
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

3.10pt

1 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CS711008Z Algorithm Design and Analysis
Lecture 10. Algorithm design technique: Network flow and its

applications 1

Dongbo Bu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

1The slides are made based on Chapter 7 of Introduction to algorithms,
Combinatorial optimization algorithm and complexity by C. H. Papadimitriou
and K. Steiglitz, the classical papers by Kuhn, Edmonds, etc. in the book 50
Years of Integer Programming 1958-2008: From the Early Years to the
State-of-the-Art.

1 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

Extensions of MaximumFlow problem: undirected network;
Circulation with multiple sources & multiple sinks;
Circulation with lower bound of capacity; Minimum
Cost Flow;
Solving practical problems using network flow and primal_dual
techniques:

1 Partitioning a set: ImageSegmentation,
ProjectSelection, ProteinDomainParsing;

2 Finding paths: FlightScheduling, Disjoint Paths,
BaseballElimination;

3 Decomposing numbers: BaseballElimination;
4 Constructing matches: BipartiteMatching,

SurveyDesign;
Extensions of matching: BipartiteMatching,
WeightedBipartiteMatching, GeneralGraphMatching,
WeightedGeneralGraphMatching;
A brief history of network flow.

2 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Extensions of MaximumFlow problem

3 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Extensions

Four extensions of MaximumFlow problem:

1 MaximumFlow for undirected network;

2 Circulation with multiple sources and multiple sinks;

3 Circulation with lower bound for capacity;

4 Minimum Cost Flow;

4 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Extension 1: Maximum Flow for undirected network

5 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Extension 1: Maximum Flow for undirected network

INPUT:
an undirected network G =< V,E >, each edge e has a capacity
C(e) > 0. Two special nodes: source s and sink t;
OUTPUT:
for each edge e, to assign a flow f(e) to maximize the flow value∑

e=(s,v) f(e).

Flow properties:
1 (Capacity restriction): 0 ≤ f(u, v) + f(v, u) ≤ C(u, v) for any

(u, v) ∈ E;
2 (Conservation restriction): fin(v) = fout(v) for any node v ∈ V

except for s and t.

6 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example

Note: On the directed network, the maximum flow value is 4; in
contrast, on the undirected network, the maximum flow value is 6.

7 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithm

Maximum-flow algorithm for undirected network G

1: Transforming the undirected network G to a directed network
G′;

2: Calculating the maximum flow for G′ by using Ford-Fulkerson
algorithm;

3: Revising the flow to meet the capacity restrictions;

8 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Step 1: changing undirected network to directed network

Transformation: an undirected network G is transformed into
a directed network G′ through:

1 adding edges: for each edge (u, v) of G, introducing two edges
e = (u, v) and e′ = (v, u) to G′;

2 setting capcities: setting C(e′) = C(e).

9 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Step 2: calculating the maximum flow for G′

Note: the only trouble is the violation of capacity restriction: for
edge e = (u, v), f(e) + f(e′) = 4 > C(e) = 3.

10 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Step 3: revising flow to meet capacity restriction

Note: for an edge violating capacity restriction, say e = (u, v), the
flow f(e) and f(e′) were revised.

11 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Correctness of revising flow
Theorem
There exists a maximum flow f for network G, where f(u, v) = 0 or
f(v, u) = 0.

Proof.

Suppose f′ is a maximum flow for undirected network G′, where
f′(u, v) > 0 and f′(v, u) > 0. We change f′ to f as follows:
Let δ = min{f′(u, v), f′(v, u)}.
Define f(u, v) = f′(u, v)− δ, and f(v, u) = f′(v, u)− δ. We have
f(u, v) = 0 or f(v, u) = 0.
It is obvious that both capacity restrictions and conservation
restrictions hold.
f has the same value to f′ and thus optimal.

12 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Extension 2: Circulation problem with multiple sources and
multiple sinks

13 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Extension 2: Circulation problem with multiple sources
and multiple sinks

INPUT:
a network G =< V,E >, where each edge e has a capacity
C(e) > 0; multi sources si and sinks tj. A sink tj has demand
dj > 0, while a source si has supply di (described as a negative
demand di < 0).
OUTPUT:
a feasible circulation f to satisfy all demand requirements using
the available supply, i.e.,

1 Capacity restriction: 0 ≤ f(e) ≤ C(e);
2 Demand restriction: fin(v)− fout(v) = dv;

Note: For the sake of simplicity, we define dv = 0 for any node v
except for si and tj. Thus we have

∑
i di = 0, and denote

D =
∑

dv>0 dv as the total demands .
14 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example

Note: The differences between Circulation and
MultiCommodities problem:

1 Circulation problem: There is ONLY one type of commodity: a
sink ti can accept commodity from any source. In other words, the
combination of commodities from all sources constitutes the
demand of ti.

2 MultiCommodities problem: There are multiple commodities,
say transferring food and oil in the same network. Here ti (say
demands food) accepts commodity ki from si (say sending food)
only. Linear programming is the only known polynomial-time
algorithm for the MultiCommodities problem. 15 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithm

Algorithm for circulation:
1: Constructing an expanded network G′ via adding super source

S∗ and super sink T∗;
2: Calculating the maximum flow f for G′ by using Ford-Fulkerson

algorithm;
3: Return flow f if the maximum flow value is equal to

D =
∑

v:dv>0 dv.

16 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Step 1: constructing an expanded network G′

Transformation: constructing a network G′ through adding a
super source s∗ to connect each si with capacity C(s∗, si) = −di.
Similarly, adding a super sink t∗ to connect to each tj with capacity
C(tj, t∗) = dj.

17 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Step 2: calculating the maximum flow for G′

18 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Step 3: checking the maximum flow for G′

The maximum flow value is 6 =
∑

v,dv>0 dv. Thus, we obtained a
feasible solution to the original circulation problem.

19 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Correctness

Theorem
There is a feasible solution to Circulation problem iff the
maximum s∗ − t∗ flow in G′ is D.

Proof.
⇐
Simply removing all (s∗, si) and (tj, t∗) edges. It is obvious
that both capacity constraint and conservation constraint still
hold for all si and tj.
⇒
We construct a s∗ − t∗ flow and prove that it is a maximum
flow:

1 Define a flow f as follows: f(s∗, si) = −di and f(tj, t∗) = dj.
2 Consider a special cut (A,B), where A = {s∗}, B = V − A.
3 We have C(A,B) = D. Thus f is a maximum flow since it

reaches the maximum value.

20 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Extension 3: Circulation with lower bound for capacity

21 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Extension 3: Circulation with lower bound of capacity

INPUT:
a network G =< V,E >, where each edge e has a capacity upper
bound C(e) and a lower bound L(e); multi sources si and sinks tj.
A sink tj has demand dj > 0, while a source si has supply di (
described as a negative demand di < 0).
OUTPUT:
a feasible circulation f to satisfy all demand requirements using the
available supply, i.e.,

1 Capacity restriction: L(e) ≤ f(e) ≤ C(e);
2 Conservation restriction: fin(v)− fout(v) = dv;

Note: For the sake of simplicity, we define dv = 0 for any node v
except for si and tj. Thus we have

∑
i di = 0, and define

D =
∑

dv>0 dv be the total demands .

22 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example

Advantages of lower bound: By setting lower bound L(e) > 0, we
can force edge e to be used by flow, e.g. edge (s1, s2) should be
used in the flow.

23 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithm

Algorithm for circulation with lower-bound for capacity

1: Building an initial flow f0 by setting f0(e) = L(e) for
e = (u, v);

2: Solving a new circulation problem for G′ without capacity
lower bound. Specifically, G′ was made by revising an edge
e = (u, v) with lower bound capacity:

1 nodes: d′u = du + L(e), d′v = d′v − L(e),
2 edge: L(e) = 0, C(e) = C(e)− L(e).

Denote f′ as a feasible circulation to G′.
3: Return f = f′ + f0.

24 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Step 1: Building an initial flow f0

25 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Step 2: Solving the new circulation problem

We found a feasible circulation f′ for the network G′.

26 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Step 3: Adding f0 and f′

We get f to the original problem as: f = f0 + f′.

27 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Correctness

Theorem
There is a circulation f to G (with lower bounds) iff there is a
circulation f′ to G′ (without lower bounds).

Proof.
Define f′(e) = f(e) + Le.
It is easy to verify both capacity constraints and conservation
constraints hold.

28 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Extension 4: Minimum Cost Flow problem

29 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Extension 4: Minimum Cost Flow

INPUT:
a network G =< V,E >, where each edge e has a capacity
C(e) > 0, and a cost w(e) for transferring a unit through edge e.
Two special node: source s and sink t. A flow value v0.
OUTPUT:
to find a circulation f with flow value v0 and the cost is minimized.

30 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example

Objective: how to transfer v0 = 2 units commodity from s to t
with the minimal cost?
Basic idea: the cost we makes it difficult to find the minimal
cost flow by simply expanding G to G′ as we did for the
Circulation problem. Then we return to the primal_dual
idea.

31 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Primal_Dual technique: LP formulation

min 4y1 +y2 +2y3 +3y4 +5y5 +2y6
s.t. y1 +y2 =2 node s

−y5 −y6 =− 2 node t
−y1 +y3 −y4 +y5 =0 node u

−y2 −y3 +y4 +y6 =0 node v
yi ≤ Ci
yi ≥ 0

Intuition: yi denotes the flow on edge i.
32 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Primal_Dual technique: Dual form D

max −4y1 −y2 −2y3 −3y4 −5y5 −2y6
s.t. y1 +y2 ≤2 node s

−y5 −y6 ≤− 2 node t
−y1 +y3 −y4 +y5 ≤0 node u

−y2 −y3 +y4 +y6 ≤0 node v
yi ≤ Ci
yi ≥ 0

Rewrite the LP into standard DUAL form via:
Objective function: using max instead of min.
Constraints: Simply replacing “=” with “≤”. (Why? Notice
that if all inequalities were satisfied, they should be equalities.
For example, inequalities (2), (3) and (4) force y1 + y2 ≥ 2,
thus change ≤ into = for inequality (1). So do other
inequalities.

33 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finding a valid circulation with value v0 first.

We need to find a valid circulation with value v0 = 2 first.
This is easy: Circulation problem.
Thus we have a feasible solution to D.

34 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Primal_Dual technique: DRP

max −4y1 −y2 −2y3 −3y4 −5y5 −2y6
s.t. y1 +y2 ≤ 0 node s

y5 +y6 ≤ 0 node t
y1 −y3 +y4 −y5 ≤ 0 node u

y2 +y3 −y4 −y6 ≤ 0 node v
yi ≤ 0 for full arc

−yi ≤ 0 for empty arc
yi ≤ 1 for any arc

Recall the rules to construct DRP from D:
Replacing the right hand items with 0.
Removing the constraints not in J (J contains the constraints
in D where = holds).
Adding constraints yi ≥ −1 for any arcs.

35 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Solving DRP: combinatorial technique rather than simplex

Definition (Cycle flow)
A flow f is called cycle flow if input equal output for any node
(including s and t).

Suppose we have already obtained a flow for network N.
Solving the corresponding DRP is essentially finding a cycle in
a new network N′(f), which is constructed as follows:

1 For each edge e = (u, v) in N, two edges e = (u, v) and
e′ = (v, u) were introduced to N′(f);

2 The capacities for e and e′ in N′(f) are set as C(e)− f(e) and
−f(e), respectively;

3 The costs are set as w(e′) = −w(e);

36 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Minimum cost flow algorithm [M. Klein 1967]

Theorem
f is the minimum cost flow in network N ⇔ network N′(f) contains
no cycle with negative cost.

Proof.
f is the minimum cost flow in network N
⇔ The optimal solution to DRP is 0.
⇔ N′(f) has no cycle flow with negative cost.
⇔ N′(f) has no cycle with negative cost.

Intuition: Suppose that we have obtained a cycle in N′(f). Pushing
a unit flow along the cycle leads to a cycle flow (denoted as f).
Then f + f is also a flow for the original network N.

37 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Minimum cost flow algorithm

Klein algorithm
1: Finding a flow f with value v0 using maximum-flow algorithm,

say Ford-Fulkerson;
2: while N′(f) contains a cycle C with negative cost do
3: Denote b as the bottleneck of cycle C.
4: Define f as the unit flow along C.
5: f = f + bf;
6: end while
7: return f.

Note:
1 The cost of flow decreases as iteration proceeds, while the

flow value keeps constant.
2 The cycle with negative cost can be found using Bellman-Ford

algorithm.

38 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example: Step 1
Initial flow f0: flow value 2, flow cost: 17.

New network N′(f):

Negative cost cycle: s → v → u → s (in red). Cost: −5.
39 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example: Step 2
f = f + f: flow value 2 − 0 = 2, flow cost: 17 − 5 = 12.

New network N′(f):

Negative cost cycle: cannot find. Done!
40 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Extension: Hitchcock Transportation problem 1941

INPUT: n sources s1, s2, ..., sn and n sinks t1, t2, ..., tn. Source si
has supply ai, and a sink tj has demand bj. The cost from si to tj
is cij.
OUTPUT: arrange a schedule to minimize cost.

Note:
1 Frank L. Hitchcock formulated theTransportation

problem in 1941. This problem is equivalent to Minimum
Cost Flow problem [Wagner, 1959].

2 In 1956, L. R. Ford Jr. and D. R. Fulkerson proposed a
”labeling” technique to solve the transportation problem. This
algorithm is considerably more efficient than simplex
algorithm. See ”Solving the Transportation Problem” by L. R.
Ford Jr. and D. R. Fulkerson.

3 If cij = 0/1, then Hitchcock problem turns into assignment
problem.

41 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Applications of MaximumFlow problem

42 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Applications of MaximumFlow problem

Formulating a problem into MaximumFlow problem:
1 We should define a network first. Sometimes we need to

construct a graph from the very scratch.
2 Then we need to define weight for edges. Sometimes we

need to move the weight on nodes to edges.
3 How to define source s and sink t ? Sometimes super source

s∗ and t∗ are needed.
4 Finally we need to prove that max-flow (finding paths,

matching) or min-cut (partition nodes) is what we wanted.
Note: most problems utilize the property that there exists a
maximum integer-valued flow iff there exists a maximum flow.

43 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Paradigm 1: Partition a set

44 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Problem 1: ImageSegmentation problem

INPUT:
Given an image in pixel map format. The pixel i, i ∈ P has a
probability to be foreground fi and the probability to be
background bi; in addition, the likelihood that two neighboring
pixels i and j are similar is lij;
GOAL:
to identify foreground out of background. Mathematically, we want
a partition P = F ∪ B, such that Q(F,B) =∑

i∈F fi +
∑

j∈B bi +
∑

i∈F
∑

j∈N(i)∩F lij +
∑

i∈B
∑

j∈N(i)∩B lij is
maximized.

45 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example

Red: the probability fi for pixel i to be foreground;
Green: the probability bi for pixel i to be background;
Blue: the likelihood that pixel i and j are in the same category;

46 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Converting to network-flow problem

1 Network: Adding two nodes source s and sink t with connections to
all nodes;

2 Capacity: C(s, v) = fv, C(v, t) = bv; C(u, v) = luv;
3 Cut: a partition. Cut capacity C(F,B) = M − Q(F,B), where

M =
∑

i(bi + fi) +
∑

i
∑

j lij is a constant.
4 MinCut: the optimal solution to the original problem

47 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Problem 2: Project Selection

INPUT:
Given a directed acyclic graph (DAG). A node represents a project
associated with a profit (denoted as pi > 0) or a cost (denoted as
pi < 0), and directed edge u → v represent the prerequisite
relationship, i.e. v should be finished before u.
GOAL:
to choose a subset A of projects such that:

1 Feasible: if a project was selected, all its prerequisites should
also be selected;

2 Optimal: to maximize profits
∑

v∈A pv;

48 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Network construction

1 Network: introducing two nodes: s and t, s connecting the
nodes with pi > 0, and t connecting the nodes with pi < 0;

2 Capacity: moving weights from nodes to edges, and set
C(u, v) = ∞ for < u, v >∈ E.

3 Cut: a partition of nodes.

49 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Minimum cut corresponds to maximum profit

1 Cut capacity: C(A,B) = C −
∑

i∈A pi, where C =
∑

v∈V pv
(pv > 0) is a constant.

2 In the example, C(A,B) = 5 + 10 + 9,
∑

i∈A pi = 8 − 9, and
C = 5 + 10 + 8.

3 Min-Cut: corresponding to the maximum profit since the sum
of cut capacity and profit is a constant.

50 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Feasibility

Feasible: The feasibility is implied by the infinite weights on
edges, i.e. an invalid selection corresponds to a cut with
infinite capacity.
For example, if a project u was selected while its precursor v
was not selected, then the edge < u, v > is a cut edge,
leading to an infinite cut.

51 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Paradigm 2: Finding paths

52 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Problem 3: Disjoint paths

INPUT:
Given a graph G =< V,E >, two nodes s and t, an integer k.
GOAL:
to identify k s − t paths whose edges are disjoint;

Related problem: graph connectivity

53 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Network construction

1 Edges: the same to the original graph;
2 Capacity: C(u, v) = 1;
3 Flow: (See extra slides)

54 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem
k disjoint paths in G ⇔ the maximum s − t flow value is at least k.

Proof.
1 Note: maximum s − t flow value is k implies an INTEGRAL

flow with value k.
2 Simply selecting the edges with f(e) = 1.

Time-complexity: O(mn).
55 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Menger theorem 1927

Theorem
The number of maximum disjoint paths is equal to the number of
minimal edge removement to separate s from t.

56 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Menger theorem

Proof.
1 The number of maximum disjoint paths is equal to the

maximum flow;
2 Then there is a cut (A,B) such that C(A,B) is the number of

disjoint paths;
3 The cut edges are what we wanted.

57 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Problem 4: Survey design

INPUT:
A set of customers A, and a set of products P. Let B(i) ⊆ P
denote the products that customer i bought. An integer k.
GOAL:
to design a survey with k questions such that for customer i, the
number of questions is at least ci but at most c′i. On the other
hand, for each product, the number of questions is at least pi but
at most p′i.

58 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Network construction

1 Edges: introducing two nodes s and t. Connecting customers
with s and products with t.

2 Capacity: moving weights from nodes to edges; setting
C(i, j) = 1;

3 Circulation: is a feasible solution to the original problem.
59 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Paradigm 3: Matching

60 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Problem 5: Matching

INPUT:
A bipartite G =< V,E >;
GOAL:
to identify the maximal matching;

61 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Constructing a network

1 Edges: adding two nodes s and t; connecting s with U and t
with V;

2 Capacity: C(e) = 1 for all e ∈ E;
3 Flow: the maximal flow corresponds to a maximal matching;

Time-complexity: O(mn)

62 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Perfect matching: Hall theorem

Definition (Perfect match)
Given a bipartite G =< V,E >, where V = X ∪ Y, X ∩ Y = ϕ,
|X| = |Y| = n. A match M is a perfect match iff |M| = n.

63 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Hall theorem, Hall 1935, Konig 1931

Theorem
A bipartite has a perfect matching ⇔ for any A ⊆ X,
|Γ(A)| ≥ |A|, where Γ(A) denotes the partners of nodes in A.

Figure: Konig, Egervary, and Philip Hall

64 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

65 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof.
Here we only show that if there is no perfect matching, then
|Γ(A)| < |A|.

1 Suppose there is no perfect matching, i.e., the maximal match
is M, |M| < n;

2 Then there is a cut such that C(A′,B′) < n. Define
A = A′ ∩ X;

3 C(A′,B′) = |X ∩ B′|+ |Y ∩ A′| = n − |A|+ |Γ(A)|.
4 We have |Γ(A)| < |A| since C(A′,B′) < n.

Note: If necessary A′ can be changed to guarantee that Γ(A) ⊆ A′.
Time-complexity: O(mn)

66 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Paradigm 4: Decomposing numbers

67 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Baseball Elimination problem

INPUT:
n teams T1,T2, ...,Tn. A team Ti has already won wi games, and
for team Ti and Tj, there are gij games left.
GOAL:
Can we determine whether a team, say Ti, has already been
eliminated from the first place? If yes, can we give an evidence?

68 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example

Four teams: New York, Baltimore, Toronto, Boston
1 wi: NY (90), Balt (88), Tor (87), Bos (79).
2 gij: NY:Balt 1, NY:Tor 6, Balt:Tor 1, Balt:Bos 4, Tor:Bos 4,

NY:Bos 4.
It is safe to say that Boston has already been eliminated from the
first place since:

1 Boston can finish with at most 79 + 12 = 91 wins.
2 We can find a subset of teams, e.g. {NY,Tor}, with the total

number of wins of 90+87+6 = 183, thus at least a team
finish with 183

2 = 91.5 > 91 wins.
Note that {NY,Tor,Balt} cannot serve as an evidence that Bos
has already been eliminated.

69 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Baseball Elimination problem

Question: For a specific team z. Can we determine whether there
exists a subset of teams S ⊆ T − {z} such that

1 z can finish with at most m wins;
2 1

|S|(
∑

x∈S wx +
∑

x,y∈S gxy) > m .
In other word, at least one of the teams in S will have more wins
than z.

70 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Network construction: taking z = Boston as an example

We define m = wz +
∑

x∈T gxz = 91, i.e. the total number of
possible wins for team z.
A network is constructed as follows:

1 Define S = T − {z}, and g∗ =
∑

x,y∈S gxy = 8.
2 Nodes: For each pair of teams, constructing a node x : y, and

for each team x, constructing a node x.
3 Edges:

For edge s − x : y, set capacity as gx,y.
For edge x : y − x and x : y − y, set capacity as gx,y.
For edge x − t, set capacity as m − wx.

71 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intuition: number decomposition

Intuition: along edge s − x : y, we send gx,y wins, and at node
x : y, this number is decomposed into two numbers, i.e. the
number of wins of each team.

72 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Case 1: the maximum flow value is g∗ = 8

Theorem
There exist a flow with value g∗ = 8 iff there is still possibility that
z = Boston wins the championship.

73 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof.
⇐

If there is a flow with value g∗, then the capacities on edges
x − t guarantees that no team can finish with over m wins.
Therefore, z still have chance to win the championship (if z
wins all remaining games).

⇐
If there is possibility for z to win the championship
we can define a flow with value g∗.

74 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Case 2: the maximum flow value is less than g∗ = 8

Theorem
If the maximum flow value is strictly smaller than g∗, the minimum
cut describes a subset S ⊆ T − {z} such that
1
|S|(

∑
x∈S wx +

∑
x,y∈S gxy) > m .

Proof.
(See extra slides)

75 / 75

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Extensions of matching: Assignment problem, Hungarian
algorithm for Weighted Assignment problem, Blossom
algorithm.

76 / 75

