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FOREWORD 
The author of the work "Mathematical Methods of Organizing and Planning 

Production", Professor L. V. Kantorovich, is an eminent authority in the field 
of mathematics. This work is interesting from a purely mathematical point of 
view since it presents an original method, going beyond the limits of classical 
mathematical analysis, for solving extremal problems. On the other hand, this 
work also provides an application of mathematical methods to questions of 
organizing production which merits the serious attention of workers in different 
branches of industry. 

The work which is here presented was discussed at a meeting of the M'Iathe- 
inatics Section of the Institute of Mathematics and Mechanics of the Leningrad 
State University, and was highly praised by mathematicians. In addition, a 

* Received March 1958. 
t The editors of Management Science would like to express their very sincere thanks to 

Robert W. Campbell and W. H. Marlow who prepared the English translation and to Mrs. 
Susan Koenigsberg who helped to edit the final manuscript. 
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special meeting of industrial workers was called by the Directorate of the Uni- 
versity at which the other aspect of the work-its practical application-was 
discussed. The industrial workers unanimously evinced great interest in the 
work and expressed a desire to see it published in the near future. 

The basic part of the present monograph reproduces the contents of the report 
given at the meetings mentioned above. It includes a presentation of the mathe- 
matical problems and anl indication of those questions of organization anld planl- 
ning in the fields of industry, construction, transportation and agriculture which 
lead to the formulation of these problems. The exposition is illustrated by several 
specific numerical examples. A lack of time and the fact that the author is a 
mathematician rather than someone concerned with industrial production, did 
not permit an increase in the number of these examples or an attempt to make 
these examples as real and up-to-date as they might be. We believe that., in 
spite of this, such examples will be extremely useful to the reader for they show 
the circumstances in which the mathematical methods are applicable and also 
the effectiveness of their application. 

Three appendices to the work contain an exposition and the foundations of 
the process of solving the indicated extremal problems by the method of the 
author. 

We hope that this monograph will play a very useful role in the development 
of our socialist industry. 

A. R. MARCHENKO 

Introduction' 
The immense tasks laid down in the plan for the third Five Year Plan period 

require that we achieve the highest possible productionl on the basis of the opti- 
mum utilization of the existing reserves of industry: materials, labor and equip- 
ment. 

There are two ways of increasing the efficiency of the work of a shop, an enter- 
prise, or a whole branlch of industry. One way is by various improvemients in 
technology; that is, new attachments for individual machines, changes in tech- 
nological processes, and the discovery of new, better kinds of raw materials. 
The other way-thus far much less used-is improvement in the organization 
of planning and production. Here are included, for instance, such questions as 
the distribution of work among individual machines of the enterprise or among 
mechanisms, the correct distribution of orders among enterprises, the correct 
distribution of different kinds of raw materials, fuel, and other factors. Both are 
clearly mentioned in the resolutions of the 18th Party Congress. There it is 
stated that "the most important thing for the fulfillment of the goals of the 

1 The present work represents a significantly enlarged stenographic record of a report 
given on May 13, 1939, at the Leningrad State University to a meeting which was also at- 
tended by representatives of industrial research institutes. Additional material comes from 
a report devoted specifically to problems connected with construction which was given on 
May 26, 1939 at the Leningrad Institute for Engineers of Industrial Construction. 
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program for the growth of production in the Third Five Year Plan period is 
. . . the widespread development of work to propagate the most up-to-date 
technology and scientific organization of production."2 Thus the two lines of 
approach indicated above are specified: as well as the introduction of the 
most up-to-date technology, the role of scientific organization is emphasized. 

In connection with the solution of a problem presented to the Institute of 
Mathematics and Mechanics of the Leningrad State University by the Labora- 
tory of the Plywood Trust, I discovered that a whole range of problems of the 
most diverse character relating to the scientific organization of production 
(questions of the optimum distribution of the work of machines and mechanisms, 
the minimization of scrap, the best utilization of raw materials and local ma- 
terials, fuel, transportation, and so on) lead to the formulation of a single group 
of mathematical problems (extremal problems). These problems are not directly 
comparable to problems considered in mathematical analysis. It is more correct 
to say that they are formally similar, and even turn out to be formally very 
simple, but the process of solving them with which one is faced [i.e., by mathe- 
matical analysis] is practically completely unusable, since it requires the solu- 
tion of tens of thousands or even millions of systems of equations for completion. 

I have succeeded in finding a comparatively simple general method of solving 
this group of problems which is applicable to all the problems I have mentioned, 
and is sufficiently simple and effective for their solution to be made completely 
achievable under practical conditions. 

I want to emphasize again that the greater part of the problems of which I 
shall speak, relating to the organization and planning of production, are con- 
nected specifically with the Soviet system of economy and in the majority of 
cases do not arise in the economy of a capitalist society. There the choice of 
output is determined not by the plan but by the interests and profits of indi- 
vidual capitalists. The owner of the enterprise chooses for production those 
goods which at a given moment have the highest price, can most easily be sold, 
and therefore give the largest profit. The raw material used is not that of which 
there are huge supplies in the country, but that which the entrepreneur can buy 
most cheaply. The question of the maximum utilization of equipment is not 
raised; in any case, the majority of enterprises work at half capacity. 

In the USSR the situation is different. Everything is subordinated not to the 
interests and advantage of the individual enterprise, but to the task of fulfilling 
the state plan. The basic task of an enterprise is the fulfillment and overfulfill- 
ment of its plan, which is a part of the general state plan. Moreover this not 
only means fulfillment of the plan in aggregate terms (i.e. total value of output, 
total tonnage, and so on), but the certain fulfillment of the plan for all kinds of 
output; that is, the fulfillment of the assortment plan (the fulfillment of the 
plan for each kind of output, the completeness of individual items of output, and 
so on). 

This feature, the necessity of fulfilling both the overall plan and all its com- 
2 Bol'shevikc, 1939 No. 7, p. 14. 
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TABLE 1 
Productivity of the machines for two parts 

Output per machine Total output 
Type of machine machines 

First part Second part First part Second part 

Milling machines ................ 3 10 20 30 60 
Turret lathes .................... 3 20 30 60 90 
Automatic turret lathe ........... 1 30 80 30 80 

ponent parts, is essential for us, since in the setting of the tasks connected with 
securing maximum output we must consider the composition and completeness 
as extremely important supplementary conditions. Also extremely important 
is the utilization of materials not chosen in some a priori way, but those which 
are really available, in particular, local materials, and the utilization of ma- 
terials in accordance with the amount of them produced in the given region. It 
should be noted that our methods make it possible to solve the problems con- 
nected precisely with these real conditions and situations. 

Now let us pass to an examination of various practical problems of organiza- 
tion and planning of production and let us ascertain the mathematical prob- 
lems to which they lead. 

I. The Distribution of the Processing of Items by Machines Giving the 
Maximum Output under the Condition of Completeness (Formula- 

tion of the Basic Mathematical Problems) 
In order to illustrate the character of the problems we have in mind, I cite 

one very simple example which requires no special methods for solution since 
it is clear by itself. This example will play an illustrative role3 and will help to 
clarify the formulation of the problem. 

Example 1. The milling work in producing parts of metal items can be done 
on different machines: milling machines, turret lathes of a more advanced type, 
and an automatic turret lathe. For preciseness I shall consider the following 
problem. There are three milling machines, three turret lathes, and one auto- 
matic turret lathe. The item to be fabricated-I shall consider an extremely 
simple case-consists of two parts. 

The output of each part is as follows. During a working day it is possible to 
turn out on the milling machine, 10 of the first part or 20 of the second; on the 
turret lathe, 20 of the first part or 30 of the second; and on the automatic tur- 
ret lathe, 30 of the first or 80 of the second. Thus if we consider all the machines 
(three each of the milling machines and the turret lathes, and one automatic 
machine), we can if we wish turn out in a day 30 + 60 + 30 of the first part 
on each type of machine, respectively, or a total of 120 parts on all the machines. 
Of the second part, we can turn out 60 + 90 + 80. (See Table 1.) 

3 Since this problem plays a purely illustrative role, we have not tried to make it realistic; 
that is, we have not chosen data and circumstances which might occur in reality. 
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Now we need to solve the following problem: the work is to be divided so as 
to load the working day of these machines in such a way as to obtainl the maxi- 
mum output, and at the same time it is important not simply to produce the 
maximum number of parts, but to find the method of maximum output of com- 
pleted items, in the given case consisting of two parts. Thus we must divide the 
work time of each machine in such a way as to obtain the maximum number of 
finished items. 

If no attempt is made to obtain a maximum, but only to achieve completeness, 
then we could produce both parts on each machine in equal quantities. For this 
it is sufficient to divide the working day of each machine in such a way that it 
produces the same number of each part. Then it turns out that the milling ma- 
chine could produce 20 of the first part and 20 of the second. (Actually, on the 
milling machines the production of 20 of the second part is equivalent to 10 of 
the first.) The turret lathes can then produce 36 of the first and 36 of the second; 
the automatic turret lathe can produce 21 of the first and 21 of the second part; 
and the total output of all the machines will be 77 of the first and 77 of the second 
part, or in other words, 77 complete items. (See Table 2.) 

Let us now find, in the given example, the most expedient method of opera- 
tion. We examine the different ratios. On the milling machine, one unit of the 
first part is equal to two of the second; on the turret lathe, this ratio is 2 to 3; 
on the automatic machine, 3 to 8. There are various reasons for this; one of the 
operations can require the same time on each machine, another operation can 
be performed five times faster on the automatic machine than on the milling 
machine, and so on. Owing to these conditions, these ratios are different for 
different machines turning out identical parts. One part can be turned out rela- 
tively better on one machine, another part on a different machine. 

Examination of these ratios immediately leads to the solution. It is necessary 
to turn out the first part where it is most advantageously produced (on the 
turret lathe) and the second part should be assigned the automatic machine. 
As far as the milling machines are concerned, the production of the first and 
second parts should be partially divided among them in such a way as to obtain 
the same number of the first and second parts. 

If we make an assignment in accordance with this method, the numbers will 
be as follows: on the milling machine there will be 26 and 6; on the turret lathe 
only 60 of the first, and none of the secolnd; on the automatic machine 80 of the 
second, and none of the first. Altogether we will get 86 of the first part and 86 
of the second. (Table 2.) 

If such a redistribution is made, we will obtain an effect that is not very great, 
but still appreciable: an increase in output of 11 per cent. Moreover, this in- 
crease in production occurs with no expenditure whatever. 

This problem was solved so easily from elementary considerations because we 
had only three machines and two parts. Practically, in the majority of cases, 
one must deal with more complex situations, and to find the solution simply by 
common sense is hardly possible. It is too much to hope that the ordinary en- 
gineer, with no calculation of any kind, would happen upon the best solution. 
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TABLE 2 
Distribution of the processing of parts among machines 

Simplest solution Optimum solution 
Type of machines 

First part Second part First part Second part 

Milling machines ............ 20 20 26 6 
Turret lathes ................ 36 36 60 
Automatic turret lathe ....... 21 21 - 80 

Number of complete sets ... 77 77 86 86 

In order to make clear the kind of mathematical problem to which this leads, 
I shall examine this question in more general form. I shall introduce here several 
mathematical problems connected with the question of producing items con- 
sisting of several parts. With respect to all the other fields of application of the 
mathematical methods which I mentioned above, it turns out that the mathe- 
matical problems are the same in each case, so that in the other cases it will only 
be necessary for me to point out which of these problems represents the situa- 
tion. 

Therefore, let us look at the general case. We have a certain number n of 
machines and on them we turn out items consisting of m different parts. Let us 
suppose that if we produce the k-th part on the i-th machine we can produce in a 
day ai,k parts. These are the given data. (Let us note that if it is impossible to 
turn out the k-th part on the i-th machine, then it is necessary to set the corre- 
sponding aei,k = 0.) 

Now what do we need? It is necessary to distribute the work of making the 
parts among machines in such a way as to turn out the largest number of com- 
pleted items. Let us designate by hi,k the time (expressed as a fraction of the 
working day) that we are going to use the i-th machine to produce the k-th part. 
This time is unknown; it is necessary to determine it on the basis of the condi- 
tion of obtaining the maximum output. For determining hi,k there are the fol- 
lowing conditions. First hi,k > 0, i.e., it must not be negative. As a practical 
matter this condition is perfectly obvious, but it must be mentioned since mathe- 
matically it plays an important complicating role. Furthermore, for each fixed i 
the sum 5k., hi,k= 1; that is, this condition means that the i-th machine is 
loaded for the full working day. Further, the number of the k-th part produced 
will be Zk = ic aci,khi,k, since each product aie,khi,k gives the quantity of the 
k-th part produced on the i-th machine. If we want to obtain completed items, 
we must require that all these quantities be equal to each other; that is, z1 = 
Z2 = * = Zm . The common value of these numbers, z, determines the number 
of items; it must be a maximum. 

Thus the solution to our question leads to the following mathematical problem. 
Problem A. Determine the numbers hi,k(i = 1, 2, ..., n; k = 1, 2, * *, m) 

on the basis of the following conditions: 
1) hi,k _ 0; 
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2) Z%=lhi,k =1 (i = 1, 2, ... , n); 
3) if we introduce the expression 

n 

ai,khi,k = Zk, 

then hi,k must be so chosen that the quantities zi, Z2 , * Z be equal to each 
other and moreover that their common value z = Zl = Zm is a maxi- 
mum. 

We get a problem exactly like Problem A if we formulate a question about 
distributing the operations on a single part among several machines and if there 
are several required operations in its manufacture such that each of them can 
be performed on several machines. The only difference here lies in the fact that 
ai,k will now denote the output of the i-th machine on the k-th operation, and 
hi,k the time which is to be devoted to this operation. 

Several variants of Problem A are possible. 
For example, if we have not one, but two items, then there will be parts mak- 

ing up the first item and parts making up the second item. Let us designate by 
z the number of the first item, and by y the number of the second item. In this 
case, suppose that there is no product mix assigned to us and we are required 
only to achieve the maximum output in value terms. Then, if a rubles is the 
value of the first item and b rubles the value of the second item, we must seek 
a maximum for the quantity az + by. 

Another problem arises when we have one or another limiting conditions as, 
for example, if each manufacturing process uses a different amount of current. 
Let there be for the (i, k) process (for processing the k-th part on the i-th ma- 
chine) an expenditure of energy of Ci,k KWH per day. The total expenditure of 
electric energy will then be expressed by the sum n k= hikCi,k , and we 
can require that this quantity not exceed a predetermined amount, C. 

Thus we come to the following mathematical problem 
Problem B. Find the values hi,k on the basis of conditions 1), 2) and 3) of 

problem A, and the condition 
4) Zt=i Zk=l Ci,khi,k < C. 
Note that Ci,k in this case could denote other quantities, such as the number 

of persons serving the (i, k) process. Then if we have a predetermined number 
of labor days, this can be a limiting condition and can lead us to Problem B. 
We could have as the limiting condition the expenditure of water in each proc- 
ess if it were necessary for us not to exceed a predetermined amount. 

There is another question-Problem C-which consists of the following. Sup- 
pose that on a given machine it is possible to turn out at the same time several 
parts (or to perform several operations on one part), and moreover we can 
organize the production process according to several different methods. One 
possibility is to turn out on this machine three particular parts; as another 
possibility we can turn out on it two other parts, and so on. Then we arrive at 
a somewhat more complicated problem, namely as follows: assume that we can 
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turn out on the i-th machine under the l-th method or organizing production. 
Yi,k,l of the k-th part; that is at the same time Ti,1,l of the first part, -Yi,2,1 of the 
second part and so on in one working day (some of the 'Yi,k,l may be equal to 
zero). 

Then, if we designate by hi,1 the unknown time of work of the i-th machine 
according to the l-th method, then the number, Zk, of the k-th part produced 
on all machines will be expressed by a method more complicated than before, 
namely Zk = Ei, Yi,k,lhi, . Again the problem leads to a question of finding 
the maximum number of whole complexes z under the condition of z1 = Z2= 

* = Zm * Thus we have problem C: 
Problem C. Find the values hi,, to satisfy the conditions 
1) hi,l I 0; 
2) Z1hi, I= 1; 
3) if we set Zk = Zi,l -Yi,k, hi,l ; then it is necessary that z1 = Z2= = Zm, 

and that their common value, z, have its maximum attainable value. 
Further there is possible a variant of the problem in which the production of 

uncompleted items is permitted, but parts in short supply have to be bought at 
a higher price, or surplus parts are valued more cheaply, compared to complete 
items, so that the number of completed items plays an important role in de- 
termining the value of output. But I will not mention all such cases. 

Let us now dwell somewhat on the methods of solving these problems. As I 
already mentioned, common mathematical methods point to a way which can- 
not be used at all practically. I first found several special procedures which were 
more effective but which are still rather complicated. However, I subsequently 
succeeded in finding an extremely universal method which is applicable alike to 
problems A, B, and C, as well as to other problems of this kind. This method 
is the method of resolving multipliers. Let us indicate its idea. For preciseness, 
let us consider Problem A. The method is based on the fact that there exist 
multipliers Xi , X2, . * * , Xm corresponding to each (manufactured) part such 
that finding them leads almost immediately to the solution of the problem. 
Namely, if for each given i one examines the products Xiaj l, X2ai,2 , ... * Xmai,m 
and selects those k for which the product is a maximum, then for all the other 
k one can take hi,k = 0. With respect to the few selected values of hi,k , they can 
easily be determined to satisfy the conditions Ek.l hi,k = 1, and z1Z2 = 
= zm . The hi,k found in this way also give the maximum z, which is the solution 
of the problem. Thus, instead of finding the large number, m m, of the unknowns 
hi,k, it turns out to be possible to solve altogether for only the m unknowns Xk . 
In a practical case, for example, only 4 unknowns are needed instead of the 
original 32 (see Example 2 below). With respect to the multipliers Xk , they can 
be found with no particular difficulty by successive approximations. All the 
solutions turn out to be relatively simple; it turns out to be no more compli- 
cated than the usual technical calculation. Depending on the complexity of the 
case, the process of solution can take from 5 to 6 hours. 

I will not dwell here on the details of the solution, but will emphasize only the 
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main point, that the solution is completely attainable as a practical matter. As 
far as checking the solution is concerned, that is even simpler. Once the solution 
has been found, it is possible to check its validity in 10-15 minutes.4 

I want also to mention a fact which has great practical significance, namely, 
that the values obtained for ho,k in the solution are in the majority of cases 
equal to zero. Thanks to this, each machine need work on only one or two parts 
during the day; that is, the solution obtained is not practically unattainable as 
it would be if each machine had to turn out one part for one-half hour, another 
for three-fourths of an hour, and so on. In practice, we get a very successful 
solution; the majority of machines work the whole day on one kind of part, 
and only on two or three of the machines is there any changeover during the 
course of the day. The latter is absolutely essential under the requirement of 
obtaining an identical quantity of different parts. 

It seems to me that the solution of the problems chosen here, connected with 
obtaining the maximum output under the conditions of completeness, can find 
application in the majority of enterprises in the metalworking industry, and 
also in the woodworking industry, since in both cases there are various machines 
with different productivities which can perform the same kind of work; there- 
fore, the problem arises of the most desirable distribution of work among the 
machines. 

Finding such a distribution makes sense and is possible, of course, only under 
the system of serial production. For a single item there will be no data on how 
long the working of each part takes on each machine, and there will be no sense 
in finding this solution. But in the metalworking and woodworking industries 
serial production is the normal mode of operation. 

1I. Organization of Production in Such a Way as to Guarantee the 
Maximum Fulfillment of the Plan Under Conditions of a Given 

Product Mix 
There is no need to emphasize the importance of fulfilling the plan with respect 

to the planned product mix under the conditions of a planned economy. Non- 
fulfillment of the plan in this respect is not allowed even when it is fulfilled in 
aggregate terms (in value, tonnage). It leads to overstocking, and to tying up 
capacity on one kind of production and to a serious deficit in other kinds which 
can complicate and even disrupt the work of other associated enterprises. There- 
fore the given enterprise, whether it fulfills the plan, underfulfills it or even 
overfulfills it, is obliged to maintain the relationship between different kinds of 
production set by the state. At the present time underfulfillment of the plan 
with respect to product mix is a failing of many enterprises. Therefore, the ques- 
tion of organizing production to guarantee the maximum output of production 
of the given product mix is a matter of real concern. 

Let us examine this question under the following conditions. Let there be n 
4A detailed exposition of the method of solution, carried out with numerical examples, 

in particular the solution of several of the problems mentioned in the report, is given in 
Appendix I, "The Method of Resolving Multipliers". 
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TABLE 3 

Kind of wood 
Machine Number 

1.2 3 4 5 

1 4.0 7.0 8.5 13.0 16.5 
2 4.5 7.8 9.7 13.7 17.5 
3 5.0 8.0 10.0 14.8 18.0 
4 4.0 7.0 9.0 13.5 17.0 
5 3.5 6.5 8.5 12.7 16.0 
6 3.0 6.0 8.0 13.5 15.0 
7 4.0 7.0 9.0 14.0 17.0 
8 5.0 8.0 10.0 14.8 18.0 

machines (or groups of machines) on which there can be turned out m different 
kinds of output. Let the productivity of the i-th machine be a*k units of output 
of the k-th kind of product during the working day. It is required to set up the 
organization of work of the machines that will achieve the maximum output of 
product under the assigned proportions pi, P2, ... , Pm among the different 
kinds of output. Then if we designate by hi,k the time for which the i-th machine 
(or group of machines) is occupied with the k-th kind of output, for a given hi,k 
we have the conditions 

1) hi,k _ 0; 
2) Ek=il hi,k = 1; 

n m 
Z hi,1 achi =iE hi,m ai,m 

P1 PM 
and the common value of the latter ratios should be a maximum. It remains 
now only to take ai,k = (1/pk) a*,k and the last named condition takes the form 
of condition 3) of Problem A, and thus, this problem reduces to Problem A 
examined above. 

Example 2. It so happens that the first question with which I began my work 
-the question presented by the Central Laboratory of the Plywood Trust- 
was related exactly to this problem, the maximum output of a given product 
mix. I have solved the practical problem. The work was recently sent to the 
Laboratory. There we had a case like this: there are eight peeling machines and 
five different kinds of material. The productivity of each machine for each kind 
of material is shown in Table 3. 

It was required to determine the distribution guaranteeing the maximal 
output under the condition that the material of the first kind constitutes 10 per 
cent; the second, 12 per cent; the third, 28 per cent; the fourth, 36 per cent; 
the fifth, 14 per cent. The solution for this problem, worked out by our method 
by A. I. Iudin,5 led to the values of hi,k-i.e., to the distribution of work time 
(in fractions of the working day) for each kind of material-given in Table 4. 

5 A detailed exposition of the process of solution is given in Appendix 2. 
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TABLE 4 

Kinds of material 
Machine Number 

1 ~~~2 3 45 

1 0 0.3321 0 0 0.6679 
2 0 0.9129 0.0871 0 0 
3 0.5744 0 0.4256 0 0 
4 0 0 0.9380 0.0620 0 
5 0 0 1 0 0 
6 0 0 0 1 0 
7 0 0 0 1 0 
8 1 0 0 0 0 

For obtaining results, the conditions here were comparatively disadvantageous 
since the conditions of work on all the machines were approximately the same. 
Nevertheless, we obtained an increase in the output of the product of 5 per cent 
in comparison with the simplest solution (that is, if we assign work to each of 
the machines in proportion to the product mix). 

In other cases, where the range of machine productivities for each material is 
greater, such a solution can give a greater effect. But even an increase of 5 per 
cent achieved with no expenditure whatever has practical significance. 

Next I want to indicate the significance of this problem for cooperation be- 
tween enterprises. In the example used above of producing two parts (Section 
I), we found different relationships between the output of products on different 
machines. It may happen that in one enterprise, A, it is necessary to make such 
a number of the second part or the relationship of the machines available is such 
that the automatic machine, on which it is most advantageous to produce the 
second part, must be loaded partially with the first part. On the other hand, in 
a second enterprise, B, it may be necessary to load the turret lathe partially 
with the second part, even though this machine is most productive in turning 
out the first part. Then it is clearly advantageous for these plants to cooperate 
in such a way that some output of the first part is transferred from plant A to 
plant B, and some output of the second part is transferred from plant B to plant 
A. In a simple case these questions are decided in an elementary way, but in a 
complex case the question of when it is advantageous for plants to co-operate 
and how they should do so can be solved exactly on the basis of our method. 

The distribution of the plan of a given combine among different enterprises 
is the same sort of problem. It is possible to increase the output of a product 
significantly if this distribution is made correctly; that is, if we assign to each 
enterprise those items which are most suitable to its equipment. This is of course 
generally known and recognized, but is usually pronounced without any precise 
indications as to how to resolve the question of what equipment is most suitable 
for the given item. As long as there are adequate data, our methods will give a 
definite procedure for the exact resolution of such questions. 
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III. Optimal Utilization of Machinery 
A given piece of machinery can often perform many kinds of operations. For 

example, there are many methods of carrying out earth-moving work. For ex- 
cavation the following machines are in use: bucket excavators, ditch diggers, 
grab buckets, hydraulic systems-a whole series of different excavators giving 
different results under different conditions. The results depend on the type of 
soil, the size of the pit, the conditions of transportation of the earth excavated, 
and so on. For example, ditches are most conveniently dug with one excavator, 
deep pits with another, small pits with a third; it is better to move sand with 
one excavator, clay with another, and so on. The productivity of each machine 
on each kind of work depends on all these circumstances. 

Let us now examine the following problem. There is a given combination of 
jobs and a given stock of machines on hand; it is required to carry out the work 
in the shortest possible time. Under such practical conditions, it is sometimes 
impossible to carry out the work with the machine most suited to it. This could 
be the case if, for example, there is no such machine in the stock on hand, or if 
they are relatively overburdened. However, it is possible to determine the most 
advantageous distribution of the machines so that they will develop the highest 
productivity possible under the given practical conditions. Setting out the con- 
ditions, as in the two previous examples, we can show that the formulation of 
the question leads to Problem A. 

Let us now explain these general considerations by two practical examples. 
The first is related to earthmoving, the second to carpentry. 

Example 3. There are three kinds of earthmoving work I, II and III, and there 
are three excavators A, B, and C. It is necessary to carry out 20,000 m3 of each 
kind of work and to distribute this work between the excavators in the most 
advantageous way. The norms of work (in cubic meters per hour) for each kind 
of work are shown in Table 5 (the norms are italicized). 

The most appropriate distribution of the machinery, found by our method, 
is indicated in the same table. The figures on the right of each column show the 
time for which each excavator should be occupied with the corresponding kind 
of work. Thus, for example, excavator A should be assigned for 190 hours on 
work I and for 92 hours on work II. The complete program of work under this 

TABLE 5 

Machinery for the work 
Kinds of work 

Excavator A Excavator B Excavator C 2 

I - 105 190 - 107 - 312 64 20,000 
II 56 92 302 66 222 38 - 20,000 

III 322 56 20 83 60 10 53 282 20,000 

Total hours 322 282 322 282 322 282 
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TABLE 66 

Equipment 
Kind of work 2 2 X 5.65 

Pendulum saws (2) Circular saw (1) Disc saws (10) Frame saws (20) 

I 400 X 2 167 X 3 59 X 9 1830 10,000 
II 213 X 0 125 X 7 38 X 0 875 5,000 

III 475 X 1 52 X 0 23 X 11 725 4,000 

distribution can be achieved in 282 hours of work if the norms are fulfilled. For 
comparison in each case, the left side of the column gives an alternative "un- 
successful" pattern of distributing the excavators. With this distribution, under 
the same conditions, the indicated work will be completed in 322 hours; that is, 
the excess time (and the associated amounts of fuel, money, and so on) will 
amount to 14 per cent compared to the first which is the optimum variant. Let us 
note that even under the second variant the norms are fulfilled, the work goes 
forward without interruption and the machines are fully occupied. Therefore its 
shortcomings could not be revealed by any of the usual indicators, but only by 
specially directing attention to the question of a better distribution of the ma- 
chines. 

Example 4. We have the following kinds of work: 
1) cross-cutting of boards 4.5 m, 2 X 14-10,000 cuts; 
2) cross-cutting of boards 6.5 m, 4 X 30- 5,000 cuts; 
3) ripping of boards 2 m, 4 X 15- 4,000 running meters. 
The following machines are available: 
1) pendulum saws 2; 
2) circular saws with hand control 1; 
3) electric disc saws 10; 
4) frame saws 20. 
The norms of output (in number of cuts and running meters per hour) are 

shown in Table 6. The same table shows the optimum distribution of the work. 
In Table 6 the first figure in each column shows the norm of the machine for 

the corresponding kind of material (in number of cuts or running meters per 
hour). The multiplier given with each norm shows the number of machines oc- 
cupied with the corresponding kind of work; in particular, a multiplier of 0 
shows that the given kind of equipment is not used on the corresponding work. 
All the work can be finished in 5.65 hours under this optimum distribution. 

Let us note that it is possible to distribute the machinery not among kinds 
of work, but among separate tasks; that is, having listed the necessary tasks, 
and having defined the time required for each machine to perform each of them 
(including also set-up time), we can distribute the tasks among the machines 
so that they will be finished in the shortest time or within a given time but with 
the least cost. 

6 The output norms are taken from the book Uniform Norms of Output and Valuations 
for Construction Work, 1939, Section 6, Carpentry. 
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Other variants are possible in the stating of the problems; for example, to 
complete a given combination of jobs by a given date with the machines avail- 
able and with the least expenditure of electric energy. 

The same questions of distribution of machinery can also be resolved when, 
for example, the machines require electrical energy and we are constrained by 
the condition that the capacity used should not exceed a certain amount; or 
the number of persons working may be limited; or the daily consumption of 
water is limited (for hydraulic methods of earthmoving), and so on. These ques- 
tions lead to Problem B. 

The same methods can be applied to those problems not concerned with the 
utilization of existing machines, but with the selection of the most suitable ones 
for a given combination of jobs. 

We believe that this method can be applied to other branches of industry as 
well as to earthmoving and other kinds of construction work. 

In the fuel mining industry, coal-cutting machines of different systems under 
different conditions develop different productivities depending on the size of 
the vein, the conditions of transportation and so on. The most suitable distribu- 
tion of the stock of machines can result in a definite effect here. 

The mining of peat is possible by various methods which have different ef- 
ficiencies for different kinds of peat. Therefore, there is the problem of distribut- 
ing the available machines among the peat fields with the aim of getting the 
maximum output. This problem can also be solved by our methods. 

Moreover, in agriculture, various kinds of work can be performed by combines, 
threshing machines, binders, while certain machines (for example, combines) 
perform a whole range of operations. In this case the question of the distribution 
of agricultural machinery leads to Problem C. 

IV. Minimization of Scrap 
Very many materials used in industry and construction come in the form of 

whole units (sheets of glass, tin-plate, plywood, paper, roofing and sheet iron, 
logs, boards, beams, reinforcing rod, forms, etc.). In using them directly or for 
making semi-finished products, it is necessary to divide these units into parts of 
the required dimensions. In doing this, scrap is usually formed and the materials 
actually utilized constitute only a certain per cent of the whole quantity-the 
rest going into scrap.7 It is true that in many cases this scrap also finds some 
application, but its utilization either requires additional expenditures (for weld- 
ing, resmelting, and so on) and is thus associated with losses, or it is utilized in 
the form of a far less valuable product than the original (the scrap from con- 
struction lumber is used for fuel, and so on). Therefore, the minimization of 
scrap appears to be a very important real problem, since it would permit reduc- 
tion in the norms of expenditure of critical materials. 

7The following illustration shows the magnitude of losses of this kind: In the factory 
"Electrosila," named for S. M. Kirov, "In the first quarter of this year, for example, be- 
cause of incorrect and irrational cutting of dynamo iron, the plant lost 580 tons of metal- 
367 thousand rubles." Leningradskaia Pravda, July 8, 1939. 
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Our methods can be applied here as follows. Let there be one or several lots 
of materials from which it is necessary to prepare parts of a given size; at the 
same time, the number of units of each part must fit a given set of ratios pi, P2 , 

p.., Pm. It is necessary to get the largest output (for example, from a given 
lot of sheets of glass of a standard size it is required to prepare the largest pos- 
sible number of sets of window panes). At the same time, let there be several 
ways of dividing up each unit into parts so it becomes necessary to select the 
number of units of each lot to which each method should be applied in order to 
minimize the amount of scrap. We shall show that this problem is solved by our 
methods since it leads to Problem C. 

Let there by n lots of the material with the i-th lot consisting of qi parts. Let 
it be required to prepare the largest piossible number of sets of m parts each with 
the condition that there are in each set pi units of the first part, p *, pm units 
of the m-th part. 

There are several possible methods for cutting a unit of each lot. Let us assume 
that under the l-th method of cutting a unit of the i-th lot, we get ai,k,l units of 
the k-th part (ai,i,z of the first part, ai,2,1 of the second part, and so on). Then, if 
we designate by hi,1 the number of units of the i-th lot which are to be cut by the 
l-th method, we have the following conditions for the determination of the un- 
knowns hi, : 

1) hi l?> 0, and equal to whole numbers; 
2) Ez hi,=qi; 

E aei,,,, hij l a i,2,1 hill EaO!,nj hij 
3) i, il = i,l 

Pi P2 Pm 

and that their common value be a maximum. 
It is clear that, with simple changes of expressions, this problem can be re- 

duced to Problem C. 
We will illustrate the general discussion presented so far by an example relat- 

ing to a very simple problem of units of linear dimensions. 
Example 5. It is necessary to prepare 100 sets of form boards of lengths 2.9, 

2.1, and 1.5 meters from pieces 7.4 meters long. 
The simplest method would be to cut from each piece a set consisting of 7.4 

-2.9 + 2.1 + 1.5 + 0.9 and then throw away the ends, i.e., the pieces 0.9 
meters long, as scrap. This method would require 100 pieces, and the scrap would 
amount to 0.9 X 100 = 90 meters. 

Now let us indicate the optimum solution. Let us consider the different meth- 
ods for cutting a piece of 7.4 meters into parts of the indicated lengths: these 
methods are shown in Table 7. 

These methods include one by which no scrap at all is formed, but it is im- 
possible to use this method entirely since we would not obtain the required pro- 
portions (for example, no 2.1 meter parts would be produced). 

The solution which gives the minimum scrap, found by our method, would 
be the following: 30 pieces by the first method; 10 by the second; 50 by the 
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TABLE 7 

I II III IV V VI 

2.9 2.9 2.1 2.9 1.5 2.9 
1.5 2.9 2.1 2.1 1.5 2.1 
1.5 1.5 1.5 2.1 1.5 1.5 
1.5 1.5 2.1 

7.4 7.3 7.2 7.1 6.6 6.5 

fourth. Altogether this requires only 90 pieces instead of the 100 needed for the 
simplest method. The scrap amounts to only (10 X .1) + (50 X .3) = 16 m; 
that is, 16:666 or 2.4 per cent. In any case, this is the minimum that can be 
obtained under the given conditions. 

Let us examine another variant of this same problem with several modifica- 
tions of the conditions. 

Example 6. There are 100 pieces 7.4 m in length and 50 pieces 6.4 m in length; 
it is required to prepare from them the largest possible number of sets of the 
previous dimensions 2.9, 2.1, and 1.5 m. The methods of cutting the 7.4 m pieces 
are given above. The 6.4 m pieces can be cut as follows: I) 2.1 + 2.1 + 2.1 = 
6.3; II) 1.5 + 1.5 + 1.5 + 1.5 = 6.0; III) 1.5 + 1.5 + 2.9 = 5.9; IV) 2.9 + 
2.9 = 5.8 and so on. The solution of the problem is to cut the 7.4 m pieces as 
follows: 33 by method I, 61 by method II, 5 by method IV, one by method VI 
and to cut all the 6.4 m pieces by the first method. 

Altogether we get 161 sets, and the scrap consists of (61 X .1) + (5 X .3) + 
(1 X .9) + (50 X .1) = 13.5; 13.5: 1060 = 1.3 per cent. 

It should be noted by the way that, usually, the more complicated the problem, 
the greater the possibilities of variation, and therefore it is possible by our method 
to achieve smaller amounts of scrap. 

An analogous solution can also be obtained for other problems. 
I believe that, in a number of cases, such a mathematical solution to the prob- 

lem of minimizing scrap could achieve an increase in the actual utilization of 
materials by 5 to 10 per cent over that obtained in practice. In view of the scar- 
city of all these materials (form lumber, processed timber, sheet iron, and so on), 
such a result would be significant and it is worthwhile for the engineer to spend 
a couple of hours to find the best methods of cutting lumber, and not to leave 
this matter entirely to the workers. 

I also want to direct attention to the possibility of applying this method in 
the timber industry. Here it is necessary to minimize the scrap in cutting tree 
trunks into logs of given dimensions, into boards, and so on, since the amount 
of scrap in this case is extremely large. Large amounts of scrap are inevitable, it 
is true; nevertheless, it seems to me that if one resolves this question mathe- 
matically and works out rules for choosing sawing methods for logs of different 
sizes, this scrap can be significantly reduced. Then with the same type and quan- 
tity of raw material, these timber enterprises will provide more output. 
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Of course this case is more complicated. In addition to the considerations 
already taken into account above, special work will be required to adapt this 
method to the given problems. But the possibility of applying it to this problem 
seems to me to be beyond doubt. 

V. Maximum Utilization of a Complex Raw Material 
If we consider a process like oil refining, there is a variety of products; gasoline, 

naphtha, kerosene, fuel oil, and so on. Moreover, for a given crude oil it is pos- 
sible to use several cracking processes to break up the component parts of the 
crude. Depending on which cracking process is used for a given crude, there will 
be a different output of these component parts. If the given petroleum enterprise 
has a definite plan, and uses one or several crudes as raw material, it should 
divide them among cracking processes in such a way as to obtain the maximum 
production of the required product mix. It is easy to satisfy oneself that the 
solution of this problem leads to Problem C. 

I assume that there is no need to introduce the corresponding expressions 
again-this is done by the method used in the other problems. I have mentioned 
oil as an example, but the same conditions apply in using different kinds of coal 
and ores for the production of different kinds or qualities of steel. Here the selec- 
tion of the most suitable ore and coal and their distribution among different 
kinds of steel production gives rise to the identical problem. 

We have the same problems in refining poly-metallic ores and in the chemical 
and coke-chemical industries; that is, where ever a given raw material can serve 
as the source of several kinds of products. 

VI. Most Rational Utilization of Fuel 
Different kinds of fuel such as oil, bituminous coal, brown coal, firewood, 

peat and shale can be burned to serve as the energy input to various kinds of 
installations, and give different efficiencies. They are used in the boilers of 
generating stations, locomotives, steamships and small steam machines, for 
steam-heating cities, and so on. At present, fuel is often allocated in a random 
way and not according to which kinds of fuel are most suitable for the given 
installation, or even whether a given kind of fuel can be used in a given installa- 
tion. 

At the same time, the relative efficiency of fuels varies in different situations. 
For example, it is possible that in electric power stations two tons of brown coal 
equal one ton of anthracite while in locomotives, brown coal is considerably 
more difficult to utilize effectively and it is possible that only with 3 tons of 
brown coal will it be possible to obtain the same result as with 1 ton of anthra- 
cite. I suggest this only as an example, but such differences undoubtedly occur 
in practice. 

The same applies also to different sorts of bituminous coal. Depending on the 
ash content, the size and other factors, the possibility and efficiency of combus- 
tion is different in different boilers. 

Here again the most suitable allocation of fuel from the point of view of giving 
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the highest percentage utilization of all installations on the basis of a given 
supply or its planned annual output can be decided by our methods and is 
equivalent to Problem A. 

Another more complicated problem is based on a given plan of deliveries or 
output of fuel and is to choose the types of engines, (diesels, gas-generator in- 
stallations, steam turbines of various systems) and their percentage distribution 
such that they will utilize the given fuel and will give the maximum effect in 
terms of their output (in ton-kilometers in the case of railroads and other kinds 
of transportation, in kilowatt hours for electric power stations). This question 
reduces to Problem C. 

VII. Optimum Fulfillment of a Construction Plan with Given Con- 
struction Materials 

Here we outline the possibilities of using our methods in questions of con- 
struction planning. 

In the Eighteenth Congress of the Communist Party of the Soviet Union, it 
was mentioned that, while the plan for industry in the Second Five Year Plan 
was overfulfilled, the plan for construction was underfulfilled.8 It was therefore 
not possible to utilize a certain portion of the resources originally committed to 
construction. The main reasons were the unavailability of certain kinds of ma- 
terials, certain special skills in the labor force, and so on, which held up con- 
struction for a long time or which did not permit it to begin although the finan- 
cial resources were available. At the same time it seems to us that the existing 
system of planning construction does not provide for the maximum utilization 
of materials in short supply, and that it would be possible to achieve greater 
fulfillment of the plan by a more appropriate allocation of materials. 

It is known that many structures, such as bridges, viaducts, industrial build- 
ings, schools, garages, and so forth, and their component parts, can be completed 
with different variants (reinforced concrete, bricks, large blocks, stone, and so 
on). Moreover, several of these variants are often equally possible and even 
approximately equal in performance. Under the existing procedure, the selection 
of a varialnt in such a case is made by the design organization separately for 
each structure; moreover, the choice is often made completely arbitrarily on the 
basis of some insignificant advantage of one variant over another. Nevertheless, 
the choice of variant is extremely important, since the quantity of different raw 
materials needed in its fabrication (cement, iron, brick, lime, and so on) varies 
according to the variant chosen, and other important factors also differ (the 
quantity of labor of different skills, the construction machinery, transportation, 
etc.). 

Therefore, the method of selecting the variant of construction determines, to 
a significant degree, the quantities of materials and other factors necessary for 
carrying out the whole construction plan in a given region or of a given con- 
struction authority and so determines shortages and surpluses of different in- 

8 Bol'shevik, 1939, No. 5-6, p. 96. 
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TABLE 8 

Limiting factors 

List of projects Materials Labor Construc- Money 
______- ____ - _____ -Force (by tion Ma- Transpor- Allotments 

Cement Lime Brick Metal Lumber specialtbes) (ey types) (by item) 

Bridge 
Variant I 
Variant II 
Variant III 

School 
Variant I 
Variant II 

Garage 
Variant I 
Variant II 

puts. In our opinion, the choice among variants of construction should not be 
carried out haphazardly nor for each structure separately, but simultaneously 
for all the structures of a given region or construction authority in order to 
achieve the maximum correspondence between the requirements of each ma- 
terial or other factor and the expected supply of these resources. Such a pro- 
cedure, it seems to us, would considerably reduce the shortages in deficit ma- 
terials and would make possible the greater fulfillment of a construction plan. 

The procedure which we have proposed for drawing up the construction plan 
is approximately as follows. The planning authorities should establish, for every 
structure, several (2-3) possible and best variants and, for these, make an 
approximate calculation of the necessary materials and other basic factors. In 
this way, the planning authority in the given region obtains data approximately 
like that in the following scheme (Table 8). 

After this the planning authority makes a choice among the variants such 
that the inputs of the necessary materials and other factors are covered for the 
output planned for the given year, and such that this practicable plan of con- 
struction includes as much as possible of the indicated list (in order of impor- 
tance). 

The problem of the choice of variants in these cases leads to Problem C with 
several additional conditions, and in any case presents a problem solvable by 
our method even in very complicated cases (100-200 structures). We shall not 
dwell here on the various details as for example on the financial settlements 
among the different organizations which pool their plans, materials and financial 
resources. All these questions can also be satisfactorily resolved. 

VIII. Optimum Distribution of Arable Land 

It is known that the difference in soil types, climatic conditions, and other 
factors makes for different suitability of different regions and different plots of 
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land for different agricultural crops. The correct selection of a plan of sowing 
also plays a definite role. I will remind you of the speech of one of the delegates 
to the 18th Party Congress. He said that, in his province, barley grows much 
better in the northern regions and wheat in the southern regions. However, the 
agricultural section of the province planning commission divided up the acreage 
of all crops equally among the regions, and even if one region cannot grow barley 
well, it still has some barley assigned. Deciding the question of how to distribute 
it more suitably is however not so simple. 

In order to substantiate this statement, I shall show how the question leads 
to the mathematical problem. Let there be n plots with areas ql, q2, *... qn, 
and m crops, which according to the plan should be in the following relation- 
ship: PI, P2 1 ... 2 pm. Assume that on the i-th plot the expected yield of the 
k-th crop is equal toai,k - 

Now it is necessary to determine how many hectares of the first plot (or first 
region) to plant with one crop, how many with another crop, and so on, in order 
to obtain the maximum harvest. Let us designate by hi,k the number of hectares 
of the i-th plot planted with the k-th crop. Then we can write the sum Ek=Z hi,k 

- qi, equal to the total area of the i-th plot (hik, of course, must not be nega- 
tive). The number of centners of expected harvest of the k-th crop from all the 
areas will then be Zk- = E ai,khi,k , and it is necessary for us to select the 
numbers Zk such that they should be related as the given numbers z1 pi =Z2: P2 = 

* = zm pm ; that is, so as to maintain the relations between crops as given in the 
plan and to obtain maximum ZkX the maximum output. This problem leads to 
Problem A. Indeed, if we replace hi,kqi with the new unknowns h *k, and if we 
make aik = (l/pkqi)ai,k , then for the magnitudes h k and a*k we have exactly 
the equations of Problem A. 

We have considered the question of obtaining the maximum yield for the 
given year. If we pose the question of getting the maximum yield over a series 
of years and take into account the effect of rotation of crops on yields, then the 
question becomes more complicated and leads to Problem C. If part of the land 
is irrigated and on the i-th plot of ground, when sowed with the k-th crop, the 
norm of expenditure of water is Ci,k liters per second per hectare, then we get 
the additional condition i,k Ci,khik -` C, if by C we designate the total capacity 
in liters per second of the source of irrigation. That is, we come to Problem B. 

Finally, we have already shown in Section III that it is also possible to use 
our methods for the solution of the problem concerning the optimum distribution 
of agricultural equipment according to kinds of work. 

It should be mentioned that, in applying the given methods to agriculture, a 
certain caution is necessary because here the data (expected yield) are provided 
in very approximate form and therefore, if they are given incorrectly, the solu- 
tion can also turn out to be incorrect. However, it seems to me that, even though 
in such cases the application of the principle of the best distribution on the basis 
of approximate data can give the wrong solution in individual cases (if these 
data are incorrect), in the mass, on the average, this principle will still give a 
positive effect. 
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IX. Best Plan of Freight Shipments 
Let us first examine the following question. A number of freights (oil, grain, 

machines and so on) can be transported from one point to another by various 
methods; by railroads, by steamship; there can be mixed methods, in part by 
railroad, in part by automobile transportation, and so oIn. Moreover, depending 
on the kind of freight, the method of loading, the suitability of the transporta- 
tion, and the efficiency of the different kinds of transportation is different. For 
example, it is particularly advantageous to carry oil by water transportation if 
oil tankers are available, and so on. The solution of the problem of the distribu- 
tion of a given freight flow over kinds of transportation, in order to complete the 
haulage plan in the shortest time, or within a given period with the least expendi- 
ture of fuel, is possible by our methods and leads to Problems A or C. 

Let us mention still another problem of different character which, although 
it does not lead directly to questions A, B, and C, can still be solved by our 
methods. That is the choice of transportation routes. 

Let there be several points A, B, C, D, E (Fig. 1) which are connected to one 
another by a railroad network. It is possible to make the shipments from B to 
D by the shortest route BED, but it is also possible to use other routes as well: 
namely, BCD, BAD. Let there also be given a schedule of freight shipments; 
that is, it is necessary to ship from A to B a certain number of carloads, from D 
to C a certain number, and so on. The problem consists of the following. There 
is given a maximum capacity for each route under the given conditions (it can 

z2 

/Zg =: Z2 

H C* 
C*=86.6 

C*=86.6100 
FIG. 1 



MATHEMATICAL METHODS OF ORGANIZING AND PLANNING PRODUCTION 387 

of course change under new methods of operation in transportation). It is neces- 
sary to distribute the freight flows among the different routes in such a way as 
to complete the necessary shipments with a minimum expenditure of fuel, under 
the condition of minimizing the empty runs of freight cars and taking account 
of the maximum capacity of the routes. As was already shown, this problem 
can also be solved by our methods. 

With this we conclude our examination of individual kinds of problems. 

Conclusion 

a) The general significance of the work 

I see the basic significance of this work in the fact that it has developed a 
method of solving that kind of problem in which it is necessary to select the most 
advantageous from amongst a huge number of different cases and variants. 
Moreover, the given method makes the solution of the problem fully possible, 
often even in extremely complicated cases, where the selection of the most ad- 
vantageous variant must be made from among millions or even billions of con- 
ceivable possibilities. The method is also applicable where it is necessary to take 
various additional considerations into account. 

It is generally known that this kind of question is constantly met in technical- 
economic problems, particularly in those dealing with the organization and 
planning of production. Many of these problems lead directly to Problems A, B 
and C, examined above, and therefore can be solved by our methods. Many other 
practical problems lead to mathematical problems which are different from these 
but can still be solved by the same methods. 

Up to the present time all of these technical-economic problems have been 
solved more or less haphazardly by eye or by feel, and of course the solution 
obtained is only in rare cases the best. Moreover, the problem of finding the 
optimum has often never even been posed, and when it was posed it has not 
been possible in the majority of cases to solve it. The possibility now exists in a 
number of cases to obtain not an arbitrary solution but to find the optimum 
solution by a definite, scientifically based method. 

b) The directions of further research 
In its present form this work is far from finished, of course, and in a large de- 

gree does not meet the demands which are placed upon it. The given work is 
only a preliminary outline of a future thorough study on this theme in which it 
will be possible to clarify rather fully that important problem which up till now 
has for the most part only been posed. In order to achieve this, further extensive 
researches still have to be carried out by the combined efforts of mathematicians 
and production workers. 

Much still remains to be done on the mathematical aspect itself, although an 
important step has been made: an extremely universal and rather effective 
method of solving a wide class of problems has been given. In the future it remains 
to determine the sphere of application of the method; to indicate further prob- 
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lems solvable by it; to work out the details of the technique of applying the 
method,. to emphasize the distinctive features of this technique in different 
practical conditions; to work out simpler methods which will make it possible to 
find, if not the optimum solution, one extremely close to it and practically identi- 
cal with it; to improve the exposition of the method; and so on. Still more effort 
will be required to foster the actual utilization of this work by technicians and 
specialists in the different branches of the national economy. 

Above all it is necessary to define those problems in different fields of the 
national economy where the applicability of our methods is most feasible and 
realistic. We have made some attempt to outline and indicate these questions 
in the present work, but of course it is difficult to expect them to be fully suc- 
cessful and not to evoke criticism on the part of specialists. It is possible that 
several of these problems will be shown to be unrealistic or unimportant, in 
others there will be essential corrections and additions. Finally, there is no doubt 
that a number of other problems, which have completely escaped our attention, 
will be raised. 

Nevertheless, we considered it necessary to make such an attempt on the 
assumption that our methods would be more understandable and meaningful 
to an engineer if they were connected with concrete practical problems. And we 
pointed out a large number of such questions of divergent character to permit 
him to imagine better and to outline for himself the range of problems where our 
methods are applicable. He can also evolve and pose various similar problems 
in his own field; that is, he can facilitate the creative application of these methods. 

After defining the fields in which the mathematical methods can be applied, 
the question will arise of the specifics of applying these methods to given ques- 
tions. This involves: a precise clarification of the circumstances under which 
these methods can give an appreciable effect and their application demonstrated; 
the working out of special technical data which are necessary for the application 
of these methods; the translation of these data into a form suitable for the 
utilization of tables; the working out of the details of the method specially for 
the problems met with in a given field (indication of a rule for the selection of 
a first approximation, for example, and so on. 

c) Answer to several of the principal objections 
As we have already indicated, we consider it probable that some of the exam- 

ples analyzed here (and possibly a whole field of questions) will encounter ob- 
jections on the part of specialists. We realize that in individual cases it is possible 
for these objections to be so wellfounded as to force our withdrawal from a 
certain field of application. However, along with these special individual objec- 
tions, we have been required to counter (in spite of the extremely favorable 

9 Let us note that we do not expect it to be possible to go very far in perfecting the 
method; for example, to give solving formulae, tables or nomograms instead of the method 
of calculation which we have proposed. The trouble is that the setting of the problem in- 
volves a large number (up to forty) of different data, each moreover playing an individual 
r8le, and under these conditions a solution in the form of formulae or tables is unlikely. 
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opinion of the majority) occasional objections of a general character which 
essentially lead to the denial, in principle, of the possibility of using mathemati- 
cal methods in technical-economic questions in the field of organization and 
planning. At this point I wish to examine these general objections. 

The first consists of the following. In examining different practical concrete 
problems, the situation is so complex, there are so many circumstances to be 
considered, that it is impossible to take account of them all mathematically, or 
if you succeed in doing so then the equations obtained are still impossible to 
resolve. 

We can make two remarks in reference to this. In the first place, as we have 
already shown, the indicated method is very powerful and flexible; that is, it 
obtains solutions in extremely complicated circumstances while taking account 
of a number of additional conditions; moreover, it permits different variations 
in using it (so that it is always possible to choose the most suitable method). 

In the second place, if some practical detail has been left out of account, then 
after the optimum solution is found, it is possible to correct it with reference 
to this detail. This is all the more possible since the given method shows, along 
with the finding of the optimum solution, what variants give a solution close 
to the optimum so that there is the possibility of departing from the optimum 
solution only slightly in introducing the correction. 

It should also be said that the objection noted could be equally justly raised 
to the use of any theoretical, and in particular mathematical, methods in techni- 
cal questions generally. It is well known how technicians value even the crudest 
theoretical representation of a phenomenon, for even that which considers just 
one of many factors involved is an extremely powerful guiding force in experi- 
ments, in calculations, and in designing. All the more valuable should be a 
method which allows a whole range of considerations to be taken into account 
in complicated situations. 

The second objection is that, in using the method, it is necessary to have a 
whole series of data (ai,k in Problem A, and so on); but such data may not be 
available, and then we cannot use the method. 

The answer is that the data which are needed (output norms on different 
machines and pieces of equipment, the quantity of different materials and their 
characteristics, and so on) are necessary for many other purposes such as for 
norm setting, wage calculations, norms for the expenditure of materials, reports 
and so on, and should exist in any normally working enterprise. In short, they 
are just as necessary for making any kind of plan as for making the best plan 
by our methods, and therefore the enterprise ought to have these data at its 
disposal. 

In several cases it still turns out that such data are lacking; for example, some 
material is supposed to arrive at the construction project, it is not known just 
what kind, but in any case it must that very day be put to use. Or materials 
are sent which are different from those planned, and so on. Of course in those 
few enterprises where such primitive mismanagement reigns, no planning, even 
the most suitable, is possible. But if the desire to use our methods serves as an 
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added stimulus for the elimination of such negligence, then this is only another 
argument in favor of this method. 

The third objection is that the original data in a number of cases are doubtful 
and known only approximately (for example, the yields of different crops, the 
expenditure of water on hydro-mechanical working of earth, and other data in 
several of the examples introduced above) and therefore a calculation based on 
these data may be incorrect. 

Here it is necessary to say first of all that in individual cases the optimum 
variant of a plan found by our method may indeed not be the optimum one 
because of the inaccuracy of the data. 

However, we suppose that in the mass application the choice of the most 
advantageous variants, even with such doubtful data, will give, thanks to the 
statistical effect, an effective result. Let us clarify this by the following simple 
example. If we take the larger of two eggs, such a solution may be unfortunate: 
the egg may turn out to be rotten. But if out of a box of 1,000 eggs we choose 
the 500 largest, it is completely improbable that this choice would turn out to 
be wrong. 

The fourth objection is that the effect of changing from the ordinarily chosen 
variant to the optimum one is comparatively small, in many cases only about 
4-5 percent. 

Here it is necessary in the first place to say that the use of the best method 
does not demand any additional expenditures in comparison with the usual one, 
except the absolutely insignificant expenditures on calculation. In the second 
place, the use of the method can be expected not in a single isolated problem, 
but in many; it is possible that it can be used even over the greater part of the 
branches of the national economy, and in that case not just one percent, but 
even each tenth of a percent is associated with tremendous sums. 

The fifth objection is that, in a number of cases, the use of the method is im- 
possible as a result of various obstacles of an organizational character connected 
with the accepted procedure for approving plans, estimates, and so on. For 
example, if this or that material or mechanism is already distributed in a certain 
way between enterprises, then this distribution can not be changed during the 
interval of the given quarter, and so on. 

This objection, of course, is not essential. If it is generally recognized that the 
use of the most effective plan results in a significant national economic effect, 
but that its introduction requires certain changes in procedure, then there is no 
doubt that such changes will be made. 

Appendix I 
Method of Resolving Multipliers 

Here we intend to give a detailed exposition of the method of resolving mul- 
tipliers discussed in Section I, and which in our opinion is most effective for the 
solution of Problems A, B, and C as well as for many other problems of an 
analogous character connected with the choice of the most advantageous variant 
from among a very large number of possible ones. We shall examine chiefly the 
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use of this method in the basic problem, Problem A, although further on we 
shall discuss the other problems as well. 

1. Solution of Problem A for m = 2. The general concept of the method 
Let us first examine Problem A for the simplest case, when m = 2 (two parts). 

In this case the problem takes the form: find the numbers hi,1 and hi,2 satisfying 
the conditions: 

1) hi, ; hi,2 _ 0; 
2) hi,1 + hi,2 = 1; 
3) EZ,1 ai,1hi,j = Ei71 ai,2hi,2 

and their common value z has maximum possible value. 
Let us examine the relationship ai,2/ai,j = ki for all i (the ratios of the pro- 

ductivity of each machine for parts I and II). Thus, on the first machine, a unit 
of part I is equal to ki units of part II, and so on. We may consider that the 
ratios k1, k2, * . , are arranged in order of increasing magnitude k1 ? k2 ?< * - . 

If that were not so, we could make it so by changing the numbering of the 
machines. We could arrange these ratios in order of increasing magnitude and 
then call that machine the first on which the ratio was the smallest, and so on. 
Thus, we consider that the inequalities ki ? k2 < ... are satisfied. 

It is clear that it is relatively more advantageous to produce part I on the 
first machine since the removal of one part from this machine would permit us 
to substitute for it only ki units of part II; whereas at the same time on all the 
others the corresponding numbers k2, k3, . * *, are greater than ki . On the second 
machine, it is less advantageous to produce part I than on the first machine but 
more advantageous than on all the rest of the machines. Therefore it is under- 
standable that the first machines should be assigned part I and the rest part II; 
that is, in the first cases it is necessary to make hi,1 = 1 and hi,2 = 0, and in 
the latter, hijl = 0 and hi,2 = 1. At the same time the total output of both parts 
must be identical. Proceeding from this condition, let us select a number s, 
such that 

8-1 n 

aZi < Z ai,2 

s %n 

Eai,l > a ?i,2; 
i i=8+1 

this means that to assign (s- 1) machines to part I is too few (the output of 
part II will be greater), but to assign s will be enough or too many. Then it is 
clear that taking hi,1 = 1, hi,2 =0 for i = 1, 2, ... , s - 1; hi,1 = 0, hi,2 = 1 
for i = s + 1, * * , n; and determining h8,1 and h8,2 on the basis of the conditions 

hs,l + hs,2 = 1, 
s-1 n 

E ai-I + hs,1 jx,1 = Z ai,2 + h8,2 a8,2 

webtantesluion tooui8+1 
we obtain the solution to our problem. 
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TABLE 1 

Groups of machines 
Part 

Milling Lathe Automatic 

I 30 60 30 
II 60 90 80 

Let us apply this process of solution to our first example. The productivity of 
different groups of machines there is shown in Table 1. 

80= 9 0=-3 80=8 Our ratios are 6 2, = -,~ 7, or in order of increasing magnitude: 
< 2 < ..Arranging the productivity figures in the same order (lathe, auto- 

matic, milling), we get the following values for ai,k 

aij = 60, a2,1 = 30, a3,1 = 30, 
axl,2 = 90, aX2,2 = 60, 2 a3,2 = 80. 

Taking s = 2, we obtain 

_a,ij = a,,= 60 < Z i, = aX2,2 + a3,2 = 140; 

a ~~~~~~~~~n 
aj= a,,, *+ a2,1 = 90 > ~jai,2 = a3,2 = 80. 

Consequently, hi,1 = 1, hi,2 = 0, h3,1 = 0, and h3,2 = 1. For the determination 
of h2,1 and h2,2 we have the equations 

h2,1 + h2,2 =1 
60 + 30h2,1 = 80 + 60h2,2, 

from which h2,1 = and h2,2 = which also leads to that optimum distribution 
of the parts among machines which was given in Table 2 of Section I. 

We now direct attention to a feature of the indicated process of solution 
which permits a way of extending this method from the simplest case where 
m = 2 to the case where m may be any number. We direct attention to the fact 
that a complete finding of the solution is entirely equivalent to finding the ratio 
k, corresponding to that s for which we are making a choice. Actually, if this 
ratio k. = a.9,2/as,i = X1/X2 (it will be more convenient to designate it thus in 
the future) is known, then the entire solution is found immediately. For those 
i's for which ai,2/ai,l < X1/X2 , or what is the same thing Xia,ij > X2ai,2, it iS 
necessary to give preference to part I; that is, take hi,1 = 1 and hi,2 = 0. For 
those where X2ai,2 > Xii give the preference to part 11; that is, take hi,1 = 0 
and hi,2 = 1. And finally, for those i's where X2ai,2 =X1a,ij, the corresponadinag 
h is selected on the basis of the equation Za,ij hi,1 =Zai,2 hi,2 . This resolving 
ratio is the index of equilibrium which is established in the maximal distribution 
between two parts. In our particular example this equilibrium is established on 
the milling machine and X1/X2 f ~. It should be said that this resolving ratio is 
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defined by the totality of the conditions of the problem; for example, it cannot 
be expressed only by ki, k2, ... . Actually, if in our particular example there 
were not one automatic machine but two, then for the optimum distribution it 
would be necessary to assign to Part I not only the lathe and the milling machine 
entirely, but also in part the automatic machine. The resolving ratio would then 
become X1/X2 = &. On the other hand, if the number of lathes were tripled, this 
ratio would become equal to -. 

We shall use just this concept of resolving ratios for finding a method of solu- 
tion suitable for any m. In this case there naturally arises the thought that in- 
stead of finding the many ht,k, to try to find the ratios Xi, X2, * . , Xm (the 
indices of equilibrium under the optimum distribution). On the basis of these 
just as in the problem where m = 2 we could immediately indicate those hi,k 

which it is necessary to take equal to zero. As a matter of fact, this method can 
actually be carried out. A detailed exposition of it is given below. Before taking 
it up, however, let us consider another auxiliary circumstance. 

2. A transformation of Condition 3) of Problem A 
For the purposes of what follows, it is important for us to show that it is 

possible to find another formulation of Condition 3) of Problem A equivalent to 
the original formulation. 

Let us recall the formulation of Problem A. 
Problem A. The numbers ai,k > 0(i = 1, 2, ..., n; k = 1, 2,* ., m) are 

given, and it is required to find hi,k which satisfy the conditions 

1) hi,k 0; 

2) EZ-1 hi,k = 1(i = 1, 2, n); 
3) if we introduce the notation 

Zk = 7=i a,khi,k, 

then zi = Z2= = Zm, and their common value, z, has maximum possible 
value. 

In making up the conditions which the hi,k must satisfy, we could reason some- 
what differently than we did in Section I of the text. Since the number of whole 
complexes is determined by the number of that part which we have least of 
(that is, by the smallest of the Zk) it equals z' = min (zl, Z2 , Zm). This 
number z' must also be a maximum. 

In this way we arrive at Problem A'. 
Problem A'. Conditions 1) and 2) are the same as in Problem A, but instead 

of Condition 3): 
3') The quantity z' = min (zl , Z2 , Zm) has maximum possible value. 
Let us now show the equivalence of Problems A and A'; more precisely, let us 

establish the following assertion. 
Theorem. If we designate by C the maximum value of z in Problem A, and 

by C' the maximum value of z' in Problem A', then C = C' and if a certain 
system of numbers {hi,k} yields a maximum in Problem A, it will also give a 
maximum in Problem A'. Conversely, if a certain system of numbers {h'Z,k} 
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gives a maximum in Problem A', from it we can easily obtain a system of num- 
bers { hi,k} which gives a maximum in Problem A. 

Proof. Let the system of numbers hi,k give a maximum in Problem A; that is, 
for them we obtain zi = Z2 * * = Zm = C. For this same system we obviously 
have z'=min (zl, Z2 , * * * , Zm)=min (C, C, * *, C) = C. 

Since C is that value which we obtained for z' under a certain selection of 
hi,k and C' is the maximum z' for all possible selections, then 

C < C'. 
For the proof of the reverse inequality, let us look once more at the basic 

case when all ai,k >0. Assume that we have z' = min (Zl , Z2 , * Zm) C' 
for a certain system { h'i ,k I. We assert that in this case necessarily all Zk = C'. 
As a matter of fact, assume on the contrary that one of them is greater than C', 
say z1 > C'. In this case it would be possible slightly to decrease all the h'i,,k 
at the expense of slight increase of the other hi,k,. Then as before we would still 
have z1 > C and all Z2 , * * * , Zm would also increase and would also become 
greater than C'. But then it would turn out that for this new system, z' = min 
(Zl , Z2 , * Zm) > C, and that contradicts the fact that C' is the maximum 
possible value for z'. Thus, necessarily z1 =Z2 = * = Zm = C'. Consequently, 
h,ik gives a system of values for which z1 = Z2 = * = Zm and their common 
value z is equal to C'; since C is the maximum possible value for z, necessarily 

C' < C. 
This inequality together with the previous one gives C' = C. 
We established the second inequality C' < C for the case where all a?,k > 0; 

if certain ai,k = 0, then this inequality is also valid, but its proof requires several 
additional considerations which we shall not cite here. 

3. The basis of the method of resolving multipliers. 
We shall now show that the solution of Problem A, requiring the finding of 

a system of n m numbers hi,k, can be replaced by a problem of finding alto- 
gether only m numbers 'X, X2 , * * * X Xm which are the resolving multipliers. 

By resolving multipliers for problem A we mean a system of m numbers 
X1i X2, ... * Xm(Xk 0 and not all zero) such that if for each i we consider the 
products 

Xiaij , X2ai,2 a*'*aXkai,k 

and designate by ti the value of the largest and then set equal to zero those 
hi,k for which the corresponding product is not a maximum, i.e., X)kti,,k < ti, it 
is possible to determine the other hi,k from the conditions 

1) hi,k > 0; 
2) EkZ, hi,k = 1; 
3) Z1 = Z2 = ... = Zm 

Let us show first of all that finding the resolving multipliers actually gives the 
solution to Problem A. Let us assert that if the resolving multipliers 
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X1 X2, ... * X.a are found and numbers h*,k are determined by the method indi- 
cated above, then the z = z* obtained with their help is the maximum possible 
value. 

Indeed, for the system of numbers h*,k we have 
m \ ~ ~m m n n m 

Xk Z= Z k = E Z k k h*k (Xk a ti,k)h i=l k*=1 k=1 i=l i=1 k-1 
n m n 

- :Et hsh *,k = Et;. 
i=1 k=1 i=l 

(We could everywhere replace Xkai,k by ti since for those cases where Xkai,k < ti, 
there is the condition h*,k = 0. 

Now let hi,k be another system of numbers for which z1 = Z2 = Zm = Z. 

Then we have 
m \ ~n m n n xn 

( Xk) Z = ZXk Zk = EXk E ai,k hi,k = E E (m k ai k)hi,k 
k=1 k=1 k=1 i=l i-1 k=1 

n m 

< Z h: t = Eti 
i=1 k=1 i 

Combining this inequality with the previous one we obtain 

( xk) Z < k Z k=1 k=1 

or 
z _ z*. 

This also shows that the value z* is the maximum possible value for z; that is, 
the numbers h*,,k determined with the help of the resolving multipliers actually 
give the solution to Problem A.10 

Thus, the whole problem leads to the finding of the resolving multipliers. Let 

10 In order to show the r6le played by the introduction of the resolving multipliers, I 
shall show in greater detail what the method of solving Problem A based on the general 
rules of analysis actually consists of. In Problem A there is discussed the finding of the 
maximum value (under several additional conditions) of z, which is a linear function of 
hi,k . It is known that, to find a maximum of a linear function in an interval, it is sufficient 
to compare its values at the ends and choose the larger of them. The same rule is preserved 
in finding a maximum of a linear function of many variables on a polyhedron-it is enough 
to compare its values on the vertices. If we translate this rule into the language of analysis, 
it means that in the given case it is necessary to choose a system from among (n + m - 1) 
numbers hi,k , to make the rest equal to zero, and to determine the chosen hi,k from the 
(n + rn - 1) equations 21k hi,k = 1; Zl = Z2 Zm ; and to compare the values of 
z obtained. In each trial it will be necessary to solve a system of a small number of equa- 
tions but the number of trials which it will be necessary to make is i=O (1)i+i C(m_+) 
C7t C7 (Co G 1; Cm = 0 if m > n); that is, if n = 3 and m = 3, there are 90 trials; for n = 
mn = 4, there are 8272 trials. In the problem of the Plywood Trust, n = 8 and m = 5, and 
the number of trials is of the order of a billion. Thanks to the presence of the resolving 
multipliers, all the unnecessary systems are rejected and it is necessary to solve only a 
single one. 
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us show a way to find them. Let us note first that if we take, instead of the re- 
solving multipliers, which we are looking for, an arbitrary set of numbers X1%, 
X2? * ... * -XM we can still try to act as though they were the resolving multipliers. 
That is, we can consider the products X10a,i, , X20ai,2 , .* X m0Cai,m , and take 
hi,k= 0 for all those k for which the corresponding product does not have maxi- 
mum value. It is necessary to say, however, that in such an arbitrary selection 
it usually turns out that among the products there is a single maximum one 
since for a given i all the hi,k must be taken equal to zero with the exception of 
that one which is taken equal to 1. 

In this way, under such an arbitrary selection of Xk, the hi,k are fully deter- 
mined and together with them the Zk Z1?, Z20, . . Zm0 obtain definite values. 
Of course, these values are not equal to each other and without changing Xk 

it is impossible to make them equal. In what direction should Xk be changed? 
We know that the solution of the problem will be reached when min (Zi, 

Z2 I. * Zm) achieves its maximum possible value. But this minimum is de- 
termined by the smallest of the numbers Zk. Assume that the smallest of the 
numbers zi0, Z2? * Zm? in the system obtained is a certain z8?. It is necessary 
to make it larger but it is clear that it will be increased if, while not changing 
the other Xk, we replace X8 with a larger number. Indeed then, in the majority 
of cases the product X8ai,8 will turn out to be the maximum in its row and there- 
fore hi,8 will be taken equal to unity; by the same token, ze will achieve a value 
larger than z8? and min (zl, Z2 z. . ) will, generally speaking, take on a value 
exceeding the previous one. 

In this, strictly speaking, lies the principle of finding the resolving multipliers: 
namely to increase Zk by changing Xk and in this way gradually to move toward 
the necessary extreme value. Of course, several variations are possible. Instead 
of increasing the low ones among the Zk, it is possible to reduce the larger Zk 

by decreasing the corresponding Xk. However, if these operations are carried 
out at random, with no system, then there is no certainty that we will ever 
finish; one Zk will be increased while, on the other hand, others may be decreased 
and we may never get any closer to the answer. Therefore in the given process it 
is better to follow a definite system of calculations which we shall now describe. 
For greater clarity we shall base this calculation on an example. 

4. A sample scheme of calculation 
Let us examine the solution of the problem of the optimum distribution of 

the work of the excavators (Example 3). 
In order to complete the kind of work indicated in the shortest possible time, 

it is necessary to obtain that distribution of the excavators which will guarantee 
the maximum productivity per hour, under the constraint that all work should 
proceed equally. Then the assigned problem leads precisely to Problem A where 
the role of ai,k is played by the given productivities of the excavators. (Their 
values are repeated below in Table 2.) First of all, it is advantageous to select, as 
initial values for the Xk, Xko, values inversely proportional to the sums 
Ei ai,k Xko = P/Zi ai,k, where any number may be taken for P. 
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TABLE 2 
Values of aij, 

k 1| t J 2 3 

1 105 107 64 
2 56 66 38 
3 56 83 53 

TABLE 3 
Resolving Multipliers 

Correction Factors 
Initial values Final values 

First approximation Second approximation 

3.62 1 0.98 3.45 
X2 6.25 1.05 1 6.56 
X3 5.21 1 1 5.21 

In our example we will take P = 1,000 and then it turns out that 

x? = 1,00 = 3.62, 2? =l = 6.25 x30 = 1 = 5.208. 
Let us multiply the elements ai,k by Xko; that is, it will be necessary to multiply 

the values of ai,k in the first row of the table by X1? = 3.62; the values in the 
second row by 6.25; those in the third by 5.21. 

The products Xk0ai,k obtained are shown in Table 4 (in the left column of the 
null approximation). For every i (in each column) we select the maximum value 
(shown italicized). For these values we take hi,k = 1, and for the others hi,k = 0. 
The products axi,khi,k are written in the same table (Table 4) on the right. Sum- 
ming them for each row we get the values Zk for the null approximation: Z1 = 105, 
Z2? = 0, Z30 = 136. 

The smallest of these is Z2 and therefore it is necessary to increase X2 . We need 
to increase X2 enough so as to guarantee the first coincidence; namely, we examine 
the elements of the low (second) row (Xoai,k in Table 4) and choose from among 
them the one which is relatively closest to the maximum (italicized) element 
of its column; this is 412 which is close to 432. By increasing X2 we indeed bring 
it up to this maximum one. For this purpose it is necessary to introduce a "cor- 
rection factor" for X2 ; that is, X2/X20 = 432/412 = 1.05;11 . Xi and X2 are left 
unchanged; that is, take for them a correction factor equal to unity (Xk and all 
their correction factors in all approximations are given in Table 3). Let us mul- 
tiply the second row of values Xkoai,k by this correction factor 1.05, and leave 
the first and third rows unchanged. Then we get the values X'kai,k for the first 
approximation. Again let us italicize the maximum values in each row. 

11 We indicate all magnitudes relating to the null approximation with the sign 0 (super- 
script); those relating to the first approximation with the sign ', and so on. 
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TABLE 4 

X xk aic ai,khiik zk 

Null approximation 

381 388 231 105 X 1 107 X 0 64 X 0 105 
349 412 237 56 X 0 66 X 0 38 X 0 0 
292 2 276 56 X 0 83 X 1 53 X 1 136 

First approximation 

381 388 231 105 X 1 107 X 0 64 X 0 105 
365 432 249 56 X 0 66 X 0.915 38 X 0 60.2 
292 432 276 56 X 0 83 X 0.085 53 X 1 60.2 

Second approximation 

365 372 222 105 X 0.67 107 X 0 64 X 0 70.8 
365 432 249 56 X 0.33 66 X 0.785 38 X 0 70.8 
292 482 276 56 X 0 83 X 0.215 53 X 1 70.8 

Now all the hi,k are determined and are equal either to 0 or 1, with the ex- 
ception of h2,2 and h2,3 which correspond to equal products. We shall try to 
determine them in such a way that Z2 and z3 will turn out to be equal. Denoting 
h2,2 by u and recalling that h2,2 + h2,3 = 1, we have h2,3 = 1 - u. The constraint 
Z2 = Z3 gives us 

66u = 83(1 - u) + 53, 

and from this 

u = 0.915. 

Hence h2,2 = 0.915, and h2,3 = 0.085. 
Placing these values in Table 4 for ai,khi,k we obtain in the first approximation 

the following values for Zk Zl = 105, Z2 = z3 = 60.2. As we see, these last two 
values are the low ones and it is necessary to increase X2 and X3 ; but since it is 
only the ratio between the Xk that is significant, we can instead decrease Xi. 
Thus, we introduce a correction factor less than 1 for Xi ; to be precise, one such 
that the maximum element of the first row, 381, should coincide with one of the 
elements of its column. Obviously, this correction factor should be X"1/X'1 = 
365/381 = 0.958. Let us multiply the elements of the first row by this cor- 
rection factor, writing the second and the third without change; we obtain 
xi/kaj,k in the second approximation. Again, we italicize the maximum in each 
column; there are two of each of these in the first and second columns and the 
corresponding hi,k are left undetermined. 

If we write hi,l = x and h2,2 = y, then, hi,2 = 1-x and h2,3 = 1-y. Let us 
try to select x and y so as to achieve the equalities z1 = Z2 = Z3. We have the 
followving values: z1 = 105x, Z2 = 56(1 - x) + 66y, and Z3 = 83(1 - y) + 53. 
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Consequently, we obtain the equations 

105x = 56(1- x) + 66y = 83(1- y) + 53 = z. 

Hence, 
X = , y = %.6 _ 

Placing these expressions in the middle equation, we obtain for z the equation: 

164.2 - 0.532z - 0.795z = z, 
whence z = 70.8 and further, x = 0.67 and y = 0.785. 

The values x and y which we have found also give us the values hi,k for the 
second approximation; at the same time, these turn out to be the solution to 
the problem. 

The value which we have found for z, 70.8, shows the maximum output per 
hour on all three kinds of work under the condition that these outputs be equal. 

Since it is required to carry out 20,000 m3 of work of each kind, then the mini- 
mum necessary time is 20,000/70.8 = 282 hours. Multiplying by 282 the values 
for hi,k, we get the amount of time that each machine should spend on each 
kind of work and which were indicated earlier (Section III, Table 5). 

In this example we have shown the basic procedure for finding the solution. 
Now we shall make certain comments on carrying out this scheme. 

5. Additional directions for the scheme 
First of all, let us mention the following. Carrying out the scheme in the 

example introduced above was extremely simple; its realization in other cases 
might lead to additional difficulties which we shall now examine. Passing from 
the null approximation to the first, we increased the values of z2 and Z3 . In this 
way we succeeded, after having determined h2,2 and h2,3 in suitable form, to 
achieve the equality z2 = Z3. However, it will not always work this way. For 
the determination of u we had an equation from which we found u = 0.915. 
But generally this equation will have the form 

a + bu = c(l - u) + d, 

and its solution will not necessarily be achieved within the limits 0 and 1; but 
the latter condition, i.e., that 0 < u < 1, is absolutely essential to us. Let us 
note first of all that in any case we have a < c + d. (This inequality is equiva- 
lent to the fact that Z20 < Z30 since both parts of the above equation become 
Z20 and z3? when u = 0.) If we now have a + b > d, then the solution of the 
equation also satisfies the inequality 0 < u < 1. If it turns out that a + b < d, 
then the solution is greater than 1. In such a case it is necessary to take u = 1, 
since then although we do not achieve the equality Z2 = Z3, still we bring Z2 
as close to Z3 as possible. 

The investigation of this case may also be carried out in another way as 
follows. Since we are interested in the maximum increase of min (Z2, z3), then 
we must find the largest number t with which for some u(0 _ u _ 1) it is possible 
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to satisfy both inequalities 

a + bu > t, c(1-u) + d _ t. 

Because of the first equation, we have 

- b 

and in addition u> 0; then the second inequality gives us 

< c + d 
t < d + c(l - u) t -a) b 

Solving these two inequalities concerning t and choosing the smallest of the 
bounds obtained, we also obtain the largest t for which the original inequalities 
are solvable. 

This last way of reasoning is suitable even for other cases when we obtain 
intersections not of two, but of several Zk . 

Thus, in the case when we increase two equal values of Zk to a third, then 
(see the preceding example) the equations which are to be solved take the form 

a + bx = c + dy = e(1 - x) +f(l - y) + g. 
The solutions for x and y can turn out to be outside the limits of 0 and 1. 

Since we are interested most of all in obtaining the maximum of min (Zl, Z2, Z3), 
it is necessary again to find the maximum t for which it is possible to satisfy 
all the inequalities 

a+bx > t, c+ddy _ t, e(1-x) + f(l-y) +g >t. 

Hence, we have 
x _ (t -a) /b, y _ (t -a)/Ic, 

and in addition x > 0, y ? 0. Then the third inequality gives us 

0 1 _ t - 
a) +f (1 _ tc) +g 

e +f( _ t-c++ g 

et +f + 9 

depending on which pair of the inequalities for x and y are utilized. Solving these 
inequalities concerning t and choosing the smallest of the values obtained, we 
also get the value of t sought which is the maximum for which all three of the 
primary inequalities can be satisfied. After t has been determined, the x and y 
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associated with it are found easily and the calculation of the given approxima- 
tion is finished. For going on to the next approximation, again we find among 
the Zk one or several of the smallest and increase the corresponding Xk . 

Note that among the inequalities determining t it is actually necessary to use 
the first; that is, it gives the smallest value for t in the case when it is possible to 
satisfy the equations z1 = Z2 = Z3 . Let us also indicate that the argument given 
here for the case of dual and triple coincidences is, with slight modifications, also 
applicable to more complicated cases. 

The exposition of the preceding section 4, together with the additional ex- 
planations included here, gives a fully determined "ironclad" solution scheme. 
It is necessary always to find the smallest (or the several smallest which are 
equal to each other) from among the numbers Zk and to increase them by the 
definite method described above. It is necessary to say that the literal following 
of this scheme can be recommended for simple cases (where n is small) and also 
for complex cases (where n is large) before the end of the solution when we are 
already sufficiently close to it (the Zk differing little among themselves). At the 
start of the calculation, it is expedient to depart from this scheme; for example, 
to increase not only the smallest but at the same time several of the small Zk, 

and to reduce (by reducing Xk) the largest Zk, and in the process of the solution 
not to endeavor to obtain scrupulously equality between the smallest Zk (i.e. 
not to solve the intermediate systems). All these simplifications, which can often 
reduce the time of calculation, do not affect the essence of the solution; it is 
important to find the Xk, but the route to their discovery is not at issue. 

In connection with this, it is useful to indicate that all the intermediate com- 
putations connected with determination of the Xk can be carried out with ex- 
tremely little precision to two or three places (on the slide rule). This will not 
affect the result. If a precise result is derived, then it is necessary to carry out 
with corresponding accuracy only the last calculation, which is the solution 
of the system from which the final values of the hi,k are determined. It is necessary 
to say only that if we are carrying out the calculations, for example, with a 
relative error of 0.01 then we can consider as identical two products Xkai,k differ- 
ing from each other by less than 0.01. 

Finally, let us consider the following. The difficulty of solving the problem 
depends essentially on the values of n and m, and the solution gets more com- 
plicated particularly with an increase in m; for example, as we have seen for the 
case of m = 2, the solution is extremely simple for any n. Therefore, it is neces- 
sary to try to reduce n and m. Above all, if two rows of the ai,k in the table are 
proportional, for example ai,2 = kai,j for any i, then it is possible to introduce a 
new a' = aci(l + k) and substitute it for ail and ai,2 ; that is, n will be reduced 
by 1. This means for example that, instead of two machines the outputs of which 
are proportional, we introduce a fictitious new machine the output of which is 
equal to the aggregate outputs. Further, if we have m > n, then it is advan- 
tageous to reverse their roles; that is, instead of ai,k, to introduce ai,k = ak,i 

but then to find not the maximum z but the minimum; that is, to find hi,k so 
that z1 = Z2 = . = Zn and that this value turns out to be a minimum. In 
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practical language, this substitution means that instead of considering the 
problem to be one of getting the maximum output in a day, we are considering 
it as one of getting a given output in the shortest time; obviously, these two 
problems are equivalent to each other. 

6. On checking the solution 
In many mathematical problems there is no need to check the whole process of 

solution in order to check the accuracy of the solution obtained; one can judge 
directly by the result. For example, for checking the solution to an equation it is 
sufficient to substitute the obtained solution into the equation. For checking 
the correctness of a solution of Problem A also, it is sufficient to introduce only 
the final values Xk and the products Xkai,k and ai,khi,k for the last approximation 
and convince oneself that the hi,k which are larger than zero correspond to the 
underlined maximum Xkai,k and that the Zk are equal in value. If this is actually 
so, then the solution is found to be correct. The existence of such a check is 
useful in that the engineer or the economist can hand over the task of finding a 
solution to a special computational assistant; then he can check the solution in 
10 or 15 minutes with no difficulty at all. 

7. Concerning an approximate solution of Problem A 
The solution of Problem A turns out to be rather lengthy and laborious when 

n and m are not small. Therefore, it is desirable to indicate simpler methods 
which would make it possible to find not an exact solution of the problem but 
one extremely close to it in effectiveness. Here we intend only to point out certain 
approaches for working out such methods. 

First of all, let us note that, since a solution corresponds to the case where 
h ,k > 0 only for the pairs (i, k) corresponding to the maximum products Xkai,k, 
we obtain an approximate solution if we allow hi,k different from zero for those 
(i, k) for which the products Xkai,k are close to the maximum. Therefore the first 
way for finding an approximate solution is as follows. In the tables of products 
Xkai,k in each column (with the exception of one) together with the maximum 
Xkai,k we underline the one closest to it (the one closest to it should not be under- 
lined in the case where it differs most, relatively that is, from its maximum). 
After this it is necessary to try to find the hi,k for the indicated (i, k) from the 
condition that Zk hi,k 1, and the equations z1 = Z2 = . = Zm . We recom- 
mend the reader to check for himself that the application of this method in the 
example of Section 4 will lead straightaway to the final solution. 

The other way is based on another consideration. 
We have shown already in the previous section 6 that if two columns are 

proportional they may be combined into a single one. In order to obtain an 
approximate solution, this assimilation can be used even where the propor- 
tionality is only approximate. Thus, combining the approximately similar ele- 
ments into groups, one can significantly decrease n and m and in the same way 
appreciably simplify the problem. The solution of this simplified problem will be, 
of course, only an approximation of that for the original one. 
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8. Use of the method for the solution of Problem B 
In comparison with Problem A, Problem B has the supplementary condition 

that the solution found must satisfy the inequality. 

Ei,k Ci,khi,k < C, 
where Ci,k _ 0 and C is a given number. 

The method of resolving multipliers is also applicable to this problem. Without 
going into such detail as in Problem A, let us indicate the basic difference in the 
application of the method to the present case. 

Here it is necessary to introduce, in addition to the Xk, corresponding to the 
Zk, still another resolving multiplier , corresponding to the magnitude 
R = Z,k Ci,khi,k - 

In the given case we will call the numbers X1I, X2, X. *, Xk and , resolving mul- 
tipliers provided that, if for every i we designate by ti the largest of the quantities 

Xlyij - WCi,l, X2ai,2 - ICi,2, ... * Xm0i,m - MCi,mX 

then assuming hi,k = 0 if Xkai,k - UCi,k < ti, it is possible to determine the 
other hi,k from the conditions: 

1) hi,k _ 0; 2) Z-l hi,k = 1; 
3) Zl = Z2 = . = Zm; 4) R = Ei,k Ci,khi,k = C.12 

Again let us assert that if the resolving multipliers are found and h*j,k are 
determined for them in the manner indicated above, then they also give the 
solution to the problem. Indeed, for the determined hi,k = ,k we have 

^k) Z* - UC = EAk Eaji,k h*k - A (Xk ,k -= 
k=1 k i i,k 

=E E: (Xk aix,k ,UCi ,k) sk =Eti 

If now hi are numbers, chosen in any other way, and fulfilling the conditions 
1), 2), and 3) described above and also R ? C, then we have 

( Xk) Z - IC < Z Xk ai,khi,k A Ci,k hik 
k=1 k iZi,k 

= E Z (xk ai,k - /-ci,k)hi,k ? Z Z ti hi,k = Z ti. 
i k i k i 

The comparison of this inequality with the previous equality gives us z < z*; 
that is, when hi,k = X, the solution of the problem is actually achieved. 

Thus, again all things lead to finding the resolving multipliers."3 The method of 

12 In the case where,u = 0, it is sufficient that R < C. 
13 In the present case, in contrast to Problem A, it is not possible always to guarantee 

the existence of the resolving multipliers. The reason for this lies in the fact that Problem 
B is not always solvable. If we are discussing conditions 1), 2), 3') and 4), then for its solv- 
ability it is necessary that Li Ciki <_ C, where Ci,ki iS the smallest of the numbers ci,i, 
... ci,m . Let us note that Problem B will always be solvable if we replace condition 2) 
with the condition Lk hi, k < 1. 
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TABLE 5 
Ci .k 

k 1 \ | t _ r 2 3 

1 12 21 15 
2 12 20 11 
3 12 17 14 

TABLE 6 

Correction Factors 
Initial values Final values 

I Approximation II Approximation III Approximation 

Xi 3.62 1 0.973 1 3.53 
X2 6.25 1.063 1 1 6.65 
Xs 5.21 1 1 0.976 5.07 
9 7.45 1 1 0.751 5.59 

finding them is approximately the same as in Problem A. Without going into 
details here, let us illustrate these methods and the additional considerations 
needed by the solution of the following example. 

Example. Let the table of ai,k be the same as shown in the example of Section 
4 (Table 2). We will assign the values of Ci,k as shown in Table 5, and let C = 43. 
It is impossible to use the solution obtain earlier since the values for hi,k found 
there lead to the following: R = 12(0.67) + 12(0.33) + 20(0.785) + 17(0.215) + 
141(1) = 45.4> 43. 

As the initial null values Xk, let us take the same ones as before; as the initial 
value of ,u let us take, for example, 

o 1000 1000 u0 - 134 = 7.45. 
i,k 

Let us compute for the given Xk0 and ;ii the Xkai,k - XCi,k (see Table 7) and 
in each column italicize the largest of the numbers obtained. We take the hi,k 
corresponding to these largest numbers as unity and the others equal to 0. As 
we see, the one which is too low is Z2. Accidentally, R has turned out to equal 
C = 43. 

Next, we must increase Z2. 
The number closest to its maximum is 237 - 82. Let us increase X2, by pro- 

viding the factor E2, the value of which (in order to obtain a coincidence) is 
to be determined by the equation 

237E2 - 82 = 276 - 105. 

Whence, E2 = 253/237 = 1.063. Let us multiply the first elements of the second 
row by it and then italicize the maximum elements. It is necessary to de- 



MATHEMATICAL METHODS OF ORGANIZING AND PLANNING PRODUCTION 405 

TABLE 7 
The Process of Solution of Problem B 

Xka,,k -,uCi.k ai,khi,k and ci,khi,k Zk R 

Null Approximation 

105 107 64 
381 - 90 388 - 156 231 - 111 X 1 X 0 X 0 105 

12 21 15 
56 66 38 

349 - 90 412 - 149 237 - 82 X 0 X 0 X 0 0 43 
12 20 11 
56 83 53 

292 - 90 432 - 127 276 - x05 X O X 1 X 1 136 
12 17 14 

First Approximation 

105 107 64 
381 - 90 388 - 156 231 - 111 X 1 X 0 X1 105 

12 21 15 
56 66 38 

371 - 90 438 - 149 252 - 82 X 0 X 0 X 1 38 40 
12 20 11 
56 83 53 

292 - 90 432 - 127 276 - 105 X O X 1 X O 83 
12 17 14 

Second Approximation 

105 107 64 
371 - 90 378 - 156 225 - 111 X 0.58 X 0 X 0 61 

12 21 15 
56 66 38 

371 - 90 438 - 149 252 - 82 X 0.42 X 0 X 1 61 40 
12 20 11 
56 63 53 

292 - 90 432 - 127 276 - 105 X 0 X 1 X 0 83 
12 17 14 

Third Approximation 

105 107 64 
371 - 69 378 - 117 225 - 85 X 0.662 X 0 X 0 69.6 

12 21 15 
56 66 38 

371 - 69 438 - 11 2 252 - 61 X 0.338 X 0. 490 X 0.490 69.6 43 
12 20 11 
56 83 53 

285 - 69 421 - 95 269 - 79 X O X 0.510 X 0.510 69.6 
12 17 14 
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termine h3,2 = u and h3,3 = 1-u. Since it is impossible to satisfy the equation 
Z2= 38u = 53(1 - u) + 83 = z3 for 0 _ u _< 1, it is necessary to bringZ2and 
Z3 as close together as possible. In order to do this, it is evidently necessary to 
take u = 1. Thus the first approximation is found. Here it turns out that R = 40. 
To proceed to the next approximation it is necessary to increase Z2, or alterna- 
tively to decrease z1. Again, for finding the correction factor El for X1, we write 
the equation 381e, - 90 = 371 - 90, from which El 0.973. This gives us the 
transition to the second approximation (we will not go through the minor com- 
putation associated with this). Now it is necessary to reduce Z3. Thus, we must 
provide X3 with an additional correction factor E3. On the other hand, R is not 
large enough (R < C) and so we must increase R; for this it is necessary to 
decrease ,u; we provide for it a correction factor 'y. The presence of two correction 
factors E3 and -y permits us to achieve these two coincidences. But in Problem B 
we have to have one more coincidence since for the determination of the re- 
maining hi,k we add the additional equality, R = C. Thus for the determination 
of E3 and Py we introduce the equations corresponding to the requirement of two 
coincidences, 

438 - 149y = 432e3 - 127)y, 
252- 82-y = 276e3 -105, 

from which, E3 = 0.976, and -y = 0.751. After the introduction of these correction 
factors we pass to the third approximation. Now we have in each column one 
coincidence. Let us introduce the unknowns x, y, v: 

hij =x; h1,2= 1-x; h2,2=y; h2,3= 1-y; h3,2=v; h3,3= 1-v. 

The equations z1 = Z2 = Z3 = t and R = C can then be written 

105x = 56(1- x) + 66y + 38v = 83(1 - y) + 53(1 - v) = t, 
12x + 12(1-x) + 20y + 17(1-y) + llv + 14(1-v) = 43. 

The last equation after simplification gives y = v and the first takes the form 

105x = 56(1 - x) + 104y = 136(1- y) = t, 
from which 

t = 69.6, x = 0.662, y = v =0.49. 

This then finishes the calculation of the third approximation which coincides 
with the final solution of the problem. Note that the maximum output of the 
machines, which we have calculated under the additional constraint, turns out 
to be 69.6; that is, it is smaller than the 70.8 previously found for the earlier 
set of conditions. 

9. Use of the method for solving Problem C 
The difference between Problem C and Problem A consists in the fact that 

the Zk are determined in a more complicated manner, namely 

Zk = Zi, Yi,k,jhj,j . 
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And again hi,, must be determined on the basis of the conditions 

hi,0 > O; zhi,,z = 1; Zl = Z2= * ... = zm = maximum. 

Here, as in Problem A, resolving multipliers exist. In the present instance, 
they are numbers X1, * **, X. satisfying the condition that if for each i we 
designate by ti the largest of the numbers 

E kYi,k,l, 1 X k Pi,7c,2X***X 
k k 

andtakehhi, = 0 whenthe corresponding sum is not maximal, i.e., Zk Xk7i,k,I < 
t,, then the other hi can be determined from the conditions 

hi? > 0; E ihij = 1; Z1 = Z2 = ... = Zm. 

Just as in the two preceding cases, it is proved that if the resolving multipliers 
are found and the h, z determined for them as shown above, then we have the 
solution. Thus, the solution of this problem also is reduced to finding the re- 
solving multipliers, which can be accomplished by the same methods. 

Example. Let us solve as an example the second of the problems concerning 
cutting form boards (Example 6). It is required for us to manufacture the largest 
possible number of complexes 1.5, 2.1, 2.9 from 100 pieces 7.4 meters in length 
and 50 of length 6.4 meters. The possible methods of cutting were indicated 
above. Let us associate each part with its resolving multiplier, designating them 
as follows: u for the part 1.5; v for the part 2.1; and w for the part 2.9. To each 
value of 1 there corresponds a method of cutting ranged in order; for example, 
for i = 1, 1 = 3 corresponds to method III of cutting the piece of length 7.4 
meters (Table 7); namely, into pieces: 1.5, 1.5, 2.1, 2.1. In this case Zk XkYi,k,l 
will obviously be 2u + 2v. Remember that 'Yi,k,l is the number of the k-th part 
which is obtained by cutting the i-th kind of piece into parts according to the 
l-th method so that in the given case, 'Y1,1,3 = 2, 'Y1,2,3 = 2. In the first column of 
Table 8 these sums corresponding to the different methods of cutting are written 
in the general form. As initial values for u, v, and w let us take the lengths of 
pieces u? = 1.5, vI = 2.1, and w? = 2.9.14 

We compute the sum ZkXkYi,k,l for these data and italicize the largest 
values of the sums obtained (separately for the cases i = 1 and i = 2). Naturally 
in both cases the sums corresponding to the first method turned out to be the 
largest. We select the corresponding hi,k,l and set them equal to unity and the 
others equal to zero. In other words, we cut all the pieces by the first method; 
this gives us z1 = 300, Z2 = 150, and Z3 = 100. 

The one that is too low is Z3 ; let us increase it. For this we increase w in order 
to secure the first coincidence. Such a w is determined by the equation 4.5 + 
w = 1.5 + 2w, from which w = 3. 

14 In general, in problems connected with minimization of scrap one should take as the 
first approximation the lengths (areas for two-dimensional cases) of the parts concerned. 
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TABLE 8 
The Process of Solution of Problem C 

Null approximation I approximation II approximation 

Stock Methods of cutting Xki,bk,l u = 1.5, v = 2.1, u = 1.5, v= 2.1, u = 1.5, v = 2.25, 9 ~~w = 2.9 w =3.0 w =3.0 

2XkYi,k,l hi,z 2XlkYi,kz t,l - y 2AkYi,k,l hi,z 

{ l = 1, I13u + w 7.4 1 7.6 0.333 7.6 0.33 
l = 2, II u + 2w 7.3 0 7.6 0.661 7.6 0.61 

7.4(i =1) I = 3, III 2u + 2v 7.2 0 7.2 0 7.5 0 
- = 4, IV 2v + w 7.1 0 7.2 0 7.6 0.05 

I = 5, V 3u + v 6.6 0 6.6 0 6.75 0 
1 = 6, VI u + v + w 6.5 0 6.6 0 6.75 0.01 

I = 1, I 3v 6.3 1 6.3 1 6.76 1 
6. 4(i 2) 1 = 2, II 4u 6.0 0 6.0 0 6.0 0 l = 3, III 2u + w 5.9 0 6.0 0 6.0 0 

I = 4, IV 2w 5.8 0 6.0 0 6.0 0 

Number of z1 (at 1.5) 300 166.6 161 
parts z2 (at 2.1) 150 150 161 

Z3 (at 2.9) 100 166.6 161 

Now let us compute the second approximation. Since we now have a coinci- 
dence, h1il = x is to be determined from the equation z1 = Z2, that is 

3x + 1 * (1 -x) = x + 2. (1 -x), 

from which x = h = i and h1,2 = - which gives us 

Z, = (100 * 3) + 2.1oo = 166.6, Z3 = '(100 * 1) + *100 *2 = 166.6 
Z2= 50 3 = 150. 

It is necessary to increase Z2. It is easy to see that for obtaining a new coinci- 
dence it is necessary to take v = 2.25. Thus we go over to the third approxima- 
tion. Here we obtain the fourth coincidence. Introducing the unknowns 
x = 100h1i , y = 100h1,2, z = 100h1,3, t = 100h1,4 (the number of the pieces 
7.4 meters in length cut by each method), we obtain for their determination the 
following equations: 

3x + y = 2z = 2z + 2t + 150 = x + 2y + ti, x + y + z + t = 100. 

This system is indeterminate since there are more unknowns than there are 
equations; but we must not arbitrarily select one of the unknowns since then the 
positiveness of the remainder could be violated. At all events, it is possible to 
take z = 0 and then obtain t = v-5 (since we must have whole numbers), 
x = 33, and y = 61. There still remains one piece; for it we take method VI of 
cutting. In this way the hi,j for the third approximation are determined and 
the solution is found. 
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10. Direct application of resolving multipliers 
Thus far we have considered the resolving multipliers only as a technical 

means for the solution of Problems A, B, and C; they found application only in 
this way. Thus it could appear that the method of solving Problems A, B, and 
C based on the resolving multipliers has no particular advantage over other 
possible methods, apart from say its simplicity or brevity. However, that is 
not the case; the resolving multipliers have a far greater significance. They not 
only give the solution to the problem, but they also make it possible to indicate 
a number of characteristics of the solution that are important in its application. 
Thus the solution obtained by the resolving multipliers gives far more than the 
bare result, the numerical values of the hi,k . Here we want to turn our attention 
to these applications of the method of solution itself. 

The quantities Xk and ti determined above in the process of solution can be 
exploited in a whole series of questions connected with the application of the 
maximal solution. For concreteness, I shall relate all these comments to the first 
interpretation of Problem A which concerns the production of a set of parts. 
In this case the multipliers Xk are indices of equivalence for different parts under 
the maximal solution. Thus, the production of X. of the k-th part is equivalent 
to the production of Xk of the s-th part. The production of 100 units of the k-th 
part is equivalent to the production of 100 (Xk/E Xk) units of the manufactured 
item. Thanks to this, if one sets up as the problem, for example, not the produc- 
tion of z = Zl = Z2 = * = Zm pieces of complete sets which are possible during 
a day, but (z + Az,) units of the first part, (z + AZ2) of the second, and so on 
(Az, not too large), then it is possible to indicate the time which this task will 
require for its completion, namely 

Z Xk AZk 
1 + 

k days. 
Z > Xk 

k 

The solution of this problem is possible, generally speaking, if the AZk are not 
large, and with the same non-zero hi,k as in the original problem. 

Thus by knowing the Xk we can solve the problem of changes connected with 
small variations in the program. Further, with their help it is possible to solve 
the problem as to whether cooperation is expedient. Suppose, for example, that 
for one group of machines under the maximum distribution the ratio for the 
k-th and the s-th parts is Xk/X, and for another group of machines it is X'k/X' t 

Then if, for example, X'k/X'8 > Xk/Xs, it may be desirable to engage in coopera- 
tion, i.e. transfer some of the production of the k-th part from the first group of 
machines to the second and transfer some of the production of the s-th part to 
the first. This gives an increment in aggregate output. In a similar manner, the 
quantities ti are indices of equivalence of the productivity of machines under 
conditions of the maximal distribution. Here it turns out, for example, that the 
daily output of the i-th machine translated into terms of complete items is equal 
to (tl/ E ti)z, where z is the number of complete items turned out on all machines. 
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This fact can also be used in diverse ways in variations in the distribution of the 
work of the machines as, for example, in estimating losses occurring under a 
given departure from the optimum variant. Analogous considerations con- 
cerning the use of the resolving multipliers can also be made with respect to 
Problems B and C. 

Finally, I want to suggest that the use of the method of resolving multipliers 
might also be attempted in problems very little like Problems A, B, and C. I 
suppose that in particular it could be used in various questions related to making 
up production schedules. In fact, my attention has been drawn to such actual 
problems as the following. In the annual program of a machine building plant 
there is a number of series of machines. For each series, the loading of different 
groups of machines (lathes, milling machines, and so on) is different. On the 
average, during the course of the year this load must correspond to the capacity 
of the equipment. How can peaks (overloads of certain kinds of equipment) 
be avoided in the production schedule? To achieve this, it is obviously necessary 
to distribute separate tasks within half-years, then within quarters and months, 
at the same time preserving approximately the average annual correlations for 
each period. In our opinion, it is possible to use the resolving multipliers for 
finding such a distribution. Namely, it is necessary to introduce multipliers 
corresponding to each kind of work (on lathes, on milling machines, and so on) 
and, by varying them, to achieve a uniform distribution. 

Appendix 2 
Solution of Problem A for a Complex Case 

(The Problem of the Plywood Trust) 
The present Appendix presents the calculation of the optimum distribution 

of the work of peeling machines computed on the basis of data of the Laboratory 
of the All-Union Plywood Trust (see Example 2). The calculation, using the 
method of resolving multipliers, was made by A. I. Iudin. 

1. The conditions of the problem 
In Table I are shown data on the productivity of eight peeling machines on 

five different kinds of material as presented by the Central Laboratory of the 

TABLE I 

Type of material 
Machine Number 

1 ~~~2 3 45 

1 4.0 7.0 8.5 13.0 16.5 
2 4.5 7.8 9.7 13.7 17.5 
3 5.0 8.0 10.0 14.8 18.0 
4 4.0 7.0 9.0 13.5 17.0 
5 3.5 6.5 8.5 12.7 16.0 
6 3.0 6.0 8.0 13.5 15.0 
7 4.0 7.0 9.0 14.0 17.0 
8 5.0 8.0 10.0 14.8 18.0 
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TABLE II 

1 2 3 4 5 

10 percent 12 percent 28 percent 36 percent 14 percent 

TABLE III 

Type of Material 
Machine 

No.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1 ~ ~~2 3 4 5 

1 504.0 735.0 382.5 455.0 1485.0 
2 567.0 819.0 436.5 479.5 1575.0 
3 630.0 840.0 450.0 518.0 1620.0 
4 504.0 735.0 405.0 472.5 1530.0 
5 441.0 682.5 382.5 444.5 1440.0 
6 378.0 630.0 360.0 472.5 1350.0 
7 504.0 735.0 405.0 490.0 1530.0 
8 630.0 840.0 450.0 518.0 1620.0 

All-Union Plywood Trust. In addition, it is required that the quantity of ma- 
terial of a given type be in the relationship to all material as shown in Table II. 

2. Transformation of the conditions of the problem 

In accordance with the rule indicated in Section II for the transformation 
of the problem concerning output of a given product mix into Problem A, in 
order to obtain the values ai,k from the data of Table I it is necessary to divide 
all the figures of the first column by 10, those of the second by 12, and so on 
(see Table II). To simplify the calculation, let us first multiply all the numbers 
by 1260. Obviously, the numbers obtained can also be considered as ai,k. fIn 
order to carry out the indicated operations, it is necessary to multiply the 
numbers of the first column by 126, the second by 105, the third by 45, the 
fourth by 35, and the fifth by 90. 

The values of ai,k obtained after multiplication are written in Table III. 
Note. Since the multiplication of a whole column (and in some cases of several 

columns) by one and the same number will be used over and over again, let us 
note that for such remultiplications it is convenient to place the multiplier in 
the arithmometer, and then to multiply it successively by all the numbers in 
the column. The same is recommended in using the slide rule. 

Since the productivities of the third and eighth machines coincide for all kinds 
of materials, we introduce in their stead a third machine with doubled produc- 
tivity (see Table IV). 

In Table IV the productivities ai,k are expressed in certain arbitrary units; 
henceforth in the solution of the mathematical problem we shall proceed on 
the basis of this table and the productivities will be expressed in terms of these 
same arbitrary units. 
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TABLE IV 

Type of Material 
Machine 

1 ~ ~~2 3 4 5 

1 504.0 735.0 382.5 455.0 1485.0 
2 567.0 819.0 436.5 479.5 1575.0 
3 1260.0 1680.0 900.0 1036.0 3240.0 
4 504.0 735.0 405.0 472.5 1530.0 
5 441.0 682.5 382.5 444.5 1440.0 
6 378.0 630.0 360.0 472.5 1350.0 
7 504.0 735.0 405.0 490.0 1530.0 

2; 4158.0 6016.5 3271.5 3850.0 12150.0 

20 000 1 4.810 3.324 6.113 5.195 1.646 

3. The process of solution 
Utilizing the method of resolving multipliers (Appendix I, Sections 3 and 4) 

for the solution of the problem, we must find numbers X1, X2, X3, X4, X5. For 
the first approximation XI let us take magnitudes (Table IV, row 9) inversely 
proportional to the output totals (Table IV, row 8). 

Note. Taking the multipliers X with precision to the third place of decimals, 
we will hereafter be obliged to consider two numbers as equal if their difference 
does not exceed one thousandth of their magnitude. 

Since we must take hi,s = 0 if Xkaxi,k > X8aci,, , for a certain k, then for the first 
approximation to X, we will divide those values (for each i) which are greater 
than the rest by the product X8ai,s, . 

If the values of X are taken thus, then generally speaking, there will be in each 
line only one non-zero value of h; that is, altogether there will be n (in our case 7) 
values and the equations Zk hi,k = 1 and z1 = Z2 = * = Zm will give n + m - 1 
(i.e., 11) conditions for the hi,7k. In view of this, the Xk must be chosen such that 
in four rows there should be two maximum products each. Then we will have 11 
non-zero values of hi,k which will determine the 11 equations mentioned above. 

Let us note that the selection of Xk is made more complicated by the fact that 
there is established the restriction that the hi,k ? 0. 

4. Calculation of the Xk 

As has been said, let us take for the first approximation, Xk0, the numbers of 
row 9 in Table IV; that is, the first row of Table A. 

Let us compute the products Xk0cai,k (Table V1). 
In each row we italicize the largest number. In accordance with the remarks 

made earlier, in the first line the numbers 2443.1 (of the second column) and 
2444.3 (in the fifth column) must be considered to be the same. 

Under the k-th column we write the total output of those machines for which 
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TABLE A 

Line 1 2 3 4 5 

1 XO 4.810 3.324 6.113 5.195 1.646 
2 1 1 1.017 1 1 
3 1 1.083 1.083 1 1 
4 e3 1 1 1 1 1.082 
5 e4 1 1 1 1.111 1 
6 e5 1.003 1 1.003 1.003 1 

7 X 4.824 3.600 6.753 5.789 1.781 

TABLE V1 

1 ~~~2 3 4 5 

1 2424.2 2443.1 2338.2 2363.7 2444.3 
2 2727.3 2722.4 2668.3 2491.0 2592.5 
3 6060.6 5584.5 5501.7 5382.0 5338.0 
4 2424.2 2443.1 2475.8 2454.6 2518.4 
5 2121.2 2268.6 2338.2 2309.2 2370.2 
6 1818.2 2094.1 2200.7 2454.6 2222.1 
7 2424.2 2448.1 2475.8 25&45.6 2518.4 

1827.0 0 0 962.5 2970.0 
735.0 1485.0 

the products Xkai,k are italicized, as for example in the first column we write 
the output of the second and third machines on the first material (Table IV) 
that is 567.0 + 1260.0 = 1827.0; under the third column there will be a zero, 
since in column three there is not even one italicized number. Thus, there will 
be shown in row 8 only the output of those machines for which one number has 
been italicized. In Table V1 in the first row two numbers have been italicized, 
and so we place the outputs not in row 8, but below, in row 9. If (see the following 
table) some other row would contain several numbers, then we would place 
corresponding outputs below, that is in row 10, and so on. The convenience of 
this notation is explained by the fact that it is necessary for there to be two 
numbers each in four of the rows that are separated out. At the same time the 
values of hi,k corresponding to the numbers separated out must be positive and 
not greater than one, and the outputs for all columns must be equal. In view of 
this, it is important to know the outputs for each column. Moreover, if the 
italicized number is in a row in which all the other numbers are smaller, the 
corresponding output is wholly of the given material (in this case hi,k = 1). 
If there is a number equal to the given one, the output goes only partially into 
the productivity of that row; (i.e., hi,k < 1). 

The outputs in Table V1 appear as follows: in the first column, 1827.0 conven- 
tional units; second, from 0 to 735 conventional units; third, 0; fourth, 962.5 
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conventional units; and fifth from 2970 to 4455 conventional units; that is, the 
outputs can by no means be equal. 

We will increase the lagging columns. For this we introduce correction factors 
Ek1 for the Xk0. We will first increase the third column. 

Turning to Table V1, we note that if we are going to increase the numbers of 
the third column, it is the number in row 5 which first approaches its maximum. 
But since the output of the fifth machine on the third material is equal to only 
382.5 conventional units, which is even less than its productivity on the second 
material, it is clearly necessary to increase the numbers of the third column in 
such a way that the maximum will be reached in another row, namely the fourth 
row. In order to find El, let us divide the largest number in the fourth row, 
2518.4, by 2475.8, and the other Ek1 let us make equal to unity (see the second 
row of Table A). 

After multiplying the values of Table V1 (specifically the third column) by 
Ekt we obtain Table V2. 

Now it is materials 2 and 3 which have the smallest (approximately equal) 
outputs. Therefore we will increase them at the same time; that is, let us set for 
the second correction factors E22 = E32 = E. 

TABLE V2 

1 ~ ~~2 3 4 5 

1 2424.2 2443.1 2377.9 2363.7 2444.3 
2 2727.3 2722.4 2713.7 2491.0 2592.5 
3 6060.6 5584.3 5595.2 5382.0 5333.0 
4 2424.2 2443.1 2517.9 2454.6 2518.4 
5 2121.2 2268.6 2377.9 2309.2 2370.2 
6 1818.2 2094.1 2238.1 2454.6 2222.1 
7 2424.2 2443.1 2517.9 2545.6 2518.4 

1827.0 0 382.5 962.5 0 
735.0 1485.0 

405.0 1530.0 

TABLE V3 

1 ~ ~~2 3 4 5 

1 2424.2 2645.9 2575.3 2363.7 2444.3 
2 2727.3 2948.4 2938.9 2491.0 2592.5 
3 6060.6 6047.8 6059.6 5382.0 5333.0 
4 2424.2 2645.9 2726.9 2454.6 2518.4 
5 2121.2 2456.9 2575.3 2309.2 2370.2 
6 1818.2 2267.9 2423.9 2454.6 2222.1 
7 2424.2 2645.9 2726.9 2545.6 2518.4 

0 1554.0 992.5 472.5 0 
1260.0 900.0 
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TABLE V4 

1 ~~~2 3 43 

1 2424.2 2645.9 2575.3 2363.7 2644.8 
2 2727.3 2948.4 2938.9 2491.0 2805.1 
3 6060.6 6047.8 6059.6 5382.0 5770.3 
4 2424.2 2645.9 2726.9 2454.6 2724.9 
5 2121.2 2456.9 2575.3 2309.2 2564.6 
6 1818.2 2267.9 2423.9 2454.6 2404.3 
7 2424.2 2645.9 2726.9 2545.6 2724.9 

0 819.0 382.5 472.5 0 
1260.0 900.0 

735.0 1485.0 
810.0 3060.0 

In choosing e let us note that the first number to approach the maximum value 
in its row is the number in the 7th row of the third column, but in this instance 
this cannot satisfy us; we cannot both do this and at the same time achieve the 
maximum value with the number in the second row of the second column; we 
thus arrange for the number in the third row of the third column to approach 
the maximum. 

We find that e = s 95:2 = 1.083. The other Ek2 = 1 (Table A, row 3). Multi- 
plying by these factors we obtain the values of XkaZ,k for the third approximation 
(Table V3). 

Increasing the number of the fifth column (the fourth row of Table A), we 
obtain the same values for the fourth approximation (Table V4). 

Note that although in Table V4 we have 11 non-zero values of hi,k, still the 
remaining values for hi,k within the limits from 0 to 1 do not permit us to achieve 
equality for the outputs of all the columns. (Let us also note that the coincidence 
of maximum values in rows 4 and 7 between columns 3 and 5 is accidental.) 

Increasing the fourth column, we arrange it so that the numbers in this column 
become maximal not only in the seventh row but also in the fourth row 
(Table V5). 

Everything that was noted after Table V4 also remains true with respect to 
Table V5 although here it is rather more difficult to show the impossibility of 
positive solutions for all hi,k . To establish this, it is necessary to solve a system 
of equations.) 

We increase the numbers of the first, third and fourth columns simultaneously. 
Thanks to this, we retain two italicized values in each of two rows (the third 
and fourth). In addition, as before, two maximal values remain in the first row. 
Increasing the numbers of the three columns we succeed in obtaining two maxi- 
mum numbers in still another row. 

The first number to achieve the maximum value is the number in the second 
row of the third column. To accomplish this it is necessary to multiply by E3' = 
2 9 3 8.9 = 1.003 (see line 6 of Table A). 2 94 8.4 
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TABLE V5 

. 2 3 4 5 

1 2424.2 2645.9 2575.3 2626.1 2644.8 
2 2727.3 2948.4 2938.9 2767.5 2805.1 
3 6060.6 6047.8 6059.6 5979.4 5770.3 
4 2424.2 2645.9 2726.9 2727.1 2724.9 
5 2121.2 2456.9 2575.3 2565.5 2564.6 
6 1818.2 2267.9 2423.9 2727.1 2404.3 
7 2424.2 2645.9 2726.9 2828.2 2724.9 

0 819.0 382.5 962.5 0 
1260.0 900.0 

735.0 1485.0 
405.0 472.5 1530.0 

TABLE V6 

1 ~ ~~2 3 4 5 

1 2431.5 2645.9 2583.0 2634.0 2644.8 
2 2735.5 2948.4 2947.7 2775.8 2805.1 
3 6078.8 6047.8 6077.8 5997.3 5770.3 
4 2431.5 2645.9 2735.1 2735.8 2724.9 
5 2127.6 2456.9 2583.0 2573.2 2564.6 
6 1823.7 2267.9 2431.2 2735.2 2404.3 
7 2431.5 2645.9 2735.1 2836.7 2724.9 

0 0 382.5 962.5 0 
1260.0 900.0 

735.0 1485.0 
819.0 436.5 

405.0 472.5 

According to Table V6, the output of the first column varies from 0 to 1260.0 
conventional units; that of the second from 0 to 1554 conventional units; that 
of the third from 382.5 to 2124.0 conventional units; that of the fourth from 
962.5 to 1435.0 conventional units; and that of the fifth from 0 to 1485.0 con- 
ventional units. The value of output for all columns is of the same order, and 
the number of hi,k not equal to zero is 11. 

5. Computation of the hi,k 

Setting hi,k = 0, if the number in the i-th line of the k-th column of Table V6 
is not italicized we obtain for the other hi,k the equations 

1260h3,j = 819h2,2 + 735h1,2 = 436.5h2,3 + 900h3,3 + 405h4,3 
+ 382.5h5,3 = 472.5h4,4 + 472.5h6,5 + 490h7,4 = 1485h1,5; 

hl,2 + hl,3 = 1; h2,2 + h2,3 = 1; h3,1 + h3,3 = 1; h4,3 + h4,4 = 1; 
h5,3 = 1;h6,4 = 1;h7,4= 1. 
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TABLE B 

1 2 3 4 5 

1 0 0.3321 0 0 0.6679 
2 0 0.9129 0.0871 0 0 
3 (8) 0.7872 0 0.2128 0 0 
4 0 0 0.9380 0.0620 0 
5 0 0 1 0 0 
6 0 0 0 1 0 
7 0 0 0 1 0 

We introduce the unknowns 

x= h3,1 , x2 = hi,5 , x3 = h25, X4 = h44 

Using the last seven equations, we will obtain the following for the first four 
after collection of similar terms: 

1554 - 819x3 = 2220x2; 1260x1 = 1485x2; 
1687.5 + 436.5x3 - 900xl - 405x4 = 1485x2; 962.5 + 472.5x4 = 1485x2; 

or, after reduction: 
740x2 = -273x3 + 518, 33x2 = 28x1, 

33x2 = - 20x1 + 9.7x3 - 9x4 + 37.5, 297x2 = + 94.5x4 + 192.5. 

Solving the last system of equations, we obtain values for xl: 

xi = 0.7872, x2 = 0.6679, X3 = 0.0871, X4 = 0.0620. 

Note. We have the right to compute the values of the x's (and accordingly 
of the hi,k) with precision to the fourth place of decimals in spite of the fact that 
the Xk were computed only with precision to the third place of decimals. This is 
true since the Xk have only a subsidiary significance, and errors in computing 
them do not affect the accuracy of the calculation of the hi,k . 

Finding the values of hi,k through the xi, we obtain for them the following 
values (Table B). 

The values in row 3 indicate the time of work on the given material of both 
the third machine and the eighth machine (see Tables I and III), and they can 
obviously be varied within known limits. 

The total output of each material amounts to 991.8 conventional units. 

6. Check 

In order to check the maximality of z let us check (see Sections 4 and 6) 
whether we chose the non-zero values of hi,k correctly. For this let us put together 
the table of values of Xkai,k (that is, let us multiply the columns of Table IV by 
the 7th row of Table A) and for every row let us choose the maximum values 
(see Table VI). 
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TABLE VI 

1 ~ ~~2 3 45 

1 2431.3 2646.0 2583.0 2634.0 2644.8 
2 2735.0 2948.4 2947.7 2775.8 2805.1 
3 6078.2 6048.0 6077.7 5997.4 5770.4 
4 2431.4 2646.0 2735.0 2735.3 2724.9 
5 2127.4 2457.0 2583.0 2573.2 2564.6 
6 1823.5 2268.0 2431.1 2735.2 2404.4 
7 2431.3 2646.0 2735.0 2836.6 2724.9 

TABLE VII 

1 2 3 4 5 

1 0 2.32 0 0 11.02 
2 0 7.12 0.84 0 0 
3 3.94 0 2.13 0 0 
4 0 0 8.44 0.84 0 
5 0 0 8.50 0 0 
6 0 0 0 13.50 0 
7 0 0 0 14.00 0 
8 3.94 0 2.13 0 0 

Total 7.88 9.44 22.04 28.34 11.02 

For checking hi,k let us calculate the output for each material: 
Ist material (1260) (0.7872) = 991.9 conventional units; 
2nd material (735) (0.3321) + (819) (0.9129) = 991.8 conventional units; 
3rd material (436.5) (0.0871) + (900)(0.2128) + (405) (0.9380) + 382.5 = 

991.9 conventional units; 
4th material (472.5) (0.0620) + 962.5 = 991.8 conventional units; 
5th material (1485) (0.6679) = 991.8 conventional units. 

7. Productivity of the machines 
Let us calculate the output by materials directly for the data of the Central 

Laboratory of the All-Union Plywood Trust (Table I). The results are given in 
Table VII. 

8. Comparison with the simplest solution 
To calculate the economic effect of the solution determined above, we will 

compare the total output obtained with that which would be obtained if each 
material were worked on each machine in the given ratios. Carrying out the 
calculations for the given data (Table IV) it is necessary that each material 
should be worked on each machine in equal amounts. Let us determine how 
much of each material the i-th machine will prepare. Let yi be the quantity of 
material sought in conventional units. 
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Then 
yi = ai, lhi, = ai,2hi,2 = ait,3hi,3 = ait,4hi,4 =ai,Bhi,s, 

and since 
hij, + hi,2 + hi,3 + hi,4 + h,5 = 1, 

theii 

yi 1 1 1 1 1 
aij , ati,2 ati,3 ai,4 ai,5 

Calculating yi according to the tables of Barlow (inverse magnitudes) we 
obtain: 

y,= 113.2; Y2 = 125.0; Y3 = 264.9; y4 = 116.5; 
yb = 107.6; Y6 = 101.3; Y7 = 117.5; 

and the total output is 946.0 conventional units. 
The maximum output in relation to the output just calculated is 104.8 per cent. 
Note. Such a relatively small percentage difference is explained by the fact 

that the productivity of the machines according to data of the Central Labora- 
tory of the All-Union Plywood Trust is almost proportional. 

Appendix 3 
Theoretical Supplement 

(Proof of Existence of the Resolving Multipliers) 
In Appendix I it was established that the determination of the numbers hi,k 

by means of the resolving multipliers leads to the solution of the problem and 
a way of finding these resolving multipliers was shown. For practical purposes, 
this is perhaps sufficient. But, for completeness, it is important to establish the 
fact that the resolving multipliers always exist. This will show that the method 
of resolving multipliers will always be applicable to each problem. In view of 
the facts that ignorance of the proof of the existence of the multipliers in no 
way interferes with mastering the method or its practical application, and that 
we also need some rather more advanced mathematical means for this proof, we 
have considered it better to treat this in a special supplement. 

In the exposition of the proof of the existence of the multipliers we will limit 
ourselves for brevity to Problem A.'5 We consider it useful to introduce two 
proofs: analytical and geometrical. 

1. Analytical proof 
We will consider a system of numbers (Xl , X2, * * Xm) subject to the condi- 

tions: Xk ?0; X1 + X2 + * * * + Xn = 1. For each given system (X1, X2 X * * 
Xm), let us consider the products Xlai, ,, X2a ,2 2 ... , Xmctai,r, . For those k for 
which the product Xkai,k is not the largest in its row, let us set hi,k = 0. Then, let 
us try to choose the other hi,k in such a way that min(z,, Z2, X * * * Zm) be as large 

15 A more complete mathematical discussion will be given in a special mathematical paper 
by the author. 
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as possible. Let us denote the maximum value of this minimum by C(X1, X2, 
... , Xm). It is evident that this function is bounded. For example, it is clear that 
C(X1 , X2 *... * Xm) < Zi,k ai,k . This function has an exact upper limit; let us 
denote it by C*. There exists a sequence of systems 

XS (8) OS)\ 

for which the values 
C(X1 X2 , Xmt) 

approacn C* 
lim C(X'1), *, * (s)) C* 

From the sequence of systems (X("), ,(') X (3)) (s =1 2, .) it is pos- 
sible to choose a convergent sub-sequence; without loss of generality, we can 
consider the original sequence as such; that is, 

( t1X)t 2 X Xly ) z) A X 2 * 

Further, for each s there exists a definite system of numbers { h 8} which 
leads to the value C(X(), *, X () ). These systems of numbers, passing if 
necessary to a sub-sequence, we can consider as converging to a definite system: 

lim h h2 =hK 
s-oo 

(i = 1, 2, ,n; k 1, 2, **, i). 

Since for each s the necessary conditions for h) have been fulfilled, then also 
in the limit these conditions must also be fulfilled for hi,k. For the system hi,k= 
hi,k we obtain 

-~~~ ~(s) (8) (8) min(21, Z2. XZm ) limmin(z1,z 2, *'**zm() 

-lim CX(8)) ... 2) ***X 
S) 

) = C* 

Therefore, C(X1, )2 X.* *, Xn) > C*. Since on the other hand the reverse in- 
equality is valid, we have 

min(21, 22 * X2X,) = C(Xl, 2, ...X C) 

Now by changes in Xk we can make all the Zk equal to C*. Actually, if some 
Zk > C*, then by decreasing the corresponding Xk and by increasing the others 
proportionately, we can achieve a coincidence in the Xkai,k at the expense of de- 
creasing this Zk . Since the other Zk cannot all exceed C* at the same time (because 
that would contradict the definition of C*) then in this way we can gradually 
approach such values Xi*, X2*, ... X Xm* for which we can choose hi,k so that 
Zl = Z2 = = Zm = C*. After we have achieved this, the existence of the 
resolving multipliers can be considered as being established. 

2. Geometric proof 
Let us consider all possible systems {hi,k} satisfying the conditions hi,k > 

0, Ek-, hi,k = 1. To each system of numbers hi,k there corresponds a definite 
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FIG. 2 

system of numbers Zk = Z7iiai,khi,k . Such systems (z1, Z2 X * Zm) taken from 
all possible { hi,k fill out a certain convex body K in the m-dimensional space of 
points (z1, Z2 , * * , Zm) (see Figure 2).16 Let us further consider another convex 
set, HC, consisting of points satisfying the conditions zi > C, * Zm > C, or 
what is the same thing, min(z1, Z2 , * * * , Zm) _ C. 

As before, let us designate by C* the common maximum value of z and z' in 
Problems A and A' (see Appendix 1, Section 2). Since C* is the maximum value 
for min(zi , Z2 , Zm), then for all points in the body K, min(zi , Z2 Zm) < 
C*. Therefore the body K has no interior points in common with the set Hc*. 
This is true since for all interior points of the latter, min(zi, Z2 , ... * Zm) _ C*. 
Thus, K and HC* have only common border points, one of which 
will be (C*, C*, . , C*). According to the theorem of Minkowski, there exists 
a plane passing through this point which separates these convex sets. Its equa- 
tion has the form 

X1*zi + X2*Z2 + * + X,,*Zm = C*1 

where Xi* + X2* + * * + Xm* = 1 (this can always be accomplished), and the 
free term is then equal to C* since the point (C*, C*, ... , C*) lies on this plane. 
In addition, from the geometrical form of the region HC*, it is clear that neces- 
sarily Xk* ? 0. 

The coefficients for this separating plane (represented in Figure 2 by the bold 
faced and dashed line) are the resolving multipliers. Actually let {I Ii ,k} be a sys- 
tem of numbers giving z1 = = Z = ZY= C.* As before, let us denote by 
t1 the largest of the products 

Xi* ai,1, X2*ai,2 . * Xm*ai ,m. 

Since the body K lies on one side of the separating plane, then for all its points 
(z1 , * *, z) it will hold that 

? Xk*k :_!!< C*>> 

or what is the same thing, for any admiissible {h ,k}, 

16 The drawing is carriecl out for Example 1 above. 
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Zk* Z a ,k hi,k = Z E\kai,k h,k < C*. k i k 

In particular, taking hi,k = 1 for those k for which Xk*ai,k = t , we find that 
tt < C*. On the other hand, 

C= EkZk = k aE,k hk = Z Z (k* ai,k)hk 
k k 

k h 
k 

< 1:ti 1:h*,k = ti 
i k i 

Here, the equality sign in the inequality is achieved only in case hi*,k = 0 when- 
ever ?,Ak*c,k < ti, but thanks to the inequality found earlier, E ti < C* the 
equality sign must necessarily be realized here; therefore, the indicated circum- 
stance for hi,k must take place. Thus, it turns out that for hi,k = h*,k , the condi- 
tion of being equal to zero is fulfilled for all those which do not correspond to 
maximal products; and the others are such that zi =Z2 = = Zm . This shows 
that the X\k* are actually the resolving multipliers, and the existence of the resolv- 
ing multipliers in Problem A for any case is proved. 


	Article Contents
	p. 366
	p. 367
	p. 368
	p. 369
	p. 370
	p. 371
	p. 372
	p. 373
	p. 374
	p. 375
	p. 376
	p. 377
	p. 378
	p. 379
	p. 380
	p. 381
	p. 382
	p. 383
	p. 384
	p. 385
	p. 386
	p. 387
	p. 388
	p. 389
	p. 390
	p. 391
	p. 392
	p. 393
	p. 394
	p. 395
	p. 396
	p. 397
	p. 398
	p. 399
	p. 400
	p. 401
	p. 402
	p. 403
	p. 404
	p. 405
	p. 406
	p. 407
	p. 408
	p. 409
	p. 410
	p. 411
	p. 412
	p. 413
	p. 414
	p. 415
	p. 416
	p. 417
	p. 418
	p. 419
	p. 420
	p. 421
	p. 422

	Issue Table of Contents
	Management Science, Vol. 6, No. 4, Jul., 1960
	A Note about Kantorovich's Paper, "Mathematical Methods of Organizing and Planning Production" [pp.  363 - 365]
	Mathematical Methods of Organizing and Planning Production [pp.  366 - 422]
	Sur L'Utilisation des Integrales de Contour dans les Problemes de Stocks et de Delais d'Attente [pp.  423 - 443]
	Logistics Research and Management Science [pp.  444 - 454]
	Games Decisions and Industrial Organization [pp.  455 - 474]
	Optimal Policies for a Multi-Echelon Inventory Problem [pp.  475 - 490]
	Costs of Incorrect Data in Optimal Inventory Computations [pp.  491 - 497]
	Book Reviews
	untitled [pp.  498 - 499]
	untitled [pp.  499 - 500]
	untitled [pp.  500 - 501]
	untitled [pp.  501 - 502]
	untitled [pp.  502 - 503]
	untitled [pp.  503 - 505]

	Books Received [p.  505]
	Correction: A Shortest Route Through a Network [p.  505]
	Back Matter



