Convex Optimization Lecture 6: KKT Conditions, and applications

Dr. Michel Baes,

IFOR / ETH Zürich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- ► Various aspects of convexity:
 - The set of minimizers is convex.
 - Convex functions are *line-differentiable*

(i.e. the limit $\lim_{t\downarrow 0} [f(x+td) - f(x)]/t$ always exists). Differentiable convex functions:

equivalent definitions, easier optimality conditions .

- ► Subdifferential: a generalization of gradient. New optimality conditions. Deducing differentiability by looking at ∂f(x).
- ► Conjugate functions arise naturally from duality.
- ▶ $g \in \partial f(x)$ iff $x \in \partial f_*(g)$.
- ► An easy tool: support functions.
- ► Support function of subdifferentials.

Combining subdifferentials: Subdifferential of a maximum

Let $f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be convex, such that $D := \bigcap_{i=1}^m \operatorname{int} \operatorname{dom}(f_i) \neq \phi$. Let $f(x) := \max_i f_i(x)$.

Let $I(x) := \{i : f_i(x) = f(x)\}$ for $x \in D$. $\partial f(x) = C := \operatorname{conv}\{\partial f_i(x) : i \in I(x)\}.$

Proof: (see blackboard). Key steps:

▶ We just need to check $\sigma_C \equiv \sigma_{\partial f(x)}$

as $\partial f(x)$ and C are closed and convex.

- ▶ Let $d \in \mathbb{R}^n$. Then $\lim_{t\downarrow 0} I(x + td) \subseteq I(x)$.
- $\blacktriangleright \sigma_{\partial f(x)}(d) = \nabla f(x)[d] = \max_{i \in I(x)} \nabla f_i(x)[d].$
- $\blacktriangleright \nabla f_i(x)[d] = \sigma_{\partial f_i(x)}(d) = \max\{\langle g_i, d \rangle : g_i \in \partial f_i(x)\}.$

► Remember the support function of a *k*-simplex. Adapting it slightly, $\sigma_C(d) = \max_{i \in I(x)} \{ \langle g_i, d \rangle : g_i \in \partial f_i(x) \}.$

► Let
$$f(t) := |t| = \max\{t, -t\}$$
.
Then $\partial f(t) = \operatorname{sign}(t)$ for $t \neq 0$.
Also, $\partial f(0) = \operatorname{conv}\{-1, 1\} = [-1, 1]$.

► Let $f(x) := \max_{1 \le i \le n} x_i$, and $I(x) := \{i : x_i = f(x)\}$. Then $\partial f(x) = \operatorname{conv}\{e_i : i \in I(x)\}$. In particular, $\partial f(0) = \Delta_n := \{g \ge 0 : \sum_i g_i = 1\}$.

Observe that $g \in \partial f(0)$ iff $0 \in \partial f_*(g)$ iff g minimizes f_* . Now, f is the support function of Δ_n . Thus $f = \chi^*_{\Delta_n}$, and $f^* = \chi^{**}_{\Delta_n} = \chi_{\Delta_n}$, which is indeed minimized in Δ_n .

Generalizable for every support function

Combining subdifferentials: Subdifferential of a sum

Let $f_1, f_2 : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be convex, such that $D := \bigcap_i \operatorname{relint}(\operatorname{dom}(f_i)) \neq \phi$, and $s := f_1 + f_2$. Then $\partial s(x) = \partial f_1(x) + \partial f_2(x)$ for all $x \in D$.

The proof, due to **Rockafellar**, is far to be trivial. The direction \supseteq is easy: if $g_i \in \partial f_i(x)$,

 $f_i(y) \ge f_i(x) + \langle g_i, y - x \rangle \quad \forall y, \text{ and } i = 1, 2.$

Summing up both sides, we get that $g_1 + g_2 \in \partial s(x)$.

Sketch for \subseteq : We use $g \in \partial s^*(x)$ iff $s(x) + s^*(g) = \langle g, x \rangle$. It can be proven that $s^*(g) = \inf\{f_1^*(u) + f_2^*(v) : u + v = g\}$ when $D \neq \phi$. Now:

 $g \in \partial s^*(x) \Leftrightarrow \langle g, x \rangle = f_1(x) + f_2(x) + f_1^*(u^*) + f_2^*(v^*)$

iff $u^* \in \partial f_1(x)$, $v^* \in \partial f_2(x)$, and $u^* + v^* = g$.

Subdifferential of a sum The missing part*

The conjugate of a sum [Rockafellar, Th. 16.4] Let $g_1, g_2 : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be convex.

$$g_{1}^{*}(x) + g_{2}^{*}(x) = \sup_{\substack{y,z \\ y,z}} \langle y + z, x \rangle - g_{1}(y) - g_{2}(z)$$

= $\sup_{\substack{d \\ y+z=d}} \langle y + z, x \rangle - g_{1}(y) - g_{2}(z)$
= $\sup_{\substack{d \\ d}} \langle d, x \rangle - \inf_{\substack{y+z=d \\ y+z=d}} g_{1}(y) + g_{2}(z) = \phi^{*}(x),$

where $\phi(d) := \inf\{g_1(y) + g_2(z) : y + z = d\}$ is the *inf-convolution* of g_1 and g_2 . We let $g_1 := f_1^*, g_2 := f_2^*$. Since $(f_1^{**} + f_2^{**})^* = (f_1 + f_2)^*$ when \cap_i relint(dom(f_i)) $\neq \phi$, we get the needed result.

The Karush-Kuhn-Tucker Theorem

- ▶ The expression Kuhn-Tucker has 185,000 hits on Google.
- ▶ Needless to say, it is a cornerstone of Optimization.
- Proved in 1939 in the Master Thesis of Karush, rediscovered in 1951 by Kuhn and Tucker.

Theorem 1 (KKT Conditions for Convex Optimization) Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a convex function,

 g_1, \ldots, g_m be concave functions,

 $b \in \mathbb{R}^m$ such that Slater's condition holds:

 $\exists \bar{x} : g_i(\bar{x}) > b_i \text{ for } 1 \leq i \leq m.$

A point x^* is a solution to $f^* = \min\{f(x) : g(x) \ge b\}$ iff $g(x^*) \ge b$, (Feasibility) $\exists h_0 \in \partial f(x^*), h_i \in \partial(-g_i(x^*)),$ ("Original" $\lambda_i^* \ge 0$ for $1 \ge i \ge m$: KKT $h_0 + \sum_{i \in I(x^*)} \lambda_i^* h_i = 0,$ Conditions) where $I(x^*) := \{i : g_i(x^*) = b_i\}.$

Note: The minus sign ensures that $\partial(-g_i(x^*)) \neq \phi$.

The Karush-Kuhn-Tucker Theorem: the proof is simple with subdifferentials

$$f^* = \min\{f(x) : g(x) \ge b\} \quad (\mathcal{P})$$

- Let $\phi(x) := \max\{f(x) f^*, b_1 g_1(x), \dots, b_m g_m(x)\}$, which is convex.
- ► x^* is an optimum of (\mathcal{P}) iff $x^* \in \arg \min_x \phi(x)$ iff $0 \in \partial \phi(x^*)$ iff $0 \in \operatorname{conv} \{\partial f(x^*), \partial (-g_i(x^*)) : i \in I(x^*)\}$ (obviously $f(x^*) = f^*$) iff $\exists h_0 \in \partial f(x^*), h_i \in \partial (-g_i(x^*)), \alpha_i \geq 0, \alpha_0 + \sum_{i \in I(x^*)} \alpha_i = 1$ such that $0 = \alpha_0 h_0 + \sum_{i \in I(x^*)} \alpha_i h_i$.
- ► $\alpha_0 \neq 0$.

First, $\langle h_i, y - x^* \rangle \leq g_i(x^*) - g_i(y) = b_i - g_i(y)$ for all y and all $i \in I(x^*)$. If $\alpha_0 = 0$, then $0 = \sum_{i \in I(x^*)} \alpha_i \langle h_i, \bar{x} - x^* \rangle \leq \sum_{i \in I(x^*)} \alpha_i (b_i - g_i(\bar{x}))$, contradicting Slater's condition, satisfied by \bar{x} .

▶ It remains to let $\lambda_i^* := \alpha_i / \alpha_0$.

You need to know $I(x^*)$ in advance! Easy way out: set $\lambda_i^* := 0$ when $i \notin I(x^*)$.

Theorem 2 (KKT Conditions for Convex Optimization II) Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a convex function, g_1, \ldots, g_m be concave functions, $b \in \mathbb{R}^m$ such that Slater's condition holds: $\exists \bar{x} : g_i(\bar{x}) > b_i$ for 1 < i < m. A point x^* is a solution to $f^* = \min\{f(x) : g(x) \ge b\}$ iff $g(x^*) \ge b$, (Feasibility) $\exists h_0 \in \partial f(x^*), h_i \in \partial (-g_i(x^*)),$ ("Usable" $\lambda_i^* \geq 0$ for $1 \geq i \geq m$: KKT $h_0 + \sum_{i=1}^m \lambda_i^* h_i = 0,$ Conditions) and $\lambda_i^*(b_i - g_i(x^*)) = 0$ for all *i*. (Complementarity)

When you have a slightly different problem

- Equality constraints (necessary affine constraints): the same statement holds, but no sign constraint for the corresponding λ_i^{*}'s, and an extra condition on linear independence of the h_i's.
- A version of the KKT Theorem exists for differentiable non-convex problems. The conditions read the same but are not sufficient.

First find all the KKT points (x^*, λ^*) ,

then test them all to find the global optimum.

► Interesting exercise:

what happens for general conic inequalities?

▶ λ_i^* is the dual optimum. Recall:

Theorem 3 (Complementarity conditions) Suppose that x^* and F^* are feasible for their respective problems, and that $f(x^*) = F^*(b)$. Then

 $p^* = f(x^*) = F^*(g(x^*)) = F^*(b) = d^*(\mathcal{F}).$

We take as candidates x^* and $F^*(y) = \langle u, y \rangle + u_0$, with $u := \lambda^*$ and $u_0 := f(x^*) - \langle \lambda^*, b \rangle$.

1. By direct substitution, $F^*(b) = f(x^*)$. **2.** F^* is feasible, that is $F^*(g(x)) \le f(x)$ for all x. Fix $x \in \mathbb{R}^n$ First, $f(x^*) \le f(x) - \langle h_0, x - x^* \rangle = f(x) + \sum_{i \in I(x^*)} \lambda_i^* \langle h_i, x - x^* \rangle$

 $\leq f(x) + \sum_{i \in I(x^*)} \lambda_i^* (g_i(x^*) - g_i(x)) = f(x) + \sum_{i \in I(x^*)} \lambda_i^* (b_i - g_i(x)),$ which is equivalent to $F^*(g(x)) \leq f(x).$

Thus λ^* is the dual optimum,

and can be interpreted as the constraints prices.

▶ The KKT Conditions are nothing but $\partial L(x^*, \lambda^*)/\partial x = 0$

- For unconstrained problems, we recover the optimality condition $0 \in \partial f(x^*)$.
- ▶ When the f is differentiable, and $Q := \{x : g(x) \ge b\}$ has a nonempty interior, we have $x^* \in \arg\min\{f(x) : x \in Q\}$ iff

 $\langle f'(x^*), y - x^* \rangle \ge 0 \quad \forall y \in Q.$

KKT says $f'(x^*) = -\sum_{i \in I(x^*)} \lambda_i^* h_i$, with $\langle h_i, y - x^* \rangle \leq g_i(x^*) - g_i(y) = b_i - g_i(y)$ and $\lambda_i^* \geq 0$ for $i \in I(x^*)$. Thus: $\langle f'(x^*), y - x^* \rangle = -\sum_{i \in I(x^*)} \lambda_i^* \langle h_i, y - x^* \rangle$ $\geq -\sum_{i \in I(x^*)} \lambda_i^* (b_i - g_i(y)) \geq 0$

for all feasible y.

Application

Projecting on a subspace

- One of the most solved optimization problems in the world. (Also known as Least-Squares Problem)
- Direct applications in meteorology, genomic, statistics, control, signal processing, . . .

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, with $n \ge m$. Find the shortest solution of Ax = b:

$$\min\{||x||_2^2/2 : Ax = b\}$$

KKT conditions: $Ax^* = b$, $x^* - A^T \lambda^* = 0$ imply $AA^T \lambda^* = b$, and $x^* = A^T (AA^T)^{-1} b$ $A^{\dagger} := A^T (AA^T)^{-1}$ is the *Moore-Penrose inverse* of A.

A historical application:

A simple mechanical system

We have on a straight segment between two walls: two masses each of width w; three springs of very short length at rest (~ 0) attached between the walls and the center of the masses, of rigidity k_1 , k_2 k_3 respectively.

> What is the equilibrium configuration? What are the forces on the walls?

A historical application: Modeling as an optimization problem

Potential energy of a spring: rigidity \times length²/2. ||**Force**|| **exerted by a spring:** rigidity \times length.

min
$$\frac{1}{2} \left(k_1 x_1^2 + k_2 (x_2 - x_1)^2 + k_3 (L - x_2)^2 \right)$$

s.t. $x_1 \ge w/2$
 $x_2 - x_1 \ge w$
 $L - x_2 \ge w/2.$

A historical application: The optimality conditions

min
$$\frac{1}{2} \left(k_1 x_1^2 + k_2 (x_2 - x_1)^2 + k_3 (L - x_2)^2 \right)$$

s.t. $x_1 \ge w/2$
 $x_2 - x_1 \ge w$
 $L - x_2 \ge w/2.$

Complementarity and KKT Conditions:

$$\begin{split} \lambda_1^*(x_1^* - w/2) &= 0, \quad \lambda_2^*(x_2^* - x_1^* - w) = 0, \quad \lambda_3^*(L - x_2^* - w/2) = 0, \\ k_1 x_1^* - k_2 (x_2^* - x_1^*) - \lambda_1^* + \lambda_2^* = 0, \\ k_2 (x_2^* - x_1^*) - k_3 (L - x_2^*) - \lambda_2^* + \lambda_3^* = 0, \\ \lambda_i^* &\geq 0, \quad x^* \text{ feasible.} \end{split}$$

A historical application:

The physical interpretation of dual variables

Complementarity and KKT Conditions:

$$\begin{split} \lambda_1^*(x_1^* - w/2) &= 0, \quad \lambda_2^*(x_2^* - x_1^* - w) = 0, \quad \lambda_3^*(L - x_2^* - w/2) = 0, \\ k_1 x_1^* - k_2 (x_2^* - x_1^*) - \lambda_1^* + \lambda_2^* = 0, \\ k_2 (x_2^* - x_1^*) - k_3 (L - x_2^*) - \lambda_2^* + \lambda_3^* = 0, \\ \lambda_i^* &\geq 0, \quad x^* \text{ feasible.} \end{split}$$

The KKT Conditions can be interpreted as a force balance equation on both masses.

 λ_1^* [λ_3^*] is the force exerted on the left [right] wall λ_2^* is the force exerted on each block

Applications of KKT's Theorem are countless I am sure that each of you will have to use them some day

(If you stay in engineering)

For next week

Making convex optimization work for you: Modeling and solving Linear, Second-Order, and Semidefinite optimization problems.