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Quick recall of last week’s lecture

» \Various aspects of convexity:
The set of minimizers is convex.
Convex functions are line-differentiable
(i.e. the limit limy o[f(x+td) — f(x)]/t always exists).
Differentiable convex functions:
equivalent definitions, easier optimality conditions .
» Subdifferential: a generalization of gradient.
New optimality conditions.
Deducing differentiability by looking at 9f(x).
» Conjugate functions arise naturally from duality.
» g c Of(x) iff x € 0f«(q).
» An easy tool: support functions.
» Support function of subdifferentials.



Combining subdifferentials:
Subdifferential of a maximum

Let f1,...,fm :R" - RU{4oc} be convex,
such that D := N> intdom(f;) # ¢. Let f(x) := max; f;(x).

1=

Let I(z) := {i : f;(z) = f(z)} for =z € D.
Of(x) = C :=conv{df;(x) :i € I(x)}.
Proof: (see blackboard). Key steps:

» We just need to check oo = gp¢(s)

as df(xz) and C are closed and convex.

» Let d € R". Then limyoI(z + td) C I(z).

> 0or(x)(d) = Vf(z)[d] = maxci,) Vfi(z)[d].

> Vfi(z)ld] = oyp)(d) = max{(gi,d) : gi € Ofi(x)}.
» Remember the support function of a k-simplex.

Adapting it slightly, oc(d) = maX;c;.){(9:,d) : gi € Ofi(x)}.




Some examples

» Let f(t) := [t| = max{t, —t}.
Then 0f(t) = sign(t) for t = O.
Also, 0f(0) = conv{-1,1} = [-1, 1].

» Let f(x) == maxj<j<px;, and I(x) ;= {i:x; = f(z)}.
Then 0f(x) = conv{e; :i € I(x)}.
In particular, 0f(0) = Ap:={9>0:>,9;,=1}.

Observe that g € 9f(0) iff 0 € 9f«(g) iff g minimizes fx.
Now, f is the support function of Ay.

Thus f=xx ., and f*=xX =xa,
which is indeed minimized in A,,.

Generalizable for every support function



Combining subdifferentials:

Subdifferential of a sum

Let f1,f> : R" - RU {400} be convex,
such that D := n;relint(dom(f;)) #= ¢, and s := f1 4+ f».
Then 0s(x) = 0f1(x) + df>(x) for all x € D.

The proof, due to Rockafellar, is far to be trivial.
The direction D is easy: if g; € 0f;(x),

fily) = fi(z) + (gi»y —x) Vy, and i =1,2.
Summing up both sides, we get that g1 + g> € 9s(x).

Sketch for C: We use g € 9s*(x) iff s(z) + s*(g) = {(g,x). It can be
proven that s*(g) = inf{f;(u) + f3(v) : w4+ v =g} when D # ¢. Now:

g €0s™(z) & (9,z) = fi(z) + fa(z) + fi(u") + f5(v7)
iff u* € 9f1(x), v* € Of2(x), and u* + v* = g.



Subdifferential of a sum

The missing part*®

The conjugate of a sum [Rockafellar, Th. 16.4]
Let g1,90 : R — RU {400} be convex.

gi(z) + g53(z) = Syuzp<y + z,z) — g1(v) — g2(2)
= sup sup (y+z,z)—g1(y) — g2(2)
d y+z=d
= sup(d,z) — inf g1(y) + g2(2) = ¢"(x),
d y+z=d

where ¢(d) :=inf{g1(y) + g2(2) 1y + z = d}
is the inf-convolution of g1 and g».

We let g1 = f], g2 := f5. Since (f{*+ f3%)* = (f1 + f2)"
when N;relint(dom(f;)) = ¢, we get the needed result.



T he Karush-Kuhn-Tucker Theorem

» 1 he expression Kuhn-Tucker has 185,000 hits on Google.

» Needless to say, it is a cornerstone of Optimization.

» Proved in 1939 in the Master Thesis of Karush,
rediscovered in 1951 by Kuhn and Tucker.



T he Karush-Kuhn-Tucker Theorem

Theorem 1 (KKT Conditions for Convex Optimization)
Let f:R" - RU{4+occ} be a convex function,

J1,...,9m be concave functions,

b € R™ such that Slater’'s condition holds:

dx : g;(x) > b; for 1 <i<m.
A point xz* is a solution to f* = min{f(x) : g(x) > b}

Iff g(x*) > b, (Feasibility)
dhg € 8f(ac*), h; € 3(—92-(98*)), (”Or/'gina/”
Ar >0 forl>i>m: KKT
ho + Ziel(x*) Arh; =0, Conditions)

where [(x*) ;= {i : g;(z*) = b;}.

Note: The minus sign ensures that 9(—g;(z*)) £ ¢.



T he Karush-Kuhn-Tucker Theorem:
the proof is simple with subdifferentials

fr=min{f(z) : g(z) 2 b} | (P)

» Let ¢(x) := max{f(x)—f*b1—g1(x),...,b;m—gm(x)}, which is convex.

» * is an optimum of (P) iff z* € arg min, ¢(x) iff 0 € 9p(x*)
iff 0 € conv{of(z*),d(—gi(z*)) : i € I(x*)} (obviously f(z*) = f*)

iff 3ho € 0f(z*), hi € 0(—gi(z*)), @i 2 0, a0+ ) icrmyi =1
such that 0 = agho + >

iel(ar) Q-

» ag #= 0.
First, (h;,y—x*) < gi(x*) —gi(y) = b;—g;(y) for all y and all 7 € I(x*).
If ag = 0, then 0 = Ziel(x*) ai{hi, x —x*) < Zig(m*) a;(b; — gi(x)),
contradicting Slater’'s condition, satisfied by x.

» It remains to let \! := «;/ .



This theorem cannot be used!

You need to know I(z*) in advance!
Easy way out: set X7 := 0 when i ¢ I(z*).

Theorem 2 (KKT Conditions for Convex Optimization II)
Let f:R" - RU{4+occ} be a convex function,

g1,...,9m be concave functions,

b € R™ such that Slater’'s condition holds:

Eli:gz-(i)>bi forl <i:<m.
A point xz* is a solution to f* = min{f(x) : g(x) > b}

iIff g(z*) > b, (Feasibility)
Jho € 0f(x*), h; € 0(—g;(x*)), (" Usable”
Ar >0 forl>i>m: KKT
ho+ > A h; =0, Conditions)

and \;(b; — g;(z*)) =0 for all i. (Complementarity)



When you have a slightly different problem

» Equality constraints (necessary affine constraints):
the same statement holds, but no sign constraint
for the corresponding Xf’s, and an extra condition
on linear independence of the h;'s.

» A version of the KKT Theorem exists for differentiable
non-convex problems. The conditions read the same
but are not sufficient.

First find all the KKT points (x*, \*),
then test them all to find the global optimum.

» Interesting exercise:
what happens for general conic inequalities?



KKT and duality

» )7 is the dual optimum. Recall:

Theorem 3 (Complementarity conditions) Suppose that x* and F*
are feasible for their respective problems, and that f(x*) = F*(b). Then

pr = f(z") = F"(g(z")) = F*(b) = d"(F).

We take as candidates x* and F*(y) = (u,y) + ug,
with u ;= A\* and ug = f(a™) — (A%, b).

1. By direct substitution, F*(b) = f(z*).
2. F* is feasible, that is F*(g(z)) < f(x) for all z. Fix z € R"
First, f(z*) < f(z) — (ho,z — ") = f(z) + Zig(gg*) Ai(hi, ¢ — %)
< F@) F Tierioy N (9@ = 9:(@)) = (@) + Xiesoy X (b — gia)),
which is equivalent to F*(g(z)) < f(x).
Thus M\* is the dual optimum,
and can be interpreted as the constraints prices.
» The KKT Conditions are nothing but 0L(z™, \*)/0x = 0



A geometric view of KKT

» For unconstrained problems, we recover
the optimality condition 0 € 9f(x™).

» When the f is differentiable,
and @Q := {xz : g(x) > b} has a nonempty interior,
we have z* € argmin{f(x) : x € Q} iff

(f'(@®),y—2") >0 VyeQ.

KKT says f'(z*) = = ) icr(e) A hir With

(hisy — %) < gi(z*) — gi(y) = bi — gi(y)

and Xf > 0 for ¢ € I(z*). Thus:

(@), y = %) = = D icr(ay X (hisy — 27)
> = icry M (bi —gi(y)) > 0

for all feasible y.




Application

Projecting on a subspace

» One of the most solved optimization problems
in the world. (Also known as Least-Squares Problem)

» Direct applications in meteorology, genomic, statistics,
control, signal processing, ...

Let A € R™*"™ and b € R™, with n > m.
Find the shortest solution of Ax = b:

min{||z||3/2 : Az = b}
KKT conditions: Az* =b, 2* — AT * =0
imply AALX* = b, and o* = AT (AAT)~1p
AT := AT(AAT)~1 is the Moore-Penrose inverse of A.



A historical application:

A simple mechanical system

We have on a straight segment between two walls:

two masses each of width w;

three springs of very short length at rest (~ 0)

attached between the walls and the center of the masses,

of rigidity k1, ko k3 respectively.

What is the equilibrium configuration?
What are the forces on the walls?

L

o




A historical application:
Modeling as an optimization problem

L

§ w w é
L1
L2

Potential energy of a spring: rigidity x length?/2.
||Force|| exerted by a spring: rigidity x length.

min % (kla:% -+ kQ(CCQ — 5131)2 -+ k3(L — CCQ)Q)

s.t. 1 >w/2
To —T1 > W
L—1xo2>w/2.




A historical application:
The optimality conditions

min 3 <k1$% + ko(zo — 1) + k3(L — 33‘2)2)
St x> w/2

o —IT1 > W

L—xz52>w/2.

Complementarity and KKT Conditions:
Al(z]—w/2) =0, MN(z5—z]—w) =0, I3(L—z5—w/2) =0,
k1] — ko(23 —21) — A1 + A5 =0,
ka(zs — o) — k(L —23) — A5+ A5 = O,

A7 >0, o™ feasible.



A historical application:
T he physical interpretation of dual variables

Complementarity and KKT Conditions:
Azl —w/2) =0, X(z3—-21—w)=0, A3(L-=z3—w/2)=0,
kix] — ko(x5 —x7) — A1 + A5 =0,
ko(xy —27) — k3s(L — x3) — A5 + A5 =0,
A; >0, " feasible.

The KKT Conditions can be interpreted
as a force balance equation on both masses.

kix} ko(xh — %) ko(xh — %) k3(L — x%)

A1 A> A> A3

A1 [A%] is the force exerted on the left [right] wall
A5 is the force exerted on each block



Applications of KKT’s Theorem
are countless
I am sure that each of you
will have to use them some day

(If you stay in engineering)



For next week

Making convex optimization work for you:
Modeling and solving Linear, Second-Order,
and Semidefinite optimization problems.



