
Who is Interested in Algorithms and Why?
Lessons from the Stony Brook Algorithms Repository *

Steven S . Skiena l

Department of Computer Scienc e
SUNY Stony Brook, NY 11794-4400

skiena@cs .sunysh . edu
©Steven S . Skiena

August 2, 1999

Abstract

We present "market research" for the field of combinatorial algorithms and algorithm engi-
neering, attempting to determine which algorithmic problems are most in demand in applica-
tions . We analyze 1,503,135 WWW hits recorded on the Stony Brook Algorithms Repositor y
(http ://www .cs .sunysb.edu/—algorith), to determine the relative level of interest among 75 al-
gorithmic problems and the extent to which publicly available algorithm implementations satisf y
this demand .

1 Introduction

A primary goal of algorithm engineering is to provide practitioners with well-engineered solu-
tions to important algorithmic problems . Our beliefs as to which problems are important t o
practitioners have been based primarily on anecdotal evidence. To provide more objective infor-
mation, it seems useful to conduct "market research" for the field of combinatorial algorithms ,
by determining which algorithmic problems are most in demand in applications, and how wel l
currently available implementations satisfy this demand .

This paper is an attempt to answer these questions . We present an analysis of 1,503,13 5
WWW hits recorded on the Stony Brook Algorithms Repository over a one year period, fro m
February 22, 1998 to February 27, 1999 . The Repository (http ://www.cs .sunysb.edu/-,algorith)
provides a resource where programmers, engineers, and scientists can go to find implementations
of algorithms for fundamental problems . User feedback and WWW traffic statistics suggest tha t
it has proven valuable to people with widely varying degrees of algorithmic sophistication .

The structure of the Algorithms Repository makes it well suited to measure the interes t
in different algorithmic problems . For each of 75 fundamental algorithm problems, we hav e
collected the best publicly available implementations that we could find . These problems hav e
been indexed in major web search engines, so anyone conducting a search for information on a
combinatorial algorithm problem is likely to stumble across our site . Further, special indexe s
and hyperlinks aboard our site help guide users to other relevant information .

This paper is organized as follows . In Section 2, we discuss the structure of the Algorithms
Repository in more depth, to provide better insight into the nature of the data we present below .

`A preliminary version of this paper appeared in the Second Workshop on Algorithm Engineering, Saarbrucken ,
Germany, August 20-22, 1998 .

t Supported in part by ONR Award 431-0857A and NSF Grant CCR-9625669 .

65

In Section 3, we analyze WWW traffic to determine the most popular and least popular algo-
rithmic problems . In Section 4, we report on what our users are finding . Each implementation
available on the Repository has been rated as to its usefulness for the corresponding problem .
By studying these ratings, we can assess the current state of the art of combinatorial computing ,
and see how well it matches user demand . Finally, in Section 5, we attempt to get a handle o n
where the interest in algorithms is located, both geographically and professionally .

The only other attempt at polling interest in algorithmic problems which I am aware of is b y
Crescenzi and Kann [1], who use WWW hits on their compendium of NP optimization problem s
to measure interest in different NP-hard problems . Any polling-based research is subject to a
variety of bias and ambiguities . I make no grand claims as to how accurately this data measures
the relative importance of different algorithmic research to society. I found many of the results
quite surprising, and hope they will be of interest to the algorithmic community .

2 The Stony Brook Algorithms Repository

The Stony Brook Algorithms Repository was developed in parallel with my book [7], The Algo-
rithm Design Manual, and the structure of the repository mirrors the organization of my book .
The world has been divided into a total of 75 fundamental algorithmic problems, partitioned
among data structures, numerical algorithms, combinatorial algorithms, graph algorithms, har d
problems, and computational geometry. See Table 6 or http://www .cs .sunysb .edu/,—algorith
for the list of 75 problems .

For each problem, the book poses questions to try to reveal the issues inherent in a prope r
formulation, and then tries to suggest the most pragmatic algorithm solution available . Where
appropriate, relevant implementations are noted in the book, and collected on the Algorithms
Repository, most of which has been mirrored on a CD-ROM included with the book . In total ,
we have identified a collection of 56 relevant algorithm implementations . Finding these codes
required a substantial effort . Since many of these implementations proved applicable to mor e
than one problem, the repository contains an average of three relevant implementations pe r
problem .

Each problem . page has a link to each relevant implementation page, as well as to page s
associated with closely related problems . Each implementation page contains a link to the
page associated with each problem to which it is applicable . Further, indexes contain links t o
implementations by programming language, subject area, and pictorial representation . Together
these links enable the user to move easily through the site .

3 What are People Looking For ?

Out of the 1 .5 million hits recorded on this site over the one year interval, 393,467 of them wer e
to primary html and shtml files . This latter count more accurately represents the number o f
mouse-clicks performed by users than the total hits, since most of the remaining hits are on
image files associated with these pages . Therefore, we will limit further analysis to hits on thes e
files .

Because user ID information is not logged on our WWW server, it is difficult to judg e
exactly how many different people accounted for these hits . Based on the roster of machine s
which accessed the site, I estimate that roughly 40,000 different people paid a visit during this 1 0
week study. Some fraction of hits came from webcrawler robots instead of human users, howeve r
I believe they had only a minor effect on our statistics . Observe that the least frequently clicke d
shtml file (containing the copyright notice for the site) was hit only 298 times versus 17,733 hit s
for the most frequently accessed page (the front page) .

Table 1 reports the number of hits distributed among our highest level of classificatio n
— the seven major subfields of algorithms. Two different hit measures are reported for eac h
subfield, first the number of hits to the menu of problems within the subfield, and second th e

66

Problem Category Index Hits Subsection Hits Problems
Data Structures 6698 14492 6
Numerical Problems 4499 12812 1 1
Combinatorial Problems 3419 10114 1 0
Graph Problems : Polynomial 4496 17492 1 2
Graph Problems: Hard 3849 13447 1 1
Computational Geometry 7031 25129 1 6
Set and String Problems 3003 10776 9
Totals 32995 104262 75

Table 1 : Hits by Major Section Inde x

Programming Language Index Hits Implementations
C language
C++
Fortran
Lis p
Mathematica
Pascal

477 6
5397

86 8
69 8
65 2

1556

37
1 1

6
1
3
5

Totals 13947 6 3

Table 2 : Hits by Programming Language Inde x

total number of hits to individual problem pages within this subfield . Computational geometry
proved to be the most popular subfield by both measures, although outweighed by the interest in
graph problems split across two subtopics . Data structures recorded the highest "per-problem"
interest, but I was surprised by the relative lack of enthusiasm for set and string algorithms .

Table 2 reports the number of hits distributed among the various programming language
submenus . C++ seems to have supplanted C as the most popular programming language
among developers, although there is clearly a lag in the size of the body of software writte n
in C++. C remains the source language for over half the implementations available on th e
Algorithm Repository . User interest in Mathematica rivals that of Fortran, perhaps suggestin g
that computer algebra systems are becoming the language of choice for scientific computation .
There was no submenu associated with Java, reflecting what was available when I built th e
repository . The total number of implementations in Table 2 is greater than 56 because seve n
codes are written in more than one language .

Table 3 reports the 15 most popular and least popular algorithmic problems, as measured by
the number of hits the associated pages received . Hit counts for all of the 75 problems appears
in Table 6 . Several observations can be drawn from this data :

o Shortest path (with 3660 hits) was the most popular of the algorithmic problems over
the course of the study. Much of this interest was no doubt from students in algorithm s
courses seeking an edge . However its course-partner minimum spanning tree proved les s
popular, finishing in seventh place with 2922 hits .

• Of the six data structure problems, only set union-find (number 31) failed to make the top
15 cut .

• There is more interest in kd-trees (3198 hits) than nearest-neighbor searching (2936 hits) ,
even though the former is most often used as a means to solve the latter .

• People seem much more interested in generating permutations than subsets (1474 hits t o
854 hits), presumably reflecting the perceived difficulty of the task .

67

Most Popular Problems Hits Least Popular Problems Hits
shortest-path 3660 generating-subsets 854
kd-trees 3198 edge-coloring 81 7
dictionaries 3022 satisfiability 79 2
traveling-salesman 2963 independent-set 78 9
convex-hull 2963 cryptography 78 6
nearest-neighbor 2936 text-compression 76 7
minimum-spanning-tree 2922 maintaining-arrangements 72 7
voronoi-diagrams 2815 set-packing 70 3
triangulations 2786 planar-drawing 67 8
sorting 2734 median 67 1
graph-data-structures 2596 bandwidth 62 9
string-matching 2304 factoring-integers 62 8
suffix-trees 2213 shortest-common-sup erstring 52 0
priority-queues 2208 determinants 52 0
geometric-primitives 2162 feedback-set 483

Table 3 : Most and least popular algorithmic problems, by repository hits .

• Surprisingly popular problems include traveling salesman (number 4), suffix trees (numbe r
13), the knapsack problem (number 18) . These might reflect educational interest, althoug h
Table 5 shows that almost twice as many total .com hits were recorded than total .edu
hits .

• Surprisingly unpopular problems include independent set (number 64), planar drawin g
(number 69), and satisfiability (number 63) . Such obviously commercial problems as cryp -
tography (number 65) and text compression (number 66) proved unpopular presumabl y
because better WWW resources exist elsewhere for these problems .

o My users (people seeking programs) rated NP-complete problems substantially differentl y
than users of the compendium of optimization problems [1] (people seeking references) .
Our five most popular hard problems, in order were traveling salesman (2963 hits), knap-
sack (1926 hits), graph coloring (1847 hits), Hamiltonian cycle (1681 hits), and bin packin g
(1496 hits) . Their most popular hard problem was vertex cover, which with 876 hits ranked
58th of all problems on our list .

It is interesting to note that only 17,733 hits occurred to the front-page of the site, whic h
suggests that most visitors never saw the main index of the site . This implies that most user s
initially entered the site through a keyword-oriented search engine, and gives credence to the
notation that these hits measure problem interest more than just directionless wandering through
the site .

4 What are They Finding ?

The majority of visitors to the Algorithms Repository come seeking implementations of al-
gorithms which solve the problem they are interested in . To help guide the user among th e
relevant implementations for each problem, I have rated each implementation from 1 (lowest)
to 10 (highest), with my rating reflecting my opinion of the chances that an applied user wil l
find that this implementation solves their problem .

My ratings are completely subjective, and in many cases were based on a perusal of th e
documentation instead of first-hand experience with the codes . Therefore, I cannot defend th e
correctness of my ratings on any strong objective basis . Still, I believe that they have proven
useful in pointing people to the most relevant implementation . Of the two linear programming

68

Rank by dank by
Most Needed Implementations Mass Hits A Least Needed Implementations Mass Hits v
kd-trees 52 2 -50 network-flow 5 19 14
suffix-trees 63 13 -50 random-numbers 14 28 1 4

bin-packing 75 27 -48 dfs-bfs 17 32 1 5
knapsack 58 18 -40 matching 1 17 1 6

polygon-partitioning 66 35 -31 unconstrained-optimization 36 52 1 6
simplifying-polygons 69 41 -28 vertex-coloring 4 20 1 6

nearest-neighbor 32 6 -26 fourier-transform 23 40 1 7
minkowski-sum 72 47 -25 cryptography 44 65 2 1

eulerian-cycle 67 43 -24 satisfiability 42 63 2 1
dictionaries 24 3 -21 high-precision-arithmetic 15 37 2 2

set-cover 71 50 -21 bandwidth 48 71 2 3

set-data-structures 51 31 -20 matrix-multiplication 22 45 2 3
motion-planning 74 57 -17 drawing-trees 30 54 24

traveling-salesman 21 4 -17 edge-coloring 38 62 2 4
scheduling 65 49 -16 maintaining-arrangements 43 67 24
string-matching 26 12 -14 planar-drawing 40 69 2 9

calendar-calculations 59 46 -13 generating-graphs 11 44 33
clique 45 33 -12 determinants 39 74 35

graph-partition 54 42 -12 generating-subsets 20 61 4 1
graph-isomorphism 50 39 -11 generating-partitions 12 60 48

Table 4: Most needed and least needed implementations, based on program mass and hit rank s

packages, 1psolve and linprog, the higher rated code received over five times as many hits (185 9
to 340) than the lower rated one .

Table 7 records the number of hits received for each implementation, along with the proble m
for which it received the highest rating, as well its average rating across all problems . LEDA
[3] received almost as many hits (8806) as the two following implementations, both associate d
with popular hooks [5] (5339) and [2] (4360) . The fourth most popular implementation wa s
(surprisingly) Ranger [4] (3514), an implementation of kd-trees . This reflects the enormou s
popularity of nearest-neighbor searching in higher dimensions, as well as the fact that I ha d
not updated the list of implementations since the publication of the book in November 1997 .
Arya and Mount's recently released ANN (http ://www.cs .umd.edu/mount/ANN/) would be
a better choice . Such maintanence on the site is now underway . Note that these counts recor d
the number of people who looked at the information page associated with each implementation .
The actual number of ftps is unknown but presumably much lower .

Despite their shortcomings, I believe that these ratings provide a useful insight into th e
state of the art of combinatorial computing today . Hits per problem page measures the leve l
of interest in a particular algorithmic problem . Program mass, the sum of the rankings of al l
implementations for a given problem, provides a measure of how much effort has been expende d
by the algorithm engineering community on the given problem. By comparing the ranks o f
each problem by program mass and the popularity, we can assess which problems are most (an d
least) in need of additional implementations .

Table 4 presents the results of such an analysis, showing the 20 most under (and over)
implemented algorithmic problems . Kd-trees (rank 1) and suffix trees (rank 2) are the mos t
needed data structure implementations, while the closely related problems of bin packing (ran k
3) and knapsack (rank 4) are in the most need of algorithm implementations . There seems to be
greater interest than activity in routing problems like Eulerian cycle/Chinese postman (rank 9)
and traveling salesman (rank 14) . On the other hand, traditional algorithm engineering topics
like matching (rank 59) and network flow (rank 56) have resulted in a relative abundance o f
codes for these problems .

' Any software developer who is dissatisfied with their ratings will perhaps be gratified to learn that my ow n
Combinatorica [6] received the fourth lowest average score among the 56 rated implementations .

69

domain

	

.com

	

.edu

	

.gov

	

.mil

	

.net

	

.org

	

[0 – 9]* countries

	

totals
hits

	

82387 46234 2022 1682 49172 1273

	

70002

	

47518

	

30029 0

Table 5 : Hits by top level domai n

5 Who is Looking?

By analyzing the domain names associated with each hit on the Algorithm Repository, we ca n
see who is interested in algorithms . Table 5 records the number of hits by top-level domain . I
believe that more hits were recorded by industrial users than educational ones, since the .com
(82387) and .net (49172) domains together account for almost three times the number of .edu
(46234) hits, although of course many students also have accounts with internet providers .

It is interesting and amusing to see the distribution of hits by country code . No less than
100 nations visited the Algorithm Repository during this one year interval, suggesting a muc h
broader interest in algorithms than I would have thought . Hit count per nation is summarized
in Table 8 .

The most algorithmically inclined nation after the United States (presumably the source of
most .com and .edu hits) was Germany (6099) . The United Kingdom (3795), France (2811) ,
and Spain (2501) each accounted for significantly more hits than Israel (1265), Japan (1668) ,
and the Netherlands (1223) – suggesting that the interest does not completely correlate wit h
my perception of the amount of algorithmic research activity in these nations . Ireland, which
finished ninth in the survey of Crescenzi and Kann [1], ranked 40th among nations in ours .
Two of the largest producers of graduate students in computer science, China (66) and India
(230), ranked surprisingly low in the number of hits despite the presence of substantial softwar e
industries . Presumably this reflects limited WWW access within these countries .

6 Conclusions

Analysis of hits to the Stony Brook Algorithm Repository provides interesting insights to th e
demand for algorithms technology, and the state of the art of available implementations . It
would be interesting to repeat this analysis at regular intervals to see how the demand change s
over time .

This most important conclusion of this work is that there is a demand for high qualit y
implementations of algorithms for several important and interesting problems . I urge members
of the algorithm engineering community to consider projects for problems on the left side o f
Table 4, for these represent the real open problems in the field . Indeed, I would be happy t o
add any results of this work to the Algorithm Repository for others to benefit from.

7 Acknowledgement s
I would like to thank Ricky Bradley and Dario Vlah, who helped to build the software infras-
tructure which lies behind the Stony Brook Algorithm Repository. I also thank Gaurav Sehgal
for his help collecting these statistics .

References

[1] P. Crescenzi and V. Kann . How to find the best approximation results – a followup to Care y
and Johnson . ACM SIGACT News, 29-4 :90-97, December 1998 .

[2] G . Gonnet and R. Baeza-Yates . Handbook of Algorithms and Data Structures . Addison-
Wesley, Wokingham, England, second edition, 1991 .

70

[3] K . Mehlhorn and S . Naher. LEDA, a platform for combinatorial and geometric computing .
Communications of the ACM, 38:96-102, 1995 .

[4] M. Murphy and S . Skiena. Ranger : A tool for nearest neighbor search in high dimensions .
In Proc. Ninth ACM Symposium on Computational Geometry, pages 403-404, 1993 .

[5] R. Sedgewick . Algorithms in C++ . Addison-Wesley, Reading MA, 1992 .

[6] S . Skiena . Implementing Discrete Mathematics . Addison-Wesley, Redwood City, CA, 1990 .

[7] S. Skiena . The Algorithm Design Manual . Springer-Verlag, New York, 1997 .

71

All Implementations Best Implementation

Problem Hits Impl . Count

	

Avg Score Program Name

	

Rating

approximate-pattern-matching 1403 3

	

6 .3 agrep

	

1 0
bandwidth 629 2

	

7 .5 toms

	

9

bin-packing 1496 1

	

3 .0 xtango

	

3
calendar-calculations 1109 1

	

10 .0 reingold

	

1 0
clique 1344 3

	

5 .3 dirnacs

	

9
convex-hull 2963 7

	

5 .4 glint

	

1 0
cryptography 786 3

	

5 .3 pgp

	

1 0
determinants 520 4

	

4 .5 linpack

	

8
dfs-bfs 1356 7

	

3 .9 LEDA

	

8
dictionaries 3022 4

	

6 .0 LEDA

	

1 0
drawing-graphs 1339 3

	

7 .0 graphed

	

9
drawing-trees 932 3

	

7 .0 graphed

	

9
edge-coloring 817 4

	

4 .5 stony

	

6
edge-vertex-connectivity 950 3

	

4 .0 combinatorica

	

4
eulerian-cycle 1154 2

	

3 .0 combinatorica

	

3
feedback-set 483 1

	

4 .0 graphbase

	

4
finite-state-minimization 1610 4

	

5 .7 grail

	

9
Fourier-transform 1192 5

	

5 .0 fftpack

	

1 0
generating-graphs 1146 5

	

6 .8 graphbase

	

1 0
generating-partitions 859 5

	

6 .6 wilf

	

8
generating-permutations 1474 4

	

7 .0 ruskey

	

8
generating-subsets 854 4

	

6 .3 wilf

	

8
geometric-primitives 2162 5

	

5 .4 LEDA

	

8
graph-data-structures 2596 6

	

6 .7 LEDA

	

1 0
graph-isomorphism 1217 2

	

6 .5 nauty

	

1 0
graph-partition 1154 2

	

6 .0 link

	

8
hamiltonian-cycle 1681 5

	

4 .2 toms

	

6
high-precision-arithmetic 1266 5

	

5 .6 pari

	

9
independent-set 789 2

	

6 .0 dirnacs

	

7
intersection-detection 2128 5

	

5 .2 LEDA

	

7
kd-trees 3198 3

	

4 .0 ranger

	

8

knapsack 1926 2

	

5 .0 toms

	

6
linear-equations 1221 3

	

8 .6 lapack

	

1 0
linear-programming 1841 5

	

4 .4 Ipsolve

	

9
longest-common-substring 927 2

	

5 .0 cap

	

8

maintaining-arrangements 727 2

	

8 .0 arrange

	

9

matching 1973 10

	

5 .2 goldberg

	

9

matrix-multiplication 1128 5

	

5 .0 linpack

	

7

median 671 2

	

5 .0 handbook

	

6
minimum-spanning-tree 2922 9

	

4 .0 LEDA

	

6

minkowski-sum 1102 1

	

4 .0 eppstein

	

4
motion-planning 899 1

	

3 .0 orourke

	

3
nearest-neighbor 2936 4

	

5 .2 ranger

	

7
network-flow 1860 8

	

5 .0 goldberg

	

1 0
planar-drawing 678 3

	

5 .7 graphed

	

8
point-location 1584 4

	

4 .8 LEDA

	

7
polygon-partitioning 1333 1

	

8 .0 geompack

	

8
priority-queues 2208 8

	

4 .5 LEDA

	

9
random-numbers 1489 6

	

4 .8 sirnpack

	

7
range-search 1511 4

	

4 .8 LEDA

	

8
satisfiability 792 2

	

8 .0 posit

	

8
scheduling 1074 2

	

4 .0 syslo

	

4
searching 1267 3

	

5 .6 handbook

	

7
set-cover 1063 1

	

5 .0 syslo

	

5
set-data-structures 1375 3

	

4 .3 LEDA

	

5
set-packing 703 1

	

5 .0 syslo

	

5
shape-similarity 861 2

	

6 .5 snns

	

7
shortest-common-superstring 520 1

	

8 .0 cap

	

8
shortest-path 3660 7

	

5 .0 goldberg

	

9
simplifying-polygons 1159 1

	

5 .0 skeleton

	

5
sorting 2734 7

	

4 .9 moret

	

7
steiner-tree 1093 2

	

7 .5 salowe

	

8
string-matching 2304 5

	

4 .4 watson

	

7
suffix-trees 2213 2

	

4 .0 stony

	

6
text-compression 767 1

	

5 .0 toms

	

5
thinning 1039 1

	

9 .0 skeleton

	

9
topological-sorting 1772 6

	

3 .5 LEDA

	

7
transitive-closure 930 2

	

4 .0 LEDA

	

6
traveling-salesman 2983 5

	

5 .0 tsp

	

8
triangulations 2786 8

	

5 .9 triangle

	

9
unconstrained-optimization 972 3

	

6 .3 tons

	

8
vertex-coloring 1847 8

	

5 .0 dirnacs

	

7
vertex-cover 876 3

	

5 .0 clique

	

6
voronoi-diagrams 2815 6

	

5 .3 fortune

	

9

Table 6 : Hits by algorithmic problem, with implementation ratings

72

Software Hits

Major Problem

Problem Name Rating

All Problem s

Count Average
ASA 631 unconstrained-optimization 6

_

1 6 . 0
LEDA 8806 graph-data-structures 10 30 6 . 2
agrep 895 approximate-pattern-matching 10 1 10 . 0
arrange 430 maintaining-arrangements 9 3 7 . 3
bipm 586 matching 8 1 8 . 0
cap 524 shortest-common-superstring 8 2 8 . 0
clarkson 524 convex-hull 6 1 6 . 0
clique 667 clique 6 6 5 . 5
combinatorica 2447 generating-graphs 8 28 4 . 0
culberson 587 vertex-coloring 6 2 5 . 0
dimacs 1308 matching 9 10 5 . 6
eppstein 1244 minkowski-sum 4 2 4 . 0
fftpack 651 fourier-transform 10 1 10 . 0
fortune 1675 voronoi-diagrams 9 2 8 . 0
genocop 422 unconstrained-optimization 5 1 5 . 0
geolab 693 geometric-primitives 5 1 5 . 0
geompack 792 polygon-partitioning 8 2 8 . 0
goldberg 2215 network-flow 10 3 9 . 3
grail 1123 finite-state-minimization 9 1 9 . 0
graphhase 2658 generating-graphs 10 17 4 . 4
graphed 1736 drawing-graphs 9 7 6 . 4
handbook 4360 dictionaries 8 12 4 . 9
htdig 371 text-compression 7 1 7 . 0
lapack 446 linear-equations 10 1 10 . 0
link 655 graph-partition 8 4 4 . 5
linpack 68 determinants 8 2 7 . 5
linprog 340 linear-programming 4 1 4 . 0
1psolve 1859 linear-programming 9 1 9 . 0
math 460 matrix-multiplication 6 1 6 . 0
moret 1831 sorting 7 17 3 . 8
nauty 970 graph-isomorphism 10 1 10 . 0
north 805

	

drawing-graphs 7 2 7 . 0
orourke 2579 geometric-primitives 6 8 4 . 4
pari 1080 high-precision-arithmetic 9 2 9 . 0
pgp 44 cryptography 10 1 10 . 0
phylip 442 steiner-tree 7 1 '1 . 0
posit 349 satisfiability 8 1 8 . 0
qhull 1315 convex-hull 10 4 7 . 0
ranger 3514 kd-trees 8 3 7. 0
reingold 1305 calendar-calculations 10 1 10 . 0
ruskey 998 generating-permutations 8 4 7 . 2
salowe 466 steiner-tree 8 1 8 .0
sedgewick 5339 sorting 5 11 3 . 2
simpack 1290 priority-queues 7 2 7. 0
skeleton 833 thinning 9 2 7 . 0
snns 527 shape-similarity 7 1 7 . 0
stony 1312 suffix-trees 6 3 6 . 0
syslo 2550 set-cover 5 11 4 . 1
toms 2538 bandwidth 9 24 5 . 0
triangle 938 triangulations 9 1 9 . 0
trick 926 vertex-coloring 7 2 5 . 5
tsp 1386 traveling-salesman 8 1 8 . 0
turn 282 shape-similarity 6 1 6 . 0
watson 1355 finite-state-minimization 8 2 7 . 5
wilf 1126 generating-partitions 8 12 4 . 5

L xtango 2945 sorting 19 3 .2

Table 7: Hits by implementation, with associated ratings

7 3

Count Country Code Count Country Cod e
6099 Germany de 115 Soviet Union su
3795 United Kingdom uk 115 Estonia e e
3062 Canada ca 101 Yugoslavia Y u
2811 France fr 83 Latvia lv
2501 Spain es 75 Cyprus cy
2425 Australia au 66 China cn
1946 Italy it 62 United Arab Emirates ae
1668 Japan jp 47 Great Britain gb
1420 Poland pl 46 Kazakhstan k z
1267 Korea kr 38 Luxembourg lu
1265 Israel it 32 Philipines ph
1223 Netherlands nl 32 Honduras hn
1175 Sweden se 24 Malta mt
1134 Finland fi 23 Trinidad tt
1001 Brazil br 23 Costa cr

789 Portugal pt 22 Saudi Arabia sa
721 Russia ru 20 Macau mo
708 Switzerland ch 19 Vietnam vn
695 Hong Kong hk 19 Bolivia bo
678 Belgium be 18 Jamaica jm
652 Singapore sg 15 Egypt eg
615 Solvenia si 14 Peru Pe
597 Austria at 14 Iceland i s
583 Norway no 13 Jordan j o
557 Ukraine ua 12 Dominican Republic do
546 Romania ro 12 Bahrain bh
406 Czech Republic cz 12 Armenia am
403 Taiwan tw 11 Panama pa
396 Greece gr 11 Nicaragua n i
388 Denmark di(6 Namibia na
388 Chile cl 5 Pakistan pk
350 Malaysia my 5 Georgia ge
339 Uruguay uy 5 Botswana bw
337 Mexico mx 4 Kuwait kw
334 United States us 4 Iran i t
329 Colombia co 4 Belize bz
311 Hungary hu 3 Mauritius mu
273 Argentina ar 3 Ethiopia et
259 Venezuela ve 2 Zimbabwe z w
256 Ireland ie 2 Oman om
230 India in 2 New Calidonia nc
201 Thailand th 2 Moldova and
178 Indonesia id 2 Ecuador e c
163 Lithuania It 2 Dominica dm
163 Croatia hr 1 St . Helena sh
161 New Zealand nz 1 Qatar qa
132 Slovakia sk 1 Guatemala gt
127 Bulgaria bg 1 Greenland g l
122 Turkey tr 1 Byelorussian by
116 South Africa za 1 Barbados bb

Table 8 : Hits by Nation

7 4

