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Quick recall of last week’s lecture

I Various aspects of convexity:

The set of minimizers is convex.

Convex functions are line-differentiable

(i.e. the limit limt↓0[f(x+ td)−f(x)]/t always exists).

Differentiable convex functions:

equivalent definitions, easier optimality conditions .

I Subdifferential: a generalization of gradient.

New optimality conditions.

Deducing differentiability by looking at ∂f(x).

I Conjugate functions arise naturally from duality.

I g ∈ ∂f(x) iff x ∈ ∂f∗(g).

I An easy tool: support functions.

I Support function of subdifferentials.



Combining subdifferentials:

Subdifferential of a maximum

Let f1, . . . , fm : Rn → R ∪ {+∞} be convex,

such that D := ∩m
i=1int dom(fi) 6= φ. Let f(x) := maxi fi(x).

f1

f2

f3
Let I(x) := {i : fi(x) = f(x)} for x ∈ D.

∂f(x) = C := conv{∂fi(x) : i ∈ I(x)}.

Proof: (see blackboard). Key steps:

I We just need to check σC ≡ σ∂f(x)

as ∂f(x) and C are closed and convex.

I Let d ∈ Rn. Then limt↓0 I(x + td) ⊆ I(x).

I σ∂f(x)(d) = ∇f(x)[d] = maxi∈I(x) ∇fi(x)[d].

I ∇fi(x)[d] = σ∂fi(x)(d) = max{〈gi, d〉 : gi ∈ ∂fi(x)}.

I Remember the support function of a k-simplex.

Adapting it slightly, σC(d) = maxi∈I(x){〈gi, d〉 : gi ∈ ∂fi(x)}.



Some examples

I Let f(t) := |t| = max{t,−t}.

Then ∂f(t) = sign(t) for t 6= 0.

Also, ∂f(0) = conv{−1,1} = [−1,1].

I Let f(x) := max1≤i≤n xi, and I(x) := {i : xi = f(x)}.

Then ∂f(x) = conv{ei : i ∈ I(x)}.

In particular, ∂f(0) = ∆n := {g ≥ 0 :
∑

i gi = 1}.

Observe that g ∈ ∂f(0) iff 0 ∈ ∂f∗(g) iff g minimizes f∗.

Now, f is the support function of ∆n.

Thus f = χ∗
∆n

, and f∗ = χ∗∗
∆n

= χ∆n,

which is indeed minimized in ∆n.

Generalizable for every support function



Combining subdifferentials:

Subdifferential of a sum

Let f1, f2 : Rn → R ∪ {+∞} be convex,

such that D := ∩irelint(dom(fi)) 6= φ, and s := f1 + f2.

Then ∂s(x) = ∂f1(x) + ∂f2(x) for all x ∈ D.

The proof, due to Rockafellar, is far to be trivial.

The direction ⊇ is easy: if gi ∈ ∂fi(x),

fi(y) ≥ fi(x) + 〈gi, y − x〉 ∀y, and i = 1,2.

Summing up both sides, we get that g1 + g2 ∈ ∂s(x).

Sketch for ⊆: We use g ∈ ∂s∗(x) iff s(x) + s∗(g) = 〈g, x〉. It can be
proven that s∗(g) = inf{f∗

1(u) + f∗
2(v) : u + v = g} when D 6= φ. Now:

g ∈ ∂s∗(x) ⇔ 〈g, x〉 = f1(x) + f2(x) + f∗
1(u

∗) + f∗
2(v

∗)

iff u∗ ∈ ∂f1(x), v∗ ∈ ∂f2(x), and u∗ + v∗ = g.



Subdifferential of a sum

The missing part∗

The conjugate of a sum [Rockafellar, Th. 16.4]

Let g1, g2 : Rn → R ∪ {+∞} be convex.

g∗1(x) + g∗2(x) = sup
y,z

〈y + z, x〉 − g1(y) − g2(z)

= sup
d

sup
y+z=d

〈y + z, x〉 − g1(y) − g2(z)

= sup
d

〈d, x〉 − inf
y+z=d

g1(y) + g2(z) = φ∗(x),

where φ(d) := inf{g1(y) + g2(z) : y + z = d}

is the inf-convolution of g1 and g2.

We let g1 := f∗
1, g2 := f∗

2. Since (f∗∗
1 + f∗∗

2 )∗ = (f1 + f2)
∗

when ∩irelint(dom(fi)) 6= φ, we get the needed result.



The Karush-Kuhn-Tucker Theorem

I The expression Kuhn-Tucker has 185,000 hits on Google.

I Needless to say, it is a cornerstone of Optimization.

I Proved in 1939 in the Master Thesis of Karush,

rediscovered in 1951 by Kuhn and Tucker.



The Karush-Kuhn-Tucker Theorem

Theorem 1 (KKT Conditions for Convex Optimization)

Let f : Rn → R ∪ {+∞} be a convex function,

g1, . . . , gm be concave functions,

b ∈ Rm such that Slater’s condition holds:

∃x̄ : gi(x̄) > bi for 1 ≤ i ≤ m.

A point x∗ is a solution to f∗ = min{f(x) : g(x) ≥ b}

iff g(x∗) ≥ b, (Feasibility)

∃h0 ∈ ∂f(x∗), hi ∈ ∂(−gi(x
∗)), (”Original”

λ∗
i ≥ 0 for 1 ≥ i ≥ m: KKT

h0 +
∑

i∈I(x∗) λ∗
i hi = 0, Conditions)

where I(x∗) := {i : gi(x
∗) = bi}.

Note: The minus sign ensures that ∂(−gi(x
∗)) 6= φ.



The Karush-Kuhn-Tucker Theorem:

the proof is simple with subdifferentials

f∗ = min{f(x) : g(x) ≥ b} (P)

I Let φ(x) := max{f(x)−f∗, b1−g1(x), . . . , bm−gm(x)}, which is convex.

I x∗ is an optimum of (P) iff x∗ ∈ argminx φ(x) iff 0 ∈ ∂φ(x∗)

iff 0 ∈ conv{∂f(x∗), ∂(−gi(x∗)) : i ∈ I(x∗)} (obviously f(x∗) = f∗)

iff ∃h0 ∈ ∂f(x∗), hi ∈ ∂(−gi(x∗)), αi ≥ 0, α0 +
∑

i∈I(x∗) αi = 1

such that 0 = α0h0 +
∑

i∈I(x∗) αihi.

I α0 6= 0.

First, 〈hi, y−x∗〉 ≤ gi(x∗)−gi(y) = bi−gi(y) for all y and all i ∈ I(x∗).

If α0 = 0, then 0 =
∑

i∈I(x∗) αi〈hi, x̄ − x∗〉 ≤
∑

i∈I(x∗) αi(bi − gi(x̄)),

contradicting Slater’s condition, satisfied by x̄.

I It remains to let λ∗
i := αi/α0.



This theorem cannot be used!

You need to know I(x∗) in advance!

Easy way out: set λ∗
i := 0 when i /∈ I(x∗).

Theorem 2 (KKT Conditions for Convex Optimization II)

Let f : Rn → R ∪ {+∞} be a convex function,

g1, . . . , gm be concave functions,

b ∈ Rm such that Slater’s condition holds:

∃x̄ : gi(x̄) > bi for 1 ≤ i ≤ m.

A point x∗ is a solution to f∗ = min{f(x) : g(x) ≥ b}

iff g(x∗) ≥ b, (Feasibility)

∃h0 ∈ ∂f(x∗), hi ∈ ∂(−gi(x
∗)), (”Usable”

λ∗
i ≥ 0 for 1 ≥ i ≥ m: KKT

h0 +
∑m

i=1λ∗
i hi = 0, Conditions)

and λ∗
i (bi − gi(x

∗)) = 0 for all i. (Complementarity)



When you have a slightly different problem

I Equality constraints (necessary affine constraints):

the same statement holds, but no sign constraint

for the corresponding λ∗
i ’s, and an extra condition

on linear independence of the hi’s.

I A version of the KKT Theorem exists for differentiable

non-convex problems. The conditions read the same

but are not sufficient.

First find all the KKT points (x∗, λ∗),

then test them all to find the global optimum.

I Interesting exercise:

what happens for general conic inequalities?



KKT and duality

I λ∗
i is the dual optimum. Recall:

Theorem 3 (Complementarity conditions) Suppose that x∗ and F ∗

are feasible for their respective problems, and that f(x∗) = F ∗(b). Then

p∗ = f(x∗) = F ∗(g(x∗)) = F ∗(b) = d∗(F).

We take as candidates x∗ and F ∗(y) = 〈u, y〉 + u0,

with u := λ∗ and u0 := f(x∗) − 〈λ∗, b〉.

1. By direct substitution, F ∗(b) = f(x∗).

2. F ∗ is feasible, that is F ∗(g(x)) ≤ f(x) for all x. Fix x ∈ Rn

First, f(x∗) ≤ f(x) − 〈h0, x − x∗〉 = f(x) +
∑

i∈I(x∗) λ∗
i 〈hi, x − x∗〉

≤ f(x) +
∑

i∈I(x∗) λ∗
i (gi(x∗) − gi(x)) = f(x) +

∑

i∈I(x∗) λ∗
i (bi − gi(x)),

which is equivalent to F ∗(g(x)) ≤ f(x).

Thus λ∗ is the dual optimum,

and can be interpreted as the constraints prices.

I The KKT Conditions are nothing but ∂L(x∗, λ∗)/∂x = 0



A geometric view of KKT

I For unconstrained problems, we recover

the optimality condition 0 ∈ ∂f(x∗).

I When the f is differentiable,

and Q := {x : g(x) ≥ b} has a nonempty interior,

we have x∗ ∈ argmin{f(x) : x ∈ Q} iff

〈f ′(x∗), y − x∗〉 ≥ 0 ∀y ∈ Q.

Q

x∗

KKT says f ′(x∗) = −
∑

i∈I(x∗) λ∗
i hi, with

〈hi, y − x∗〉 ≤ gi(x∗) − gi(y) = bi − gi(y)

and λ∗
i ≥ 0 for i ∈ I(x∗). Thus:

〈f ′(x∗), y − x∗〉 = −
∑

i∈I(x∗) λ∗
i 〈hi, y − x∗〉

≥ −
∑

i∈I(x∗) λ∗
i (bi − gi(y)) ≥ 0

for all feasible y.



Application

Projecting on a subspace

I One of the most solved optimization problems

in the world. (Also known as Least-Squares Problem)

I Direct applications in meteorology, genomic, statistics,

control, signal processing, . . .

Let A ∈ Rm×n and b ∈ Rm, with n ≥ m.

Find the shortest solution of Ax = b:

min{||x||22/2 : Ax = b}

KKT conditions: Ax∗ = b, x∗ − ATλ∗ = 0

imply AATλ∗ = b, and x∗ = AT (AAT )−1b

A† := AT (AAT )−1 is the Moore-Penrose inverse of A.



A historical application:

A simple mechanical system

We have on a straight segment between two walls:

two masses each of width w;

three springs of very short length at rest (∼ 0)

attached between the walls and the center of the masses,

of rigidity k1, k2 k3 respectively.

What is the equilibrium configuration?

What are the forces on the walls?

w w

L



A historical application:

Modeling as an optimization problem

w w

x1

x2

L

Potential energy of a spring: rigidity × length2/2.

||Force|| exerted by a spring: rigidity × length.

min 1
2

(

k1x2
1 + k2(x2 − x1)

2 + k3(L − x2)
2
)

s.t. x1 ≥ w/2
x2 − x1 ≥ w
L − x2 ≥ w/2.



A historical application:

The optimality conditions

min 1
2

(

k1x2
1 + k2(x2 − x1)

2 + k3(L − x2)
2
)

s.t. x1 ≥ w/2
x2 − x1 ≥ w
L − x2 ≥ w/2.

Complementarity and KKT Conditions:

λ∗
1(x

∗
1−w/2) = 0, λ∗

2(x
∗
2−x∗1−w) = 0, λ∗

3(L−x∗2−w/2) = 0,

k1x∗1 − k2(x
∗
2 − x∗1) − λ∗

1 + λ∗
2 = 0,

k2(x
∗
2 − x∗1) − k3(L − x∗2) − λ∗

2 + λ∗
3 = 0,

λ∗
i ≥ 0, x∗ feasible.



A historical application:

The physical interpretation of dual variables

Complementarity and KKT Conditions:

λ∗
1(x

∗
1 − w/2) = 0, λ∗

2(x
∗
2 − x∗

1 − w) = 0, λ∗
3(L − x∗

2 − w/2) = 0,

k1x
∗
1 − k2(x

∗
2 − x∗

1) − λ∗
1 + λ∗

2 = 0,

k2(x
∗
2 − x∗

1) − k3(L − x∗
2) − λ∗

2 + λ∗
3 = 0,

λ∗
i ≥ 0, x∗ feasible.

The KKT Conditions can be interpreted
as a force balance equation on both masses.

k1x∗
1

λ∗
1

k2(x∗
2 − x∗

1)

λ∗
2

k2(x∗
2 − x∗

1)

λ∗
2

k3(L − x∗
2)

λ∗
3

λ∗
1 [λ∗

3] is the force exerted on the left [right] wall
λ∗
2 is the force exerted on each block



Applications of KKT’s Theorem

are countless

I am sure that each of you

will have to use them some day

(If you stay in engineering)



For next week

Making convex optimization work for you:

Modeling and solving Linear, Second-Order,

and Semidefinite optimization problems.


