Convex OptimizationLecture 6:KKT Conditions,and applications

Dr. Michel Baes,

IFOR / ETH Zürich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- ▶ Various aspects of convexity:
	- The set of minimizers is convex.

Convex functions are line-differentiable

(i.e. the limit lim $_{t\downarrow 0}[f(x+td)]$ Differentiable convex functions: $f(x)]/t$ always exists).

equivalent definitions, easier optimality conditions .

- Subdifferential: a generalization of gradient. New optimality conditions.Deducing differentiability by looking at $\partial f(x).$
- \blacktriangleright Conjugate functions arise naturally from duality.
- \blacktriangleright $g \in \partial f(x)$ iff $x \in \partial f_*(g)$.
- An easy tool: support functions.
- ▶ Support function of subdifferentials.

Combining subdifferentials:Subdifferential of a maximum

Let $f_1,\ldots,f_m:\mathbb{R}^n\to\mathbb{R}\cup\{+\infty\}$ be convex,
such that $D:=\cap^m$ intermediated and fu **Contract Contract Contract** such that $D := \cap_{i=1}^m$ int dom $(f_i) \neq \phi$. Let $f(x) := \max_i f_i(x)$.

 L_{3} Let $I(x):=\{i: f_{i}(x)=f(x)\}$ for $x\in D.$ $\partial f(x) = C := \mathsf{conv}\{\partial f_i(x) : i \in I(x)\}.$

Proof: (see blackboard). Key steps:

 \blacktriangleright We just need to check $\sigma_C \equiv \sigma_{\partial f(x)}$

as $\partial f(x)$ and C are closed and convex.

- ► Let $d \in \mathbb{R}^n$. Then $\lim_{t\downarrow 0} I(x+td) \subseteq I(x)$.
- $\blacktriangleright \sigma_{\partial f(x)}(d) = \nabla f(x)[d] = \max_{i \in I(x)} \nabla f_i(x)[d].$
- $\blacktriangleright \nabla f_i(x)[d] = \sigma_{\partial f_i(x)}(d) = \max\{\langle g_i, d \rangle : g_i \in \partial f_i(x)\}.$

 \blacktriangleright Remember the support function of a k-simplex. Adapting it slightly, $\sigma_C(d) = \max_{i \in I(x)} \{ \langle g_i, d \rangle : g_i \in \partial f_i(x) \}.$

\n- Let
$$
f(t) := |t| = \max\{t, -t\}.
$$
\n- Then $\partial f(t) = \text{sign}(t)$ for $t \neq 0$.
\n- Also, $\partial f(0) = \text{conv}\{-1, 1\} = [-1, 1].$
\n

► Let $f(x) := \max_{1 \leq i \leq n} x_i$, and $I(x) := \{i : x_i = f(x)\}.$
Then $\partial f(x) = \text{conv}\{e_i : i \in I(x)\}.$ $\log \partial f(x) = \text{conv}\{e_i : i \in I(x)\}.$ In particular, $\partial f(0) = \Delta_n := \{g \geq 0 : \sum_i g_i = 1\}.$

Observe that $g \in \partial f(0)$ iff $0 \in \partial f_*(g)$ iff g minimizes f_* .
Now, f is the support function of Δ_n . , f is the support function of $\Delta_n.$ Thus $f = \chi_{\Delta_n}^*$, and $f^* = \chi_{\Delta_n}^{**} = \chi_{\Delta_n}$,

which is indeed minimized in Δ_n .

Generalizable for every support function

Combining subdifferentials:Subdifferential of a sum

Let $f_1, f_2 : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be convex, such that $D := \bigcap_i$ relint $(\text{dom}(f_i)) \neq \phi$, and $s := f_1 + f_2$. Then $\partial s(x) = \partial f_1(x) + \partial f_2(x)$ for all $x \in D$.

The proof, due to Rockafellar, is far to be trivial. The direction \supseteq is easy: if $g_i\in\partial f_i(x)$,

> $f_i(y)\geq f_i(x) +\langle g_i, y-\rangle$ $x\rangle$ $\forall y$, and $i = 1, 2$.

Summing up both sides, we get that $g_1+g_2\in \partial s(x)$.

Sketch for \subseteq : We use $g \in \partial s^*(x)$ iff $s(x) + s^*(g) = \langle g, x \rangle$. It can be proven that $s^*(g) = \inf\{f^*(y) + f^*(y) : y + y = g\}$ when $D \neq \emptyset$ Now: $+$ $a * (a)$ = $inf[f * (a) + f * (a)] + a$ proven that $s^*(g) = \inf\{f_1^*(u) + f_2^*(v) : u + v = g\}$ when $D \neq \phi$. Now:

 $g \in \partial s^*(x) \Leftrightarrow \langle g, x \rangle = f_1(x) + f_2(x) + f_1^*(u^*) + f_2^*(v^*)$

iff $u^* \in \partial f_1(x)$, $v^* \in \partial f_2(x)$, and $u^* + v^* = g$.

Subdifferential of a sumThe missing part*

The conjugate of a sum [Rockafellar, Th. 16.4]
Let av avi \mathbb{P}^n . $\mathbb{P} \cup \{ \text{Leo} \}$ be senyoy Let $g_1, g_2 : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be convex.

$$
g_1^*(x) + g_2^*(x) = \sup_{y,z} \langle y + z, x \rangle - g_1(y) - g_2(z)
$$

=
$$
\sup_{d} \sup_{y+z=d} \langle y + z, x \rangle - g_1(y) - g_2(z)
$$

=
$$
\sup_{d} \langle d, x \rangle - \inf_{y+z=d} g_1(y) + g_2(z) = \phi^*(x),
$$

where $\phi(d) := \inf\{g_1(y) + g_2(z) : y+z=d\}$ is the inf-convolution of g_1 and g_2 . We let $g_1 := f_1^*, g_2 := f_2^*.$ Since when \cap_i relint $(\textsf{dom}(f_i))\neq\phi$, we get the needed result. j_1^* , $g_2 := f_2^*$ ^{*}₂. Since $(f_1^{**}+f_2^{**})^*=(f_1+f_2)^*$

The Karush-Kuhn-Tucker Theorem

- \blacktriangleright The expression Kuhn-Tucker has 185,000 hits on Google.
- ▶ Needless to say, it is a cornerstone of Optimization.
- **Proved in 1939 in the Master Thesis of Karush,** rediscovered in 1951 by Kuhn and Tucker.

Theorem 1 (KKT Conditions for Convex Optimization)Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{ + \infty \}$ be a convex function,

 g_1, \ldots, g_m m be concave functions, ϵ

 $b\in\mathbb{R}^m$ such that Slater's condition holds:

 $\exists \bar{x}: g_i(\bar{x}) > b_i$ for $1 \leq i \leq m$.

A point x^* is a solution to $f^* = \min\{f(x) : g(x) \geq b\}$ $\mathsf{iff}\; g(x^*) \geq b, \qquad \mathsf{(Feasibi)}$ $\exists h_0\in\partial f(x^*)$ $^{\ast})\geq b, \qquad \textit{(Feasibility)}$ $\lambda_i^*>0$ for $1>i>m$: $^{\ast}),\;h_{i}\in\partial(% \mathcal{M}_{0},\mathcal{M}_{1})\subset\partial(\mathcal{M}_{0},\mathcal{M}_{1})$ $-g_i(x^{\ast})),\quad$ ("Original" KKT $i \geq 0$ for $1 \geq i \geq m$: $\mathbf{1}$ $\mathbf{1}$ $h_0+\sum_{i\in I(x^*)}\lambda_i^*h_i=0$, Con where $I(x^*) := \{i : g_i(x^*) = b_i\}.$ $i^* h_i = 0$, Conditions)

Note: The minus sign ensures that $\partial($ $-g_i(x^*)) \neq \phi$.

The Karush-Kuhn-Tucker Theorem:the proof is simple with subdifferentials

$$
f^* = \min\{f(x) : g(x) \ge b\} \quad (P)
$$

- \blacktriangleright Let $\phi(x) := \max\{f(x) f^*, b_1 g_1(x), \ldots, b_m g_m(x)\}$, which is convex.
- \blacktriangleright x^* is an optimum of (\mathcal{P}) iff $x^*\in$ arg min iff $0 \in \mathsf{conv}\{\partial f(x^*), \partial (-g_i(x^*)) : i \in I(x^*)\}$ (obviously $f(x^*) = f^*$) $\phi(x)$ iff $0 \in \partial \phi(x^*)$ iff $\exists h_0\in \partial f(x^*), h_i\in \partial (-g_i(x^*)),\ \alpha_i\geq 0,\ \alpha_0+\sum_{i\in I(x^*)}\alpha_i=1$ such that $0 = \alpha_0 h_0 + \sum_{i \in I(x^*)} \alpha_i h_i.$
- \blacktriangleright $\alpha_0\neq 0$.

First, $\langle h_i, y - x^* \rangle \le g_i(x^*) - g_i(y) = b_i - g_i(y)$ for all y and all $i \in I(x^*)$. If $\alpha_0=0$, then $0=\sum_{i\in I(x^*)}\alpha_i\langle h_i,\bar{x}-x^*\rangle\leq \sum_{i\in I(x^*)}\alpha_i(b_i-g_i(\bar{x}))$, contradicting Slater's condition, satisfied by $\bar{x}.$

► It remains to let $\lambda_i^* := \alpha_i/\alpha_0$.

You need to know $I(x^{\ast})$ in advance! Easy way out: set λ_i^* $i^* := 0$ when $i \notin I(x^*)$.

Theorem 2 (KKT Conditions for Convex Optimization II)Let $f : \mathbb{R}^n$ g_1, \ldots, g_m $\mathbb{R}^n\to\mathbb{R}\cup\{+\infty\}$ be a convex function, $b\in\mathbb{R}^m$ such that Slater's condition holds: m be concave functions, ϵ uch that Slater's sendi $\exists \bar{x}: g_i(\bar{x}) > b_i$ for $1 \leq i \leq m$. A point x^* is a solution to $f^* = \min\{f(x) : g(x) \geq b\}$ iff $g(x^*) \geq b$, (Feasibilit $\exists h_0 \in \partial f(x^*)$, $h_i \in \partial (-g_i(x^*))$ $^{\ast})\geq b, \qquad \textbf{(Feasibility)}$ $\lambda_i^* > 0$ for $1 > i > m$: $^{\ast}),\;h_{i}\in\partial(% \mathcal{M}_{0},\mathcal{M}_{1})\subset\partial(\mathcal{M}_{0},\mathcal{M}_{1})$ $-g_i(x^{\ast})), \qquad$ ("Usable" $i \geq 0$ for $1 \geq i \geq m$: $h_0+\sum_{i=1}^m\lambda_i^*h_i$ KKT $i = 0$, Conditions) $\sum\limits_{i=1}^m \lambda_i^*$ $_{i}^{\ast }h_{i}$

 \overline{d} and $\lambda_i^*(b_i-q_i)$ $i^*(b_i - g_i(x^*)) = 0$ for all i. (Complementarity)

When you have ^a slightly different problem

- Equality constraints (necessary affine constraints): the same statement holds, but no sign constraint for the corresponding λ_i^* on linear independence of the h_i 's. $_i^\ast$'s, and an extra condition
- A version of the KKT Theorem exists for differentiable non-convex problems. The conditions read the samebut **are not sufficient**.

First find all the $\mathcal{K} \mathcal{K} \mathcal{T}$ points (x^*, λ^*) ,

then test them all to find the global optimum.

\blacktriangleright Interesting exercise:

what happens for general conic inequalities?

 $\blacktriangleright \lambda_i^*$ is the dual optimum. Recall:

Theorem 3 (Complementarity conditions) Suppose that x^* and F^* are feasible for their respective problems, and that $f(x^*) = F^*(b)$. Then

 $p^* = f(x^*) = F^*(g(x^*)) = F^*(b) = d^*(\mathcal{F}).$

We take as candidates x^* and $F^*(y) = \langle u, y \rangle + u_0$,
with $y := \lambda^*$ and $y_0 := f(x^*) - \langle \lambda^* | b \rangle$ with $u := \lambda^*$ and $u_0 := f(x^*) - \langle \lambda^*, b \rangle$.

1. By direct substitution, $F^*(b) = f(x^*)$. 2. F^* is feasible, that is $F^*(g(x)) \leq f(x)$ for all x . Fix $x \in \mathbb{R}^n$ First, $f(x^*) \le f(x) - \langle h_0, x - x^* \rangle = f(x) + \sum_{i \in I(x^*)} \lambda_i^* \langle h_i, x - x^* \rangle$

 $\leq f(x) + \sum_{i \in I(x^*)} \lambda_i^* (g_i(x^*) - g_i(x)) = f(x) + \sum_{i \in I(x^*)} \lambda_i^* (b_i - g_i(x)),$ which is equivalent to $F^*(g(x)) \le f(x)$.

Thus λ^* is the dual optimum,

and can be interpreted as the constraints prices.

► The KKT Conditions are nothing but $\partial L(x^*, \lambda^*)/\partial x = 0$

- For unconstrained problems, we recover the optimality condition $0 \in \partial f(x^*)$.
- \blacktriangleright When the f is differentiable, and $Q:=\{x: g(x)\geq b\}$ has a nonempty interior, $h \sim h$ we have $x^*\in$ arg m $x^* \in \argmin\{f(x) : x \in Q\}$ iff

 $\langle f'(x^*$ $^{\ast}),y$ $- x^* \rangle \geq 0 \quad \forall y \in Q.$

<code>KKT</code> says $f'(x^*) = -\sum_{i\in I(x^*)} \lambda_i^*h_i$, with $\langle h_i, y - x^* \rangle \le g_i(x^*) - g_i(y) = b_i - g_i(y)$ and $\lambda_i^* \geq 0$ for $i \in I(x^*)$. Thus: $\langle f'(x^*), y - x^* \rangle = -\sum_{i \in I(x^*)} \lambda_i^* \langle h_i, y - x^* \rangle$ $\geq -\sum_{i\in I(x^*)} \lambda_i^*(b_i-g_i(y))\geq 0$

for all feasible $y.$

Application

Projecting on ^a subspace

- ▶ One of the **most solved** optimization problems in the world. (Also known as Least-Squares Problem)
- Direct applications in meteorology, genomic, statistics, control, signal processing, . . .

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, with $n \geq 1$ Let $A \in \mathbb{R}^{m \times m}$ and $b \in \mathbb{R}^{m}$, with $n \geq m$.
Find the shortest solution of $Ax = b$:

$$
\min\{||x||_2^2/2 : Ax = b\}
$$

KKT conditions: $Ax^* = b$, $x^* - A^T\lambda^* = 0$
imply $AA^T\lambda^* = 1$ and $A^T\lambda^* = A^T(A)A^T\lambda^{-1}$ imply $AA^T\lambda^* = b$, and $x^* = A^T(AA^T)^{-1}b$ $A^{\dagger} := A^T (AA^T)^{-1}$ is the Moore-Penrose inverse of A .

A historical application:

A simple mechanical system

We have on a straight segment between two walls: two masses each of width $w;$ three springs of very short length at rest (~ 0) attached between the walls and the center of the masses,of rigidity k_1 , k_2 k_3 respectively.

> What is the equilibrium configuration?What are the forces on the walls?

A historical application:Modeling as an optimization problem

Potential energy of a spring: rigidity \times length² $||$ **Force** $||$ **exerted by a spring:** rigidity \times length. $^{2}/2.$

min
$$
\frac{1}{2}
$$
 $(k_1x_1^2 + k_2(x_2 - x_1)^2 + k_3(L - x_2)^2)$
s.t. $x_1 \ge w/2$
 $x_2 - x_1 \ge w$
 $L - x_2 \ge w/2$.

A historical application:The optimality conditions

min
$$
\frac{1}{2}
$$
 $(k_1x_1^2 + k_2(x_2 - x_1)^2 + k_3(L - x_2)^2)$
s.t. $x_1 \ge w/2$
 $x_2 - x_1 \ge w$
 $L - x_2 \ge w/2$.

Complementarity and KKT Conditions:

$$
\lambda_1^*(x_1^* - w/2) = 0, \quad \lambda_2^*(x_2^* - x_1^* - w) = 0, \quad \lambda_3^*(L - x_2^* - w/2) = 0,
$$

\n
$$
k_1 x_1^* - k_2(x_2^* - x_1^*) - \lambda_1^* + \lambda_2^* = 0,
$$

\n
$$
k_2(x_2^* - x_1^*) - k_3(L - x_2^*) - \lambda_2^* + \lambda_3^* = 0,
$$

\n
$$
\lambda_i^* \ge 0, \quad x^*
$$
 feasible.

A historical application:

The physical interpretation of dual variables

Complementarity and KKT Conditions:

$$
\lambda_1^*(x_1^* - w/2) = 0, \quad \lambda_2^*(x_2^* - x_1^* - w) = 0, \quad \lambda_3^*(L - x_2^* - w/2) = 0,
$$

\n
$$
k_1x_1^* - k_2(x_2^* - x_1^*) - \lambda_1^* + \lambda_2^* = 0,
$$

\n
$$
k_2(x_2^* - x_1^*) - k_3(L - x_2^*) - \lambda_2^* + \lambda_3^* = 0,
$$

\n
$$
\lambda_i^* \ge 0, \quad x^*
$$
 feasible.

 The KKT Conditions can be interpretedas ^a force balance equation on both masses.

 λ^* λ_2^* is $_1^*$ $[\lambda_3^*$ $\frac{1}{3}$] is the force exerted on the left [right] wall 2 $_2^*$ is the force exerted on each block

Applications of KKT's Theoremare countless I am sure that each of you will have to use them some day

(If you stay in engineering)

For next week

Making convex optimization work for you:Modeling and solving Linear, Second-Order,and Semidefinite optimization problems.