3.10pt

CS711008Z Algorithm Design and Analysis Lecture 10. Algorithm design technique: Network flow and its applications¹

Dongbo Bu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

 $\Box \rightarrow \neg \bigoplus \rightarrow \neg \bigoplus \rightarrow \neg \bigoplus \rightarrow \neg \bigoplus \rightarrow \neg \bigoplus$ ¹The slides are made based on Chapter 7 of *Introduction to algorithms*, *Combinatorial optimization algorithm and complexity* by C. H. Papadimitriou and K. Steiglitz, the classical papers by Kuhn, Edmonds, etc. in the book *50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art.*

Outline

- Extensions of MaximumFlow problem: undirected network; CIRCULATION with multiple sources $&$ multiple sinks; CIRCULATION with lower bound of capacity; MINIMUM COST FLOW;
- Solving practical problems using network flow and primal_dual techniques:
	- **1** Partitioning a set: IMAGESEGMENTATION, PROJECTSELECTION, PROTEINDOMAINPARSING;
	- ² Finding paths: FLIGHTSCHEDULING, DISJOINT PATHS, BaseballElimination;
	- ³ Decomposing numbers: BASEBALLELIMINATION;
	- ⁴ Constructing matches: BIPARTITEMATCHING, SurveyDesign;
- Extensions of matching: BIPARTITEMATCHING, WeightedBipartiteMatching, GeneralGraphMatching, WEIGHTEDGENERALGRAPHMATCHING;
- A brief history of network flow.

Extensions of MaximumFlow problem

Extensions

Four extensions of MaximumFlow problem:

- **1** MAXIMUMFLOW for undirected network;
- **2** CIRCULATION with multiple sources and multiple sinks;
- ³ CIRCULATION with lower bound for capacity;
- **4** MINIMUM COST FLOW;

Extension 1: MAXIMUM FLOW for undirected network

ı

Extension 1: MAXIMUM FLOW for undirected network

INPUT:

an **undirected** network *G* =*< V,E >*, each edge *e* has a capacity $C(e) > 0$. Two special nodes: **source** *s* and **sink** *t*; **OUTPUT:** for each edge *e*, to assign a flow *f*(*e*) to maximize the flow value

 $\sum_{e=(s,v)} f(e).$

Flow properties:

- **1** (Capacity restriction): $0 \le f(u, v) + f(v, u) \le C(u, v)$ for any $(u, v) \in E$;
- **2** (Conservation restriction): $\dot{f}^{in}(v) = f^{out}(v)$ for any node $v \in V$ except for *s* and *t*.

Example

Note: On the directed network, the maximum flow value is 4; in contrast, on the undirected network, the maximum flow value is 6.

Algorithm

Maximum-flow algorithm for undirected network *G*

- 1: Transforming the undirected network *G* to a directed network *G′* ;
- 2: Calculating the maximum flow for *G′* by using Ford-Fulkerson algorithm;
- 3: Revising the flow to meet the capacity restrictions;

Step 1: changing undirected network to directed network

- Transformation: an undirected network *G* is transformed into a directed network *G′* through:
	- **1** adding edges: for each edge (u, v) of G , introducing two edges $e = (u, v)$ and $e' = (v, u)$ to G' ;
	- **2** setting capcities: setting $C(e') = C(e)$.

Step 2: calculating the maximum flow for *G′*

Note: the only trouble is the violation of capacity restriction: for edge $e = (u, v)$, $f(e) + f(e') = 4 > C(e) = 3$.

Step 3: revising flow to meet capacity restriction

Note: for an edge violating capacity restriction, say $e = (u, v)$, the flow $f(e)$ and $f(e')$ were revised.

Correctness of revising flow

Theorem

There exists a maximum flow f for network <i>G, where $f(u, v) = 0$ or $f(v, u) = 0.$

$$
u \leftarrow \longrightarrow u
$$

Proof.

- Suppose *f ′* is a maximum flow for undirected network *G′* , where $f'(u,v) > 0$ and $f'(v,u) > 0.$ We change f' to f as follows:
- Let $\delta = \min\{f'(u, v), f'(v, u)\}.$
- Define $f(u, v) = f'(u, v) \delta$, and $f(v, u) = f'(v, u) \delta$. We have *f*(*u, v*) = 0 or *f*(*v, u*) = 0.
- \bullet It is obvious that both capacity restrictions and conservation restrictions hold.
- f has the same value to f and thus optimal.

Extension 2: CIRCULATION problem with multiple sources and multiple sinks

Extension 2: CIRCULATION problem with multiple sources and multiple sinks

INPUT:

a network $G = \langle V, E \rangle$, where each edge *e* has a capacity $C(e) > 0$; multi sources s_i and sinks t_j . A sink t_j has demand $d_j > 0$, while a source s_i has supply d_i (described as a negative demand $d_i < 0$).

OUTPUT:

a **feasible circulation** *f* to satisfy all demand requirements using the available supply, i.e.,

- **1** Capacity restriction: $0 \le f(e) \le C(e)$;
- **2** Demand restriction: $\dot{f}^{\dot{n}}(v) f^{\text{out}}(v) = d_v;$

Note: For the sake of simplicity, we define $d_v = 0$ for any node v except for s_i and t_j . Thus we have $\sum_i d_i = 0$, and denote $D = \sum_{d_v > 0} d_v$ as the total demands .

An example

Note: The differences between CIRCULATION and MULTICOMMODITIES problem:

- **1** CIRCULATION problem: There is ONLY one type of commodity: a sink *tⁱ* can accept commodity from **any** source. In other words, the combination of commodities from all sources constitutes the demand of *tⁱ* .
- algorithm for the MULTICOMMODITIES problem. only. Linear programming is the only known polynomial-time . . ² MULTICOMMODITIES problem: There are multiple commodities, say transferring *food* and *oil* in the same network. Here *tⁱ* (say demands *food*) accepts commodity *kⁱ* from *sⁱ* (say sending *food*)

Algorithm

Algorithm for circulation:

- 1: Constructing an expanded network *G′* via adding super source *S*^{*} and super sink T^* ;
- 2: Calculating the maximum flow *f* for *G′* by using Ford-Fulkerson algorithm;
- 3: Return flow *f* if the maximum flow value is equal to

 $D = \sum_{v: d_v > 0} d_v$.

Step 1: constructing an expanded network *G′*

Transformation: constructing a network *G′* through adding a sup er source s^* to connect each s_i with capacity $C(s^*,s_i) = -d_i.$ Similarly, adding a super sink *t ∗* to connect to each *t^j* with capacity $C(t_j, t^*) = d_j.$

Step 2: calculating the maximum flow for *G′*

Note: a/b means $f(e) = a$, and capacity $C(e)=b$.

Step 3: checking the maximum flow for *G′*

Note: a/b means $f(e) = a$, and capacity $C(e) = b$.

The maximum flow value is $6 = \sum_{v,d_v>0} d_v.$ Thus, we obtained a feasible solution to the original circulation problem.

Correctness

Theorem

There is a feasible solution to Circulation *problem iff the maximum* $s^* - t^*$ *flow in* G' *is D*.

Proof.

⇐

Simply removing all (s^*, s_i) and (t_j, t^*) edges. It is obvious that both capacity constraint and conservation constraint still hold for all *sⁱ* and *t^j* .

⇒

We construct a $s^* - t^*$ flow and prove that it is a maximum flow:

- **1** Define a flow f as follows: $f(s^*, s_i) = -d_i$ and $f(t_j, t^*) = d_j$.
- **2** Consider a special cut (A, B) , where $A = \{s^*\}, B = V A$.
- **3** We have $C(A, B) = D$. Thus *f* is a maximum flow since it reaches the maximum value.

Extension 3: CIRCULATION with lower bound for capacity

I

Extension 3: CIRCULATION with lower bound of capacity

INPUT:

a network $G = < V, E >$, where each edge e has a capacity upper bound $C(e)$ and a lower bound $L(e)$; multi sources s_i and sinks t_j . A sink t_j has demand $d_j > 0$, while a source s_i has supply d_i (described as a negative demand *dⁱ <* 0).

OUTPUT:

a feasible circulation *f* to satisfy all demand requirements using the available supply, i.e.,

- **1** Capacity restriction: $L(e) \leq f(e) \leq C(e)$;
- **2** Conservation restriction: $\dot{f}^{in}(v) f^{out}(v) = d_v;$

Note: For the sake of simplicity, we define $d_v = 0$ for any node v except for s_i and t_j . Thus we have $\sum_i d_i = 0$, and define $D = \sum_{d_v > 0} d_v$ be the *total demands* .

An example

Advantages of lower bound: By setting lower bound $L(e) > 0$, we can force edge *e* to be used by flow, e.g. edge (*s*1*, s*2) should be used in the flow.

Algorithm

Algorithm for circulation with lower-bound for capacity

- 1: Building **an initial flow** f_0 by setting $f_0(e) = L(e)$ for $e = (u, v)$;
- 2: Solving a new circulation problem for *G′* without capacity lower bound. Specifically, *G′* was made by revising an edge $e = (u, v)$ with lower bound capacity:
	- **1** nodes: $d'_u = d_u + L(e)$, $d'_v = d'_v L(e)$,

2 edge:
$$
L(e) = 0
$$
, $C(e) = C(e) - L(e)$.

Denote f as a feasible circulation to G' .

3: Return $f = f + f_0$.

Step 1: Building an initial flow f_0

Note: $a/[I,b]$ means $f(e) = a$, and capacity $L(e)=I$, and $C(e)=b$.

Step 2: Solving the new circulation problem

We found a feasible circulation f for the network $G'.$

Step 3: Adding f_0 and f

We get f to the original problem as: $f = f_0 + f'$.

Correctness

Theorem

There is a circulation f to G (with lower bounds) iff there is a circulation f ′ to G′ (without lower bounds).

Proof.

- Define $f(e) = f(e) + L_e$.
- It is easy to verify both capacity constraints and conservation constraints hold.

 \Box

Extension 4: MINIMUM COST FLOW problem

Extension 4: MINIMUM COST FLOW

INPUT:

a network *G* =*< V,E >*, where each edge *e* has a capacity $C(e) > 0$, and a cost $w(e)$ for transferring a unit through edge *e*. Two special node: source *s* and sink *t*. A flow value *v*0. **OUTPUT:** to find a circulation f with flow value v_0 and the cost is minimized.

An example

- Objective: how to transfer $v_0 = 2$ units commodity from *s* to *t* with the minimal cost?
- Basic idea: the cost *w^e* makes it difficult to find the minimal cost flow by simply expanding *G* to *G′* as we did for the CIRCULATION problem. Then we return to the primal_dual idea.

Primal_Dual technique: LP formulation

min	$4y_1$	$+y_2$	$+2y_3$	$+3y_4$	$+5y_5$	$+2y_6$
$s.t.$	y_1	$+y_2$	$-y_5$	$-y_6$	$=-2$	node t
$-y_1$	$+y_3$	$-y_4$	$+y_5$	$=0$	node u	
$-y_2$	$-y_3$	$+y_4$	$+y_6$	$=0$	node v	
y_i	$\leq C_i$	y_i	≥ 0			

Intuition: y_i denotes the flow on edge i . The model of the second of the seco

32 / 75

Primal_Dual technique: Dual form D

max *−*4*y*¹ *−y*² *−*2*y*³ *−*3*y*⁴ *−*5*y*⁵ *−*2*y*⁶ *s.t. y*¹ +*y*² *≤*2 node *s −y*⁵ *−y*⁶ *≤ −* 2 node *t −y*¹ +*y*³ *−y*⁴ +*y*⁵ *≤*0 node *u −y*² *−y*³ +*y*⁴ +*y*⁶ *≤*0 node *v yⁱ ≤ Cⁱ yⁱ ≥* 0

Rewrite the LP into standard DUAL form via:

- Objective function: using max instead of min.
- Constraints: Simply replacing "=" with "*≤*". (Why? Notice that if all inequalities were satisfied, they should be equalities. For example, inequalities (2), (3) and (4) force $y_1 + y_2 \ge 2$, thus change \leq into $=$ for inequality (1). So do other inequalities.

Finding a valid circulation with value v_0 first.

- \bullet We need to find a valid circulation with value $v_0 = 2$ first.
- This is easy: CIRCULATION problem.
- Thus we have a feasible solution to *D*.

Primal_Dual technique: DRP

$$
\begin{array}{ccccccc}\n\max & -4y_1 & -y_2 & -2y_3 & -3y_4 & -5y_5 & -2y_6 \\
s.t. & y_1 & +y_2 & & & \leq 0 & \text{node } s \\
y_1 & & -y_3 & +y_4 & -y_5 & \leq 0 & \text{node } u \\
y_2 & +y_3 & -y_4 & & & -y_6 & \leq 0 & \text{node } v \\
& & & y_i & \leq 0 & \text{for full arc} \\
& & & -y_i & \leq 0 & \text{for empty arc} \\
& & & & y_i & \leq 1 & \text{for any arc}\n\end{array}
$$

Recall the rules to construct DRP from D:

- \bullet Replacing the right hand items with $0.$
- Removing the constraints not in $J(J)$ contains the constraints in D where $=$ holds).
- Adding constraints *yⁱ ≥ −*1 for any arcs.
Solving DRP: combinatorial technique rather than simplex

Definition (**Cycle flow)**

A flow *f* is called **cycle flow** if input equal output for any node (including *s* and *t*).

- Suppose we have already obtained a flow for network *N*.
- Solving the corresponding DRP is essentially finding a cycle in a new network *N′* (*f*), which is constructed as follows:
	- **1** For each edge $e = (u, v)$ in *N*, two edges $e = (u, v)$ and $e' = (v, u)$ were introduced to $N'(f)$;
	- **²** The capacities for *e* and *e ′* in *N′* (*f*) are set as *C*(*e*) *− f*(*e*) and *−f*(*e*), respectively;
	- **3** The costs are set as $w(e') = -w(e)$;

36 / 75

Minimum cost flow algorithm [M. Klein 1967]

Theorem

f is the minimum cost flow in network N ⇔ network N′ (*f*) *contains no cycle with negative cost.*

Proof.

- *f* is the minimum cost flow in network *N*
- *⇔* The optimal solution to *DRP* is 0.
- *⇔ N′* (*f*) has no cycle flow with negative cost.
- *⇔ N′* (*f*) has no cycle with negative cost.

Intuition: Suppose that we have obtained a cycle in *N′* (*f*). Pushing a unit flow along the cycle leads to a cycle flow (denoted as *f*). Then $f + \bar{f}$ is also a flow for the original network *N*.

 \Box

Minimum cost flow algorithm

Klein algorithm

- 1: Finding a flow f with value v_0 using maximum-flow algorithm, say Ford-Fulkerson;
- 2: **while** *N′* (*f*) contains a cycle *C* with negative cost **do**
- 3: Denote *b* as the bottleneck of cycle *C*.
- 4: Define \bar{f} as the unit flow along C .
- 5: $f = f + b\bar{f}$;
- 6: **end while**

7: **return** *f*.

Note:

- **1** The cost of flow decreases as iteration proceeds, while the flow value keeps constant.
- **²** The cycle with negative cost can be found using Bellman-Ford algorithm.

Example: Step 1

Initial flow f_0 : flow value 2, flow cost: 17.

New network *N′* (*f*):

 ${\sf Negative\ cost}$ $s\to v\to u\to s$ (in red). $\mathop{\mathsf{Cost}}_{\mathcal{B}}$ $\mathop{\mathsf{--5}}_{\mathcal{B}}$, $\mathop{\mathsf{--s}}$, and $\mathop{\mathsf{--s}}$

Example: Step 2

f = *f* + *f*: flow value 2 *−* 0 = 2, flow cost: 17 *−* 5 = 12.

New network *N′* (*f*):

Negative cost cycle: cannot find. Done!

Extension: Hitchcock TRANSPORTATION problem 1941

INPUT: *n* sources $s_1, s_2, ..., s_n$ and *n* sinks $t_1, t_2, ..., t_n$. Source s_i has supply a_i , and a sink t_j has demand b_j . The cost from s_i to t_j is *cij*.

OUTPUT: arrange a schedule to minimize cost.

Note:

- **1** Frank L. Hitchcock formulated theTRANSPORTATION problem in 1941. This problem is equivalent to MINIMUM COST FLOW PROBLEM [Wagner, 1959].
- **²** In 1956, L. R. Ford Jr. and D. R. Fulkerson proposed a "labeling" technique to solve the transportation problem. This algorithm is considerably more efficient than simplex algorithm. See "Solving the Transportation Problem" by L. R. Ford Jr. and D. R. Fulkerson.
- **3** If $c_{ij} = 0/1$, then Hitchcock problem turns into assignment problem.

Applications of MaximumFlow problem

Applications of MaximumFlow problem

Formulating a problem into MAXIMUMFLOW problem:

- **¹** We should define a **network** first. Sometimes we need to construct a graph from the very scratch.
- **²** Then we need to define **weight for edges**. Sometimes we need to move the weight on nodes to edges.
- **³** How to define **source** *s* **and sink** *t* ? Sometimes super source *s ∗* and *t ∗* are needed.
- **⁴** Finally we need to prove that **max-flow** (finding paths, matching) or **min-cut** (partition nodes) is what we wanted.

Note: most problems utilize the property that there exists a maximum integer-valued flow iff there exists a maximum flow.

Paradigm 1: Partition a set

Problem 1: IMAGESEGMENTATION problem

INPUT:

Given an image in pixel map format. The pixel $i, i \in P$ has a probability to be foreground *fⁱ* and the probability to be background *bⁱ* ; in addition, the likelihood that two neighboring pixels *i* and *j* are similar is *lij*;

GOAL:

to identify foreground out of background. Mathematically, we want $\sum_{i\in F}f_i+\sum_{j\in B}b_i+\sum_{i\in F}\sum_{j\in N(i)\cap F}l_{ij}+\sum_{i\in B}\sum_{j\in N(i)\cap B}l_{ij}$ is a partition $P = F \cup B$, such that $Q(F, B) =$ maximized.

An example

- Red: the probability f_i for pixel i to be foreground;
- Green: the probability b_i for pixel i to be background;
- Blue: the likelihood that pixel *i* and *j* are in the same category;

Converting to network-flow problem

- **¹** Network: Adding two nodes source *s* and sink *t* with connections to all nodes;
- **2** Capacity: $C(s, v) = f_v$, $C(v, t) = b_v$; $C(u, v) = l_{uv}$;
- **3** Cut: a partition. Cut capacity $C(F, B) = M Q(F, B)$, where $M = \sum_i (b_i + f_i) + \sum_i \sum_j l_{ij}$ is a constant.
- $\mathsf{I} \ \mathsf{proplog}_{\mathbb{R}} \ \longrightarrow \ \mathsf{I}$ $2Q$ **4** MinCut: the optimal solution to the original problem

Problem 2: PROJECT SELECTION

INPUT:

Given a directed acyclic graph (DAG). A node represents a project associated with a profit (denoted as $p_i > 0$) or a cost (denoted as $p_i < 0$), and directed edge $u \rightarrow v$ represent the prerequisite relationship, i.e. *v* should be finished before *u*.

GOAL:

to choose a subset *A* of projects such that:

- **¹** Feasible: if a project was selected, all its prerequisites should also be selected;
- **²** Optimal: to maximize profits ∑ *v∈A pv*;

Network construction

- **¹** Network: introducing two nodes: *s* and *t*, *s* connecting the nodes with $p_i > 0$, and *t* connecting the nodes with $p_i < 0$;
- **²** Capacity: moving weights from nodes to edges, and set $C(u, v) = \infty$ for $\lt u, v \gt \in E$.
- **3** Cut: a partition of nodes.

Minimum cut corresponds to maximum profit

1 Cut capacity: $C(A, B) = C - \sum_{i \in A} p_i$, where $C = \sum_{v \in V} p_v$ $(p_v > 0)$ is a constant.

- **2** In the example, $C(A, B) = 5 + 10 + 9$, $\sum_{i \in A} p_i = 8 9$, and $C = 5 + 10 + 8.$
- **³** Min-Cut: corresponding to the maximum profit since the sum of cut capacity and profit is a constant.

Feasibility

- Feasible: The feasibility is implied by the infinite weights on edges, i.e. an invalid selection corresponds to a cut with infinite capacity.
- For example, if a project *u* was selected while its precursor *v* was not selected, then the edge $\langle u, v \rangle$ is a cut edge, leading to an infinite cut.

Paradigm 2: Finding paths

Problem 3: Disjoint paths

INPUT: Given a graph $G = \langle V, E \rangle$, two nodes *s* and *t*, an integer *k*. **GOAL:** to identify *k s − t* paths whose edges are disjoint;

Related problem: graph connectivity

Network construction

- **¹** Edges: the same to the original graph;
- **2** Capacity: $C(u, v) = 1$;
- **3** Flow: (See extra slides)

Theorem

k disjoint paths in G ⇔ the maximum s − t flow value is at least k.

Proof.

- **¹** Note: maximum *s − t* flow value is *k* implies an INTEGRAL flow with value *k*.
- **2** Simply selecting the edges with $f(e) = 1$.

Time-complexity: *O*(*mn*).

 \Box

Menger theorem 1927

Theorem

The number of maximum disjoint paths is equal to the number of minimal edge removement to separate s from t.

Menger theorem

Proof.

- **1** The number of maximum disjoint paths is equal to the maximum flow;
- **2** Then there is a cut (A, B) such that $C(A, B)$ is the number of disjoint paths;
- **3** The cut edges are what we wanted.

 \Box

Problem 4: Survey design

INPUT:

A set of customers A, and a set of products P. Let $B(i) \subseteq P$ denote the products that customer *i* bought. An integer *k*. **GOAL:**

to design a survey with *k* questions such that for customer *i*, the number of questions is at least c_i but at most c_i' . On the other hand, for each product, the number of questions is at least *pⁱ* but at most p'_i .

Network construction

- **¹** Edges: introducing two nodes *s* and *t*. Connecting customers with *s* and products with *t*.
- **²** Capacity: moving weights from nodes to edges; setting $C(i, j) = 1;$
- **3** Circulation: is a feasible solution to the original problem. $\Box \rightarrow \neg \{ \frac{\partial}{\partial} \} \rightarrow \neg \{ \frac{\exists}{\partial} \} \rightarrow \neg \{ \frac{\exists}{\partial} \}$

. .

Paradigm 3: Matching

Problem 5: Matching

INPUT: A bipartite $G = \langle V, E \rangle$; **GOAL:** to identify the maximal matching;

Constructing a network

- **¹** Edges: adding two nodes *s* and *t*; connecting *s* with *U* and *t* with *V*;
- **2** Capacity: $C(e) = 1$ for all $e \in E$;
- **³** Flow: the maximal flow corresponds to a maximal matching;

Time-complexity: *O*(*mn*)

Perfect matching: Hall theorem

Definition (Perfect match)

Given a bipartite $G = \langle V, E \rangle$, where $V = X \cup Y$, $X \cap Y = \phi$, $|X| = |Y| = n$. A match *M* is a perfect match iff $|M| = n$.

Hall theorem, Hall 1935, Konig 1931

Theorem

A bipartite has a perfect matching \Leftrightarrow for any $A \subseteq X$, $|\Gamma(A)| \geq |A|$, where $\Gamma(A)$ denotes the partners of nodes in A.

Figure: Konig, Egervary, and Philip Hall

Proof.

Here we only show that if there is no perfect matching, then $|\Gamma(A)| < |A|$.

- **¹** Suppose there is no perfect matching, i.e., the maximal match is M , $|M| < n$;
- **2** Then there is a cut such that $\mathit{C}(A',B') < n$. Define $A = A' \cap X;$
- $O(A', B') = |X \cap B'| + |Y \cap A'| = n |A| + |\Gamma(A)|.$
- \bullet We have $|\Gamma(A)| < |A|$ since $C(A',B') < n.$

Note: If necessary A' can be changed to guarantee that $\Gamma(A) \subseteq A'$. Time-complexity: *O*(*mn*)

 \Box

Paradigm 4: Decomposing numbers

BASEBALL ELIMINATION problem

INPUT:

 n teams $T_1, T_2, ..., T_n$. A team T_i has already won w_i games, and for team T_i and T_j , there are g_{ij} games left. **GOAL:** Can we determine whether a team, say *Tⁱ* , has already been eliminated from the first place? If yes, can we give an evidence?

An example

Four teams: *New York, Baltimore, Toronto, Boston*

- **¹** *wⁱ* : NY (90), Balt (88), Tor (87), Bos (79).
- **²** *gij*: NY:Balt 1, NY:Tor 6, Balt:Tor 1, Balt:Bos 4, Tor:Bos 4, NY:Bos 4.

It is safe to say that *Boston* has already been eliminated from the first place since:

- **1** *Boston* can finish with at most $79 + 12 = 91$ wins.
- **²** We can find a subset of teams, e.g. *{NY, Tor}*, with the total number of wins of $90+87+6 = 183$, thus at least a team finish with $\frac{183}{2} = 91.5 > 91$ wins.

Note that *{NY, Tor, Balt}* cannot serve as an evidence that *Bos* has already been eliminated.

BASEBALL ELIMINATION problem

Question: For a specific team *z*. Can we determine whether there exists a subset of teams $S \subseteq T - \{z\}$ such that

- **¹** *z* can finish with at most *m* wins;
- **2** $\frac{1}{16}$ $\frac{1}{|S|}(\sum_{x \in S} w_x + \sum_{x,y \in S} g_{xy}) > m$.

In other word, at least one of the teams in *S* will have more wins than *z*.

Network construction: taking *z* = *Boston* as an example

- We define $m = w_z + \sum_{x \in T} g_{xz} = 91$, i.e. the total number of possible wins for team *z*.
- A network is constructed as follows:
	- **1** Define $S = T \{z\}$, and $g^* = \sum_{x,y \in S} g_{xy} = 8$.
	- **²** Nodes: For each pair of teams, constructing a node *x* : *y*, and for each team *x*, constructing a node *x*.
	- **³** Edges:
		- For edge *s − x* : *y*, set capacity as *g^x,^y*.
		- \bullet For edge $x : y x$ and $x : y y$, set capacity as $g_{x,y}$.
		- For edge *x − t*, set capacity as *m − wx*.

 $\Box \rightarrow \neg \bigoplus \rightarrow \neg \bigoplus \rightarrow \neg \bigoplus \rightarrow \neg \bigoplus \rightarrow \neg \bigoplus$ $\overline{\Omega}$ **71 / 75**
Intuition: number decomposition

Intuition: along edge $s - x : y$, we send $g_{x,y}$ wins, and at node *x* : *y*, this number is decomposed into two numbers, i.e. the number of wins of each team.

Case 1: the maximum flow value is $g* = 8$

Theorem

There exist a flow with value $g^* = 8$ *iff there is still possibility that z* = *Boston wins the championship.*

Proof.

⇐

- If there is a flow with value g^* , then the capacities on edges *x − t* guarantees that no team can finish with over *m* wins.
- Therefore, *z* still have chance to win the championship (if *z* wins all remaining games).

.

⇐

- \bullet If there is possibility for z to win the championship
- we can define a flow with value *g ∗* .

.

Case 2: the maximum flow value is less than $g* = 8$

Theorem

If the maximum flow value is strictly smaller than g ∗ , the minimum cut describes a subset $S \subseteq T - \{z\}$ *such that* 1 $\frac{1}{|S|}(\sum_{x \in S} w_x + \sum_{x, y \in S} g_{xy}) > m$.

Proof.

(See extra slides)

 \Box

Extensions of matching: ASSIGNMENT problem, Hungarian algorithm for WEIGHTED ASSIGNMENT problem, Blossom algorithm.