen to adjoin, and hence this square

would not be contained in the second class. It is obvious that H'N+l can be
covered by m + 1 lines and hence the adjunction adds one to m,

On the other hand, it is contended that it is possible to form a systeir;1
of M+ 1 independent marks from a configuration HN withm = M indépendent

marks in which an (N + 1)-st mark has been written in a square of the second

s

class. Thus, the adjunction also adds one to M.

Choose a minimal cgygr_ingwsystem‘?/é‘i' HN , which contains X rows and m -

i

. R T e X TR

| —colums and {as can

i)e érr&nged easily) order the grid of lines so that the‘
square from. the second class in which the (N + 1)-st mark will be written lies
" in the first row and column and so that theX rows and m - X columns of the
f minimal covering system are the last rows and columns.
Then (see Figure 1 ) the part of the configuration HN that falls in the

rectangle ABCD has the minimal covering

G F numberY . Namely, if X- 1 lines would cover
this configuration, then these X - 1 lines
plus the first column plus the last m - [

columns would be a minimal covering system

A D E for HN covering the square that we have
L rows chosen to adjoin; however, this means that
B C
—— the square does not belong to the second

m-Y columns
class, contrary to assumption. Therefore, by

: Figure 1

7 the induction assumption, the configuration falling in the rectangle ABCD con-
tains I independent marks.

By analogous reasoning, it follows that the configuration falling in DEFG

contains m - X independent marks. Then, since the former X marks, the latter

m - marks, and the adjoined mark form a system of m + 1 = M + 1 independent

marks, M is increased by one by the adjunction in this case.




Taking into account the meaning of the formation of the configuration
T of marks HN’ we obtain the following statement, corresponding to Kdnig's
original result:
If the elements of a matrix are divided into two classes by

a property T then the minimum number of lines that contain all of

the elements with the property T is equal to the maximum number

of elements with the property T, with no two on the same line.

$ 2

: Let (aiJ) bean n by n matrix with non-negative integers as elements.
; A system of lines that contains the i-th row with the multiplicty’.%i and the
; J=th column with the multiplicity Ilj is called a covering system of lines if,
for all values of i and J :
E (1) 11 + pj z 25 (i, 3 =1, 2, ..., n).
: A covering system of lines that contains a minimum number of lines,
; :E: k( )1( + ;1k), is called a minimal covering system. Further, the fol-
% lowing sums are called diagonal sums:

} (5) a, + a + 4ue. + &
W, 2%,

nvh’
? where 'Vl, Y ...,'Vg runs through all permutations of 1, 2, ..., n. For

} thegse notions defined in this manner we have:

THEOREM I. If (a,,) is an n by n matrix with non-

1

negative integers as elements, then the minimum number of lines
needed to cover it is equal to the maximum disgonal sum; that

is, subject to the condition

(1) )(i t oy > a3 (i, 3=1,2, .c., n)

we have
=
(2) min 2— ()‘k +Pk) = max(alvl + aeé + ...+an,\{q).
*

*
Choose a minimal covering system with multiplicities lk and 11k for

ik =1, 2, ..., n. Then according to (1),




n n * x ‘
(6) min>_ (A, +1.) = = (A +u,) =8 + a + c0. + 8
ko1 k k k=1 k k/ = lvl 2V2 nffn for all

diagonal sums.
L ¥ *
The chosen minimal covering system '\k’ Py serves as a means to divide

the elements of a matrix (a‘ij) into two classes: 1. we call essential
+1 coluums neX-l

, *
f —— 3 those elements a - that satisfy
. * D * P *
) + Ik = & i
IY (7)'lP q . P9
* ¥ n-% sewecall  inessential’ those élements -
a'rs <')‘r o s é TOWS )

a that satisfy
rs

. * *
1) Ap * ns; 2> Brgt
It is contended that the minimum number

rows of lines needed to cover all of the essen-

e

. ¥ .
i tial elements a_ is equal to n. Suppose,
Figure 2 L Pl
to the contrary, that n - 1 1lines contain all of the essential elements and

(a,s can be arranged easily) that those lines that contain the essential elements
are the last X rows and n -Y¥ - 1 columns. Then the elements common to the first

n -% rows and first L + 1 columns are all inessential. That is,

* *
+ a
Ay tg >3

and thus
* 4 %> 1
' :kr 1:"s N
and so, by necessity, at least one of the systems of inegqualities
* * *

(8) Ay 2 L, 21, ee 21
or

, * % *
(8) B, 2 Ly, 2 1, By 21
is valid.

If, for instance, all of the inequalities of (8) hold then the system of

*% *%
lines with multiplicities J\k’ W defined by

Namely, if neither system of inequajities is valig. the_)ré there must be at
least one r and s, for which)i: =0 and 4 = 0O, hence K« + M, = 0, contrary to (7).
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H¥

lrzxr \-l (I‘:l’ 2y vevy n=X)
N ,

¥ *

Ap=)‘p (p = n-X +1, ..., n)

W% ¥*

nfs‘zns (S=l, 2, o-.,X'fl)

.**. *
Rq “Rq *1 (q

is obviously a covering system, Also,

It

X+2, X+3, «.., n)

n
2 *% E *
k=1 ‘Xk + }J’k ) = (A +‘}1k) - l’
* *
and hence the system of lines with multiplicities /\k, Ilk was not minimal.

Thus, we have proved that the minimal number of lines needed to contain
*
all of the essential elements apq is equal to n. According to the theorem

proved in }l we can choose n essential elements

* »*

a ’ a -
lql 2q2

ooy a so that no two 1i¢ on the éame line. Forming a

!

diagonal sum with these and taking account of equations (7), we have:

* * * n * * 1 **
(9) a + a, + ees + 8 =2 (kk +;qu) :ii:i()\kéc)lk).

b Mp k=1
Finally, on the basis of (6) and (9),

+ & + ve. +a _,) Q. E, D,
v
k=1 v, 2% vy

If a matrix (aij) is given with non-negative rational numbers as
elements and the least common denominator A of the elements a; 3 is used
to write them in the form < ij (where the di are non-negative integers),

J
] i
~ then Theorem I, applied to the matrlx (d ), yields the following:

mlnz /\k +le) ( \:max Z akT/
k:l

k=1 \ A A k

.

In this case, the numbers lk and ’uk in the relations (1) (which are
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considered as inteéral multiplicities of lines when the elements of the matrix
are integers) may be considered as weights in aﬂcovering system and the theorem
expressed by means of the relations (2) remains valid if rational or --- upon
simple considerations of continuity --- arbitrary real non-negative numbers

are taken as elements of the matrix.
3

Qur treatment of Theorem II makes use of the following terminology. Let
the n! distinct n by n matrices (éf;ij) withfP=1, 2, ..., n! that a-
rise from the unit matrix through permutations of the rows (or columns) be
called diagonal lines (in contrast to the "parallel"” lines, applying to either
rows or columns). A system of diagonal lines which contains the diagonal line
Uﬁpij) with éultiplicity 1@ is called a diagonal covering system if, for all

values of 1 and J,

nl
(3) ’Végj Z 844 (i, 3 =1, 2, «vuy n).
=1 P n!
The diagonal covering systems that make the diagonal sum: g;iﬁ?a.minimum,

are called minimal diagonal covering systems, The sums

1, 2, vu.y 1)

[l

(10) B0 * Byp toeee FEy (i

21y *f Epy F ...ty (j=1,2, «v.y n)
are called parallel sums ( in contrast to the diagonal sums used previously ).
Then the following theorem is valid: |
THEOREM II. If (ai 3) is an n by n matrix with non-negative
integers as elements, then the minimum number of diagonal lines

needed to cover it is equal to the maximum parallel sum; that is,

subject to the condition

n! )
(3) g___ vebij > a;,  (5,3=1,2 .0
=1
we have
n'
(4) min(?-;l—’v =§I_la§ (alj *oEpy FoeesB 58 4 A, o +ain).
- 2




The proof of this theorem makes use of a line of thought originating with Vo

Konig, 7 according to which it is sufficient to prove the theorem for matrices

which have all parallel sums equal., Namely, we shall define, for all (aij)’

* ,
a "majorant" (aij) such that .
*
(11) 8y > 85 (i, 3 =1, 2, veuy 1)
and
* * * * * * M
(111) ,apl tept e ta Ta Ay .t =M

= ?ag(aii”+ Bip *oes T By Byt By ¥l ¥ anj), (p, =1, 2, vusy 1)
, ,

‘thus which has no eiement léss thén the correspondingvélement of the given
i ] ) ﬁatrix and which has all parailel sums equal to the maximum parallel sum M
for the matrik (aij)’ |

Namely, if the matrix (aij) does nct have all paralle% sums equal, then
it must contain a row p and & column q"wiﬁh parallel,sums less than the

maximum parallel sum M:

+ e + & £ M,

a, + & + eee + 8 € M and s + &
PN - 2q nq

plL  p2 1q
Then substitute for the element apq common to the pth row and gth column

a +M-max{a . + ... + &

- ol ’ on® 21 ¥ et t anq).

This obviously yields a majorizing matrix with at least one more parallel sum
equal to M than in the original matrix. Therefore, after no more than 2n - 1
iterat}pns, this procedure leads to a majorant (a:j) for the original matrix
(aij) ;which has all parallel sums equal to M.

: Since all covering systems for the majorant (a;j) are a fortiori covering
systems for the original matrix (&;j)’ it is sufficient to prove the theofem

).

*
for the majorant (ai

J

T1. e, ?), 111,

Namely, if all row sums are equal to M, then all column sums are equal
to M, and vice versa.
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The theorem is obviously true for all matrices (a;j) which have all parallel
sums equai t& one (thus,-in which all rows and columns contain exactly one
element equal to one). If therefore, it can be deduced --- assuming the theorem
valid for all matrices with all parallel sums equal to M - 1 --- for all
matrices with all parallel sums equal to m, then the theorem is proved for the
géngral case. | |

To bééin with, the minimum number of (paraliel) lines needed to contain all
elements of the matrix (azj) which are different from zero, is equal to n. On
the one hand, the sum of all elements is equal to n.M and, on the other hand,
all the parallel sums are equal to M. Hence no fewer than n (parallel) lines
can contain all of the nonfzéro elements. Thus, according to the theorem of 1,

¥*

. * ,
one can choose n distinet non-zero elements a a with no two on the

v, ? "nv
: 1 n
same (parallel) line.

) *
| 1r (&) is the diagopal line defined by

.
.

(]_Q) P*_ l, if j= V'.

ba) = i
1 O,ifj,évi

(i, =21, 2, ..., n)
L% *
then”(aij - 623) is a matrix with non-negative integers for elements, which has
all parallel sums equal to M - 1, and thus, by assumption, is covered by M - 1
, *
diagonal lines. Consequently, these M - 1 diagonal lines plus (6§J) cover
*
(aij) and, a fortiori, these M lines together cover the given (aij), which was
> * )
majorized by (aij)'
If the maximum parallel sum for a matrix (aij) is M, then obviously no

fewer than M diagonal lines can cover (aij)’ since each diagonal line contains

exactly one element in each parallel line. Therefore

n! n n
(%) min 2= ¥ = M = max(Z_ a.. , > a .). Q. E. D.
£a1 ° ko1 K K

Theorem II, like Theorem I, can be extended to matrices with non-negative

rational and real numbers as elements,

L 0.N.R. Logistics Project H, W. Kuhn
1 Princeton University Bryn Mawr College
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